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Wind Farms Need Control

Picture from http://www.hochtief.com/hochtief_en/9164.jhtml

Most wind farms today are paid to maximize power production.
Future farms will have to curtial power at contracted levels.

New control objective:
Minimize fatigue loads subject to fixed total production.
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Minimizing Fatigue Loads

Single turbine control:
Minimize tower pressure variance subject to linearized
dynamics with measurements of pitch angle and rotor speed.

Optimal controller: uloci (t)

Wind farm control:
Minimize sum of all tower pressure variances subject to
fixed total production of the farm:

∑m
i=1 ui = 0

Optimal controller: ui(t) = uloci (t)−
1
m

∑m
j=1 u

loc
j (t).

[PhD thesis by Daria Madjidian, Lund University, June 2014]
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Controller Structure

C

Linear quadratic control of m identical systems and a constraint
∑m
i=1 ui = 0 gives an optimal feedback matrix with two parts:

One is localized (diagonal).

The other has rank one (control of the average state).
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Server Farms Need Control

Picture from http://www.dawn.com/news/1017980

Single server control:
Assign resources (processor speed, memory, etc.) to minimize
variance in completion time.

Server farm control:
Minimize sum of all time variances with fixed total resources.
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Towards a Scalable Control Theory
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Linear quadratic control uses O(n3) flops, O(n2) memory

Model Predictive Control requires even more

Today: Exploiting monotone/positive systems
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Outline

• Positive and Monotone Systems

○ Scalable Stability Analysis

○ Input-Output Performance

○ Trajectory Optimization

○ Combination Therapy for HIV and Cancer
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Positive systems

A linear system is called positive if the state and output remain
nonnegative as long as the initial state and the inputs are
nonnegative:

dx

dt
= Ax + Bu y= Cx

Equivalently, A, B and C have nonnegative coefficients except
for the diagonal of A.

Examples:

Probabilistic models.

Economic systems.

Chemical reactions.

Ecological systems.
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Positive Systems and Nonnegative Matrices

Classics:

Mathematics: Perron (1907) and Frobenius (1912)

Economics: Leontief (1936)

Books:

Nonnegative matrices: Berman and Plemmons (1979)

Dynamical Systems: Luenberger (1979)

Recent control related work:

Biology inspired theory: Angeli and Sontag (2003)

Synthesis by linear programming: Rami and Tadeo (2007)

Switched systems: Liu (2009), Fornasini and Valcher (2010)

Distributed control: Tanaka and Langbort (2010)

Robust control: Briat (2013)
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Example 1: Transportation Networks

Cloud computing / server farms

Heating and ventilation in buildings

Traffic flow dynamics

Production planning and logistics
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A Transportation Network is a Positive System
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How do we select $i j to minimize the gain from w to x?
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Example 2: A vehicle formation
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Example 2: Vehicle Formations
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ẋ1 = −x1 + $13(x3 − x1) +w1
ẋ2 = $21(x1 − x2) + $23(x3 − x2) +w2
ẋ3 = $32(x2 − x3) + $34(x4 − x3) +w3
ẋ4 = −4x4 + $43(x3 − x4) +w4

How do we select $i j to minimize the gain from w to x?
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Nonlinear Monotone Systems

For the nonlinear system ẋ = f (x), let x(t) = φ(x0, t) be the solution
starting from x0. The system is called monotone if x0 ≤ y0 implies
φ(x0, t) ≤ φ(y0, t) for all t ≥ 0.

x(0)

x(1)

x(2)

x(3)

y(0)

y(1)

y(2)

y(3)
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Macroscopic Models of Traffic Flow

1 Partial differential equation by Lighthill/Whitham (1955),
Richards (1956) based on mass-conservation:

0 =
'ρ

't
+
'

'x
f (ρ)

where ρ(x, t) is traffic density in position x at time t and
f (ρ) expresses flow as function of density.

2 Spatial discretization by Daganzo (1994).

Both models are monotone systems!

Exploited for lines: [Gomes/Horowitz/Kurzhanskiy/Varaiya/Kwon, 2008].
Exploited for networks: [Lovisari/Como/Rantzer/Savla, MTNS-14].

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Outline

○ Positive and Monotone Systems

• Scalable Stability Analysis

○ Input-Output Performance

○ Trajectory Optimization

○ Combination Therapy for HIV and Cancer
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Stability of Positive systems

Suppose the matrix A has nonnegative off-diagonal elements.
Then the following conditions are equivalent:

(i) The system dx
dt = Ax is exponentially stable.

(ii) There is a diagonal matrix P ≻ 0 such that
ATP+ PA ≺ 0

(iii) There exists a vector ξ > 0 such that Aξ < 0.
(The vector inequalities are elementwise.)

(iv) There exits a vector z > 0 such that AT z < 0.
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Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different
Lyapunov functions:

ATP+ PA ≺ 0 Aξ < 0 AT z < 0

V (x) = xT Px V (x) = max
k
(xk/ξk) V (x) = zT x

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems



A Scalable Stability Test

x1 x2 x3 x4

Stability of ẋ = Ax follows from existence of ξk > 0 such that
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The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

. . .

Verification is scalable!
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A Distributed Search for Stabilizing Gains

Suppose
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and set $1 = µ1/ξ1 and $2 = µ2/ξ2. Every row gives a local test.

Distributed synthesis by linear programming (gradient search).
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Max-separable Lyapunov Functions

Max-separable: V (x) = max{V1(x1), . . . ,Vn(xn)}

Theorem. Let ẋ = f (x) be a monotone system such that the
origin globally asymptotically stable and the compact set
X ⊂ Rn+ is invariant. Then there exist strictly increasing
functions Vk : R+ → R+ for k = 1, . . . ,n, such that
V (x) = max{V1(x1), . . . ,Vn(xn)} satisfies

d

dt
V (x(t)) = −V (x(t))

along all trajectories in X .

[Rantzer, Rüffer, Dirr, CDC-13]
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Proof idea

t = 0

t = 1

t = 2

t = 3
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Performance of Positive systems

Suppose that G(s) = C(sI − A)−1B + D where A ∈ Rn-n is
Metzler, while B ∈ Rn-1+ , C ∈ R1-n+ and D ∈ R+. Define
.G.∞ = supω 0G(iω )0. Then the following are equivalent:

(i) The matrix A is Hurwitz and .G.∞ < γ .

(ii) The matrix

[

A B

C D − γ

]

is Hurwitz.

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Optimizing H∞/L1 Performance

LetD be the set of diagonal matrices with entries in [0, 1].
Suppose B,C,D ≥ 0 and A+ ELF is Metzler for all L ∈D .

If F ≥ 0, then the following are equivalent:

(i) There exists L ∈D such that A+ ELF is Hurwitz
and .C[sI − (A+ ELF)]−1B + D.∞ < γ .

(ii) There exist ξ ∈ Rn+, µ ∈ Rm+ with

Aξ + Eµ + B < 0 Cξ + D < γ µ ≤ Fξ

If ξ ,µ satisfy (ii) , then (i) holds for every L such that µ = LFξ .

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Example 1: Transportation Networks
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How do we select $i j ∈ [0, 1] to minimize the gain from w to
∑

i xi?
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Example 1: Transportation Networks

A = diag{−1, 0, 0,−4} B =
(

1 1 1 1
)T

C =
(

1 1 1 1
)

K = 0
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The closed loop matrix is A+ ELF.
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Example 1: Transportation Networks
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Minimize
∑

i ξ i subject to

0 ≥ −ξ1 − µ31 + µ12 + 1

0 ≥ −µ12 − µ32 + µ23 + 1

0 ≥ µ31 + µ32 − µ23 − µ43 + µ34 + 1

0 ≥ −4ξ4 + µ43 − µ34 + 1

and 0 ≤ µ i j ≤ ξ j . Then define $i j = µ i j/ξ j .

Optimal solution $12 = $32 = $43 = 1 and $31 = $23 = $34 = 0.
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Example 2: Vehicle Formations
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Monotone Input-output Systems

The system

ẋ(t) = f (x(t),u(t)), x(0) = a

is called monotone if
{

a0 ≤ a1
u0(τ ) ≤ u1(τ ), τ ∈ [0, t]

=" φ t(a0,u0) ≤ φ t(a1,u1)

[Angeli and Sontag, 2003]

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Trajectory Optimization

The monotone system ẋ = f (x,u) is a convex monotone
system if every row of f is also convex.

Theorem:

For a convex monotone system ẋ = f (x,u), each component of
the trajectory φ t(a,u) is a convex function of (a,u).

[Rantzer and Bernhardsson, 2014]
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EvoluHon*to*resistance*in*mice*with*chronic*HIV*infecHon*

and Supplementary Table 2b). Consistent with this observation,
N332K is resistant to both PGT128 and 10-1074, whereas N332Y is
resistant to PGT128 but remains sensitive to high concentrations of
10-1074 (Supplementary Fig. 8).

Because the selected broadly neutralizing antibodies target distinct
epitopes on the HIV-1 spike, we investigated whether treatment with
a combination of three (tri-mix: 3BC176, PG16 and 45-46G54W) or
five (penta-mix: 3BC176, PG16, 45-46G54W, PGT128 and 10-1074)
antibodies would alter the course of infection (Fig. 2 and Supplemen-
tary Table 1). These combinations neutralize all but 2 (tri-mix 98.3%)
and 1 (penta-mix 99.2%) of 119 mostly tier 2 and 3 viruses from multiple
clades with an IC80 (geometric mean) of 0.121mg ml21 and 0.046mg
ml21 for tri-mix and penta-mix, respectively (Supplementary Fig. 9).

A decline in the initial viral load was seen in 11 out of 12 tri-mix-
treated mice, but 7 rebounded to pre-treatment levels (Fig. 2a,
Supplementary Table 1c and Supplementary Fig. 10). In contrast to
monotherapy where mice almost never controlled viraemia beyond
2 weeks of therapy, the tri-mix treatment led to prolonged and effective
HIV-1 control in 3 of 12 animals. In 2 of these mice viral load
rebounded 20–40 days after cessation of therapy at a time when the
YU2 gp120-reactive antibody concentration in serum decreased to
a level below detection (Fig. 3a). In the third mouse (ID21), viraemia
was detected but remained low even in the absence of therapy for
60 days.

Sequences obtained from mice that experienced viral rebound while
on tri-mix therapy showed a combination of the mutations found in
the PG16 and 45-46G54W monotherapy groups (Figs 1d and 2b, c and
Supplementary Tables 2b and 3a). We verified that these mutations
rendered HIV-1YU2 resistant to PG16 and 45-46G54W by producing the
corresponding mutant pseudoviruses and testing them in neutraliza-
tion assays in vitro (Supplementary Fig. 8). The pseudoviruses were
not resistant to 3BC176, confirming that this antibody did not exert
selective pressure on HIV-1YU2 and therefore only 2 of the 3 antibodies
in the tri-mix were efficacious.

In contrast, sequences obtained from the mice that exhibited sus-
tained viral control and rebounded after cessation of therapy either
lacked any broadly neutralizing antibody-associated mutation, or had
a mutation mapped to the 45-46G54W (K282R) or PG16 (N162P) target
site, but not both (Fig. 3b and Supplementary Table 3a). In these mice,
rebound viraemia only occurred after YU2 gp120-reactive antibody
levels decreased to below detection, indicating that the viruses that
emerged were latent and remained susceptible to the tri-mix.

All 14 mice treated with the penta-mix treatment showed a decrease
in viral load 6–7 days after initiation of therapy (Fig. 2d and Sup-
plementary Table 1d). However, in contrast to monotherapy and the
tri-mix, all of the penta-mix-treated mice remained below baseline
viral loads during the entire treatment course (Fig. 2d, Supplemen-
tary Table 1d and Supplementary Fig. 10). Of 13 mice (one died), 11
had viral loads below or near the limit of detection. The two mice with
the slowest reduction in viral load during treatment showed signs of
severe graft versus host disease. We conclude that penta-mix therapy
reduces the viral load to levels below detection for up to 60 days in
HIV-1YU2-infected humanized mice.

Penta-mix therapy was discontinued after 31–60 days and the mice
were monitored for an additional 100 days (Fig. 3c). In 7 out of 8 mice
that survived, viraemia rebounded after an average of 60 days (Fig. 3c).
In contrast, mice treated with antiretroviral therapy rebound after
10 days following discontinuation of therapy12. Viral rebound in
penta-mix-treated mice was always correlated with decreased levels of
the administered antibodies (Fig. 3c). Only one tri-mix (ID21) and one
penta-mix (ID129) mouse did not rebound. To determine their ability to
support HIV-1 infection, these mice were re-infected with HIV-1YU2
(57.5 ng p24) and measured for viral load 2 weeks later. One of the two
mice became infected but only at very low levels compared to the initial
infection (Supplementary Fig. 11). Therefore, prolonged control was
primarily due to the long half-life of the injected antibodies.
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Figure 2 | HIV therapy by a combination of three (tri-mix) or five (penta-
mix) broadly neutralizing antibodies in HIV-1YU2-infected humanized
mice. a, The left panel shows viral loads (RNA copies ml21, y axis) over time
(days, x axis) in HIV-1YU2-infected humanized mice treated with a
combination of 3BC176, PG16 and 45-46G54W (tri-mix; grey shading). Each
line represents a single mouse and symbols indicate viral load measurements
(Supplementary Table 1c). Infection and viral load determination was
performed as in Fig. 1. The right panel shows changes in log10 (RNA
copies ml21) from baseline at day 0. Red and green lines represent the average
values in viral load change of tri-mix and control group (Fig. 1a), respectively.
b, Individual gp120 envelope sequences cloned from single mice (y axis) during
tri-mix therapy after viral rebound. gp120 sequences are represented by
horizontal grey bars with silent mutations indicated in green and amino acid
replacements in red. Black asterisks represent mutations generating a stop
codon and bold grey bars deletions. All mutations are relative to HIV-1YU2 and
numbered according to HXBc2. Selected mutations at sites highlighted in blue
can confer resistance to PG16- or 45-46G54W-mediated neutralization in vitro
(Supplementary Fig. 8 and Supplementary Table 3a). c, Pie charts as in Fig. 1d
illustrate distribution of amino acid changes in gp120 (b) at PG16 (left) or 45-
46G54W (right) respective target sites (Supplementary Table 3a). d, As in a, for
HIV-1YU2-infected humanized mice treated with a combination of 3BC176,
PG16, 45-46G54W, PGT128 and 10-1074 (penta-mix; grey shading,
Supplementary Table 1d). Mouse ID72 (tri-mix) and ID126 (penta-mix) died
early and are not displayed.
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and Supplementary Table 2b). Consistent with this observation,
N332K is resistant to both PGT128 and 10-1074, whereas N332Y is
resistant to PGT128 but remains sensitive to high concentrations of
10-1074 (Supplementary Fig. 8).

Because the selected broadly neutralizing antibodies target distinct
epitopes on the HIV-1 spike, we investigated whether treatment with
a combination of three (tri-mix: 3BC176, PG16 and 45-46G54W) or
five (penta-mix: 3BC176, PG16, 45-46G54W, PGT128 and 10-1074)
antibodies would alter the course of infection (Fig. 2 and Supplemen-
tary Table 1). These combinations neutralize all but 2 (tri-mix 98.3%)
and 1 (penta-mix 99.2%) of 119 mostly tier 2 and 3 viruses from multiple
clades with an IC80 (geometric mean) of 0.121mg ml21 and 0.046mg
ml21 for tri-mix and penta-mix, respectively (Supplementary Fig. 9).

A decline in the initial viral load was seen in 11 out of 12 tri-mix-
treated mice, but 7 rebounded to pre-treatment levels (Fig. 2a,
Supplementary Table 1c and Supplementary Fig. 10). In contrast to
monotherapy where mice almost never controlled viraemia beyond
2 weeks of therapy, the tri-mix treatment led to prolonged and effective
HIV-1 control in 3 of 12 animals. In 2 of these mice viral load
rebounded 20–40 days after cessation of therapy at a time when the
YU2 gp120-reactive antibody concentration in serum decreased to
a level below detection (Fig. 3a). In the third mouse (ID21), viraemia
was detected but remained low even in the absence of therapy for
60 days.

Sequences obtained from mice that experienced viral rebound while
on tri-mix therapy showed a combination of the mutations found in
the PG16 and 45-46G54W monotherapy groups (Figs 1d and 2b, c and
Supplementary Tables 2b and 3a). We verified that these mutations
rendered HIV-1YU2 resistant to PG16 and 45-46G54W by producing the
corresponding mutant pseudoviruses and testing them in neutraliza-
tion assays in vitro (Supplementary Fig. 8). The pseudoviruses were
not resistant to 3BC176, confirming that this antibody did not exert
selective pressure on HIV-1YU2 and therefore only 2 of the 3 antibodies
in the tri-mix were efficacious.

In contrast, sequences obtained from the mice that exhibited sus-
tained viral control and rebounded after cessation of therapy either
lacked any broadly neutralizing antibody-associated mutation, or had
a mutation mapped to the 45-46G54W (K282R) or PG16 (N162P) target
site, but not both (Fig. 3b and Supplementary Table 3a). In these mice,
rebound viraemia only occurred after YU2 gp120-reactive antibody
levels decreased to below detection, indicating that the viruses that
emerged were latent and remained susceptible to the tri-mix.

All 14 mice treated with the penta-mix treatment showed a decrease
in viral load 6–7 days after initiation of therapy (Fig. 2d and Sup-
plementary Table 1d). However, in contrast to monotherapy and the
tri-mix, all of the penta-mix-treated mice remained below baseline
viral loads during the entire treatment course (Fig. 2d, Supplemen-
tary Table 1d and Supplementary Fig. 10). Of 13 mice (one died), 11
had viral loads below or near the limit of detection. The two mice with
the slowest reduction in viral load during treatment showed signs of
severe graft versus host disease. We conclude that penta-mix therapy
reduces the viral load to levels below detection for up to 60 days in
HIV-1YU2-infected humanized mice.

Penta-mix therapy was discontinued after 31–60 days and the mice
were monitored for an additional 100 days (Fig. 3c). In 7 out of 8 mice
that survived, viraemia rebounded after an average of 60 days (Fig. 3c).
In contrast, mice treated with antiretroviral therapy rebound after
10 days following discontinuation of therapy12. Viral rebound in
penta-mix-treated mice was always correlated with decreased levels of
the administered antibodies (Fig. 3c). Only one tri-mix (ID21) and one
penta-mix (ID129) mouse did not rebound. To determine their ability to
support HIV-1 infection, these mice were re-infected with HIV-1YU2
(57.5 ng p24) and measured for viral load 2 weeks later. One of the two
mice became infected but only at very low levels compared to the initial
infection (Supplementary Fig. 11). Therefore, prolonged control was
primarily due to the long half-life of the injected antibodies.

–20 0 20 6040
102

103

104

105

106

107a

0 604020

–3
–2
–1
0
1
2
3

ID16
ID17
ID18
ID21

ID25
ID22

ID43
ID49

ID59
ID65

ID56

  Days after starting antibody treatment (tri-mix) 

b
160,162 276–281 458–460

18
16

22
43

25
56

49
65

gp120 residue
1 100 200 300 400 500

*
*

M
ou

se
 ID

D

Y

T
KHA

I

N
P

8888888888

N160

T162 8/88

Y

T

S

N280

A281

G458

G459

D

D

V
E

K460

8/88

c

ID128
ID129
ID130
ID132
ID133
ID134
ID143
ID144
ID161
ID164
ID182
ID187
ID194

0 20 40 60

–3
–2
–1
0
1
2
3

  Days after starting antibody treatment (penta-mix) 

d

–20 0 20 40 60

C
op

ie
s 

m
l–1

102

103

104

105

106

107

C
op

ie
s 

m
l–1

Δl
og

10
(c

op
ie

s 
m

l–1
)

Δl
og

10
(c

op
ie

s 
m

l–1
)

Figure 2 | HIV therapy by a combination of three (tri-mix) or five (penta-
mix) broadly neutralizing antibodies in HIV-1YU2-infected humanized
mice. a, The left panel shows viral loads (RNA copies ml21, y axis) over time
(days, x axis) in HIV-1YU2-infected humanized mice treated with a
combination of 3BC176, PG16 and 45-46G54W (tri-mix; grey shading). Each
line represents a single mouse and symbols indicate viral load measurements
(Supplementary Table 1c). Infection and viral load determination was
performed as in Fig. 1. The right panel shows changes in log10 (RNA
copies ml21) from baseline at day 0. Red and green lines represent the average
values in viral load change of tri-mix and control group (Fig. 1a), respectively.
b, Individual gp120 envelope sequences cloned from single mice (y axis) during
tri-mix therapy after viral rebound. gp120 sequences are represented by
horizontal grey bars with silent mutations indicated in green and amino acid
replacements in red. Black asterisks represent mutations generating a stop
codon and bold grey bars deletions. All mutations are relative to HIV-1YU2 and
numbered according to HXBc2. Selected mutations at sites highlighted in blue
can confer resistance to PG16- or 45-46G54W-mediated neutralization in vitro
(Supplementary Fig. 8 and Supplementary Table 3a). c, Pie charts as in Fig. 1d
illustrate distribution of amino acid changes in gp120 (b) at PG16 (left) or 45-
46G54W (right) respective target sites (Supplementary Table 3a). d, As in a, for
HIV-1YU2-infected humanized mice treated with a combination of 3BC176,
PG16, 45-46G54W, PGT128 and 10-1074 (penta-mix; grey shading,
Supplementary Table 1d). Mouse ID72 (tri-mix) and ID126 (penta-mix) died
early and are not displayed.
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Combination Therapy is a Control Problem

Evolutionary dynamics:

ẋ =

(

A−
∑

i

uiD
i

)

x

Each state xk is the concentration of a mutant. (There can be
hundreds!) Each input ui is a drug dosage.

A describes the mutation dynamics without drugs, while
D1, . . . ,Dm are diagonal matrices modeling drug effects.

Determine u1, . . . ,um ≥ 0 with u1 + ⋅ ⋅ ⋅+ um ≤ 1 such that x
decays as fast as possible!

[Hernandez-Vargas, Colaneri and Blanchini, JRNC 2011]
[Jonsson, Rantzer,Murray, ACC 2014]

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Optimizing Decay Rate

Stability of the matrix A−
∑

i uiD
i + γ I is equivalent to

existence of ξ > 0 with

(A−
∑

i

uiD
i + γ I)ξ < 0

For row k, this means

Akξ −
∑

i

uiD
i
kξk + γ ξk < 0

or equivalently

Akξ

ξk
−
∑

i

uiD
i
k + γ < 0

Maximizing γ is convex optimization in (logξ i,ui,γ ) !

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Using Measurements of Virus Concentrations

Evolutionary dynamics:

ẋ(t) =

(

A−
∑

i

ui(t)D
i

)

x(t)

Can we get faster decay using time-varying u(t) based on
measurements of x(t) ?

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex
monotone system:

d

dt
log xk(t) =

Akx(t)

xk(t)
−
∑

i

ui(t)D
i
k

Hence the decay of log xk is a convex function of the input and
optimal trajectories can be found even for large systems.

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems



Example

A =

⎡

⎢
⎢
⎣

−δ µ µ 0

µ −δ 0 µ
µ 0 −δ µ
0 µ µ −δ

⎤

⎥
⎥
⎦

clearance rate δ = 0.24 day−1, mutation rate µ = 10−4 day−1

and replication rates for viral variants and therapies as follows

Variant Therapy 1 Therapy 2 Therapy 3

Wild type (x1) D11 = 0.05 D21 = 0.10 D31 = 0.30
Genotype 1 (x2) D12 = 0.25 D22 = 0.05 D32 = 0.30
Genotype 2 (x3) D13 = 0.10 D23 = 0.30 D33 = 0.30
HR type (x4) D14 = 0.30 D24 = 0.30 D34 = 0.15

Anders Rantzer, LCCC Linnaeus center Scalable Analysis and Control of Positive Systems

Example

Optimized drug doses:
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Comparison*with*the*experimental*trimix*

(3BC176,*PG16,*45<46G54W)*
0.5*mg*weekly/*2*per*week*injecHon*

Klein,'et'al,'Nature,'2012'

EXPERIMENT)SIMULATION)

*(0.689,*0.6712,*1.0706)*ug/ml**
(3BC176,*45<46G54W,*PGT128)**

TRIMIX)

and Supplementary Table 2b). Consistent with this observation,
N332K is resistant to both PGT128 and 10-1074, whereas N332Y is
resistant to PGT128 but remains sensitive to high concentrations of
10-1074 (Supplementary Fig. 8).

Because the selected broadly neutralizing antibodies target distinct
epitopes on the HIV-1 spike, we investigated whether treatment with
a combination of three (tri-mix: 3BC176, PG16 and 45-46G54W) or
five (penta-mix: 3BC176, PG16, 45-46G54W, PGT128 and 10-1074)
antibodies would alter the course of infection (Fig. 2 and Supplemen-
tary Table 1). These combinations neutralize all but 2 (tri-mix 98.3%)
and 1 (penta-mix 99.2%) of 119 mostly tier 2 and 3 viruses from multiple
clades with an IC80 (geometric mean) of 0.121mg ml21 and 0.046mg
ml21 for tri-mix and penta-mix, respectively (Supplementary Fig. 9).

A decline in the initial viral load was seen in 11 out of 12 tri-mix-
treated mice, but 7 rebounded to pre-treatment levels (Fig. 2a,
Supplementary Table 1c and Supplementary Fig. 10). In contrast to
monotherapy where mice almost never controlled viraemia beyond
2 weeks of therapy, the tri-mix treatment led to prolonged and effective
HIV-1 control in 3 of 12 animals. In 2 of these mice viral load
rebounded 20–40 days after cessation of therapy at a time when the
YU2 gp120-reactive antibody concentration in serum decreased to
a level below detection (Fig. 3a). In the third mouse (ID21), viraemia
was detected but remained low even in the absence of therapy for
60 days.

Sequences obtained from mice that experienced viral rebound while
on tri-mix therapy showed a combination of the mutations found in
the PG16 and 45-46G54W monotherapy groups (Figs 1d and 2b, c and
Supplementary Tables 2b and 3a). We verified that these mutations
rendered HIV-1YU2 resistant to PG16 and 45-46G54W by producing the
corresponding mutant pseudoviruses and testing them in neutraliza-
tion assays in vitro (Supplementary Fig. 8). The pseudoviruses were
not resistant to 3BC176, confirming that this antibody did not exert
selective pressure on HIV-1YU2 and therefore only 2 of the 3 antibodies
in the tri-mix were efficacious.

In contrast, sequences obtained from the mice that exhibited sus-
tained viral control and rebounded after cessation of therapy either
lacked any broadly neutralizing antibody-associated mutation, or had
a mutation mapped to the 45-46G54W (K282R) or PG16 (N162P) target
site, but not both (Fig. 3b and Supplementary Table 3a). In these mice,
rebound viraemia only occurred after YU2 gp120-reactive antibody
levels decreased to below detection, indicating that the viruses that
emerged were latent and remained susceptible to the tri-mix.

All 14 mice treated with the penta-mix treatment showed a decrease
in viral load 6–7 days after initiation of therapy (Fig. 2d and Sup-
plementary Table 1d). However, in contrast to monotherapy and the
tri-mix, all of the penta-mix-treated mice remained below baseline
viral loads during the entire treatment course (Fig. 2d, Supplemen-
tary Table 1d and Supplementary Fig. 10). Of 13 mice (one died), 11
had viral loads below or near the limit of detection. The two mice with
the slowest reduction in viral load during treatment showed signs of
severe graft versus host disease. We conclude that penta-mix therapy
reduces the viral load to levels below detection for up to 60 days in
HIV-1YU2-infected humanized mice.

Penta-mix therapy was discontinued after 31–60 days and the mice
were monitored for an additional 100 days (Fig. 3c). In 7 out of 8 mice
that survived, viraemia rebounded after an average of 60 days (Fig. 3c).
In contrast, mice treated with antiretroviral therapy rebound after
10 days following discontinuation of therapy12. Viral rebound in
penta-mix-treated mice was always correlated with decreased levels of
the administered antibodies (Fig. 3c). Only one tri-mix (ID21) and one
penta-mix (ID129) mouse did not rebound. To determine their ability to
support HIV-1 infection, these mice were re-infected with HIV-1YU2
(57.5 ng p24) and measured for viral load 2 weeks later. One of the two
mice became infected but only at very low levels compared to the initial
infection (Supplementary Fig. 11). Therefore, prolonged control was
primarily due to the long half-life of the injected antibodies.
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Figure 2 | HIV therapy by a combination of three (tri-mix) or five (penta-
mix) broadly neutralizing antibodies in HIV-1YU2-infected humanized
mice. a, The left panel shows viral loads (RNA copies ml21, y axis) over time
(days, x axis) in HIV-1YU2-infected humanized mice treated with a
combination of 3BC176, PG16 and 45-46G54W (tri-mix; grey shading). Each
line represents a single mouse and symbols indicate viral load measurements
(Supplementary Table 1c). Infection and viral load determination was
performed as in Fig. 1. The right panel shows changes in log10 (RNA
copies ml21) from baseline at day 0. Red and green lines represent the average
values in viral load change of tri-mix and control group (Fig. 1a), respectively.
b, Individual gp120 envelope sequences cloned from single mice (y axis) during
tri-mix therapy after viral rebound. gp120 sequences are represented by
horizontal grey bars with silent mutations indicated in green and amino acid
replacements in red. Black asterisks represent mutations generating a stop
codon and bold grey bars deletions. All mutations are relative to HIV-1YU2 and
numbered according to HXBc2. Selected mutations at sites highlighted in blue
can confer resistance to PG16- or 45-46G54W-mediated neutralization in vitro
(Supplementary Fig. 8 and Supplementary Table 3a). c, Pie charts as in Fig. 1d
illustrate distribution of amino acid changes in gp120 (b) at PG16 (left) or 45-
46G54W (right) respective target sites (Supplementary Table 3a). d, As in a, for
HIV-1YU2-infected humanized mice treated with a combination of 3BC176,
PG16, 45-46G54W, PGT128 and 10-1074 (penta-mix; grey shading,
Supplementary Table 1d). Mouse ID72 (tri-mix) and ID126 (penta-mix) died
early and are not displayed.
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Fig. 3. Sum of virus populations subject to random time invariant
perturbations of 5% in the dynamics for 30 different simulations for
(left) a stabilizing closed loop controller comprised of antibody pentamix
(0.4687,0.7815, 0.6129, 0.6279, 0.8831) µg/ml of (3BC176, PG16, 45-
46G54W, PGT128, 10-1074) synthesized using the convex program (5) and
(right) a robustly stabilizing closed loop controller comprised of antibody
trimix (0.6891,0.6712,1.0706) µg/ml of (3BC176, 4546-G54W, PGT128)
synthesized using the L1 combination therapy algorithm.

synthesized controller with gains of (0.6891,0.6712,1.0706)
µg/ml of (3BC176, 4546-G54W, PGT128) to the exper-
imentally studied trimix, we chose equal concentrations
of (3BC176, PG16, 45-46G54W), namely (1, 1, 1) µg/ml
for the experimentally derived trimix. We found that even
though total antibody concentrations were larger in our
version of the experimental trimix, the robustly stabilizing
controller synthesized by the L1 algorithm nonetheless per-
formed overall better; the closed loop norms were kGk1 =
0.2941 and kGk1�ind

= 0.6533 for the L1 controller versus
kGk1=0.26433 and kGk1�ind

=0.74572 for the experimen-
tal trimix.

These simulations demonstrate that although many stabi-
lizing solutions to the combination therapy problem exist,
the best ones are found when design parameters such as a
sparsity, limits on the magnitude of gains, and robustness
guarantees are simultaneously considered. Experimentally
searching for these combinations is infeasible as the number
of potential therapies and possible concentrations to consider
is experimentally intractable. We propose to guide these ex-
perimental activities with our ability to design and synthesize
combination therapy controllers. As such, one could generate
a family of controllers based on ”design specifications”
tailored not only the (viral or cellular) composition of the
disease, but to explore tradeoffs between number of therapies
used (sparsity), therapy concentrations (magnitude of the
gain) and ability to support pharmacokinetic fluctuations
(robustness to perturbations) and subsequently verify these
experimentally.

V. CONCLUSION AND FUTURE WORK

Leveraging recent results in positive systems, we pro-
posed a scalable SOCP based iterative algorithm for the
systematic design of sparse, small gain feedback strategies
that stabilize the evolutionary dynamics of a generic disease
model. Through the addition of `1 and `2 regularization
terms to the objective function, we achieved the desired
feedback structure. In future work, we plan to explore a
principled integration of our methods with recent results on
the robust L1 stability of positive systems [16]. In particular,

we hope to explicitly account for model error introduced due
to model linearization, parametric uncertainty and unmodeled
dynamics due to drug interactions.
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For Scalable Control — Use Positive Systems!

Verification and synthesis scale linearly

Distributed controllers by linear programming

No need for global information

Optimal trajectiories by convex optimization
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Many Research Challenges Remain

Optimal Dynamic Controllers in Positive Systems

Analyze Trade-off Between Performance and Scalability

Distributed Controllers for Nonlinear Monotone Systems
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