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Distributed Control of Positive Systems

Anders Rantzer

Abstract

For positive systems, and more generally positively doteithaystems, it is shown that distributed
H.-optimal controllers can be computed using linear programgmwith a complexity that scales
linearly with the number of states and interconnectionsidédwo fundamental advantages are achieved
compared to classical methods for multivariable contragtiibuted implementations and scalable com-
putations. The results are illustrated by examples fromrobof mechanical structures, transportation

networks and electrical power transmission.

I. INTRODUCTION

Classical methods for multi-variable control, such as LQ®@ &/, suffer from a lack of
scalability that make them hard to use for large-scale systerhe difficulties come from
both computational complexity and from the absence of ibisted structure in the resulting
controllers. The complexity can be traced back to the faat dven stability verification of a
linear system witm states generally requires a Lyapunov function involvidgjuadratic terms.
This is true even if the system matrices are sparse. Howtneegituation improves drastically if
we restrict our attention to system matrices with nonnegatif-diagonal entries. Then stability
and performance can be verified using a Lyapunov functioh witly n linear terms. Sparsity
can be exploited in performance verification and even symhef distributed controllers can be
done with a complexity that grows linearly with the numbernainzero entries in the system
matrices.

Given the striking difference between the two types of ditgbcriteria, it is natural to ask
how restrictive the second category is when it comes to egjptins. After all, linear state
space models with negative off-diagonal elements are vemynton. However, there are strong

indications that the basic ideas have far-reaching imiina:
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1) The essential monotonicity property extends beyondesysmatrices with nonnegative
off-diagonal entries. A sufficient assumption is that thensfer functions involved are
“positively dominated”.

2) The desired structure appears naturally in many impbrégplication areas, such as
mechanical systems, economics, transportation netwpdiger systems and biology.

3) In control applications, the condition on positive doamee need not apply to the open
loop process. Instead, a large-scale control system can bé structured into local control
loops that give positive dominance, thereby enabling talmethods for optimization of

the global performance.

The paper is structured as follows: Sections -1l introdbackground literature and notation.
Stability criteria for positive systems are cited in secfl¥l These results are not new, but stated
on a form convenient for later use and explained with emghasiscalability. SectionlV shows
how the stability criteria can be exploited in synthesistabgizing controllers using distributed
linear programming. The techniques are then refined in wedil to optimize H,, and L,
performance. Sectidn VIl extends the techniques to pejtidominated transfer functions. An
alternative approach to performance evaluation is givesettion VIIl. This approach relies on
semi-definite programming, but enables optimization oftiplé objectives simultaneously. An

application to electrical power transmission is given.

[I. BACKGROUND

The study of matrices with nonnegative coefficients has @ lbistory dating back to the
Perron-Frobenius Theorem in 1912. A classic book on thectap{2]. The theory is used in
Leontief economics [14], where the states denote nonnegatiantities of commodities. Systems
defined by nonnegative matrices (so called positive sygtappear in the study of Markov chains
[21], where the states denote nonnegative probabilitiesiarcompartment models [[9], where
the states could denote quantities of chemical species arganism. A nice introduction to the
subject is given in[[15].

A fundamental property of linear maps described by a pasithatrix is that they are con-
tractive in Hilbert’s projective metric_[3],[12]. This nrét is closely related to the Lyapunov
function max{x,...,z,} — min{z,...,z,} that is used for analysis of consensus algorithms

[21], [24]. For more recent contributions, seel[18],/[22].
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A nonlinear counterpart to positive systems is monotontesys, characterized by the property
that a partial ordering of initial states is preserved. Sdghamical systems were studied in a
series of papers by Hirschl[6],/[7], showing that monotdgiander some additional assumptions
implies convergence almost everywhere. Positive systaws &also gained attention in the control
literature and increasingly so during the last decade. 8eeXample([25],[[5],[[10]. Feedback
stabilization of positive linear systems was studied[in],[189] and basic control theory for
nonlinear monotone systems was developedlin [1]. A recenitrby Tanaka and Langboft [23]
shows that decentralized controllers can be optimized &mitpe systems using semi-definite
programming. The criterion is the closed lodf, norm and the authors show that diagonal
guadratic storage functions can be used without consemateveral of the main results in this

paper can be viewed as extensions of this work.

[1I. N OTATION

Let R, denote the set of nonnegative real numbers. The inequality 0 (X > 0) means
that all elements of the matrix (or vectak) are positive (nonnegative). For a symmetric matrix
X, the inequalityX = 0 means that the matrix is positive definite. The matdixc R"*" is
said to beHurwitz if all eigenvalues have positive real part. It $shur if all eigenvalues are
strictly inside the unit circle. Finally, the matrix is saiol be Metzler if all off-diagonal elements
are nonnegative. The notatidlH ™ represents the set aof x m matrices whose entries are

analytic in the right half plane and continuous on the imagimaxis (including infinity) .

V. DISTRIBUTED STABILITY VERIFICATION

Proposition 1: Let A € R™*™ be Metzler. Then the following are equivalent:

(2.1) The matrixA is Hurwitz.

(1.2) There exists g € R” such thatt > 0 and A¢ < 0.

(1.3) There exists a € R™ such that: > 0 and 27 A < 0.

(1.4) There exists diagonal matrix P 0 such thatA”P + PA < 0.

(1.5) The matrix—A~! exists and has nonnegative entries.
Moreover, if ¢ = (&,...,&,) andz = (z,...,2,) satisfy the conditions of (1.2) and (1.3)
respectively, therP = diag(z1 /&1, - . ., 2, /&) satisfies the conditions of (1.4).
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Fig. 1. Level curves of Lyapunov functions correspondingthe conditions [{l1.2),[{1.3) and](1.4) in Propositibh 1:

If A¢ <0, thenV (z) = max;(z;/¢;) is a Lyapunov function with rectangular level curveszffA < 0, thenV (z) = 2"z is
a linear Lyapunov function. Finally id” P + PA < 0 and P - 0, thenV (z) = 2”7 Pz is a quadratic Lyapunov function for

the systemi = Azx.

Remark 1. Each of the conditiond{1.2),1(1.3) arid (1.4) corresponds kyapunov function of

a specific form. See Figute 1.

Remark 2. One of the main observations of this paper is that verificadiod synthesis of positive
control systems can be done with methods that scale linedtthythe number of interconnections.
For stability, this claim follows directly from Propositidl: Givené, verification of the inequality
A€ < 0 requires a number of scalar additions and multiplicatidrad ts directly proportional to
the number of nonzero elements in the matfixin fact, the search for a feasibfealso scales
linearly, since integration of the differential equatién= A¢ with £(0) = & for an arbitrary

& > 0 generates a feasiblgt) in finite time provided thatd is Metzler and Hurwitz.

Proof of Proposition[Il The equivalence between (1.1), (1.2), (1.4) and (1.5) issth@dvalence
between the statements,,, o7, Hoy and N3g in [2, Theorem 6.2.3]. The equivalence between
(@.1) and[(1L.3) is obtained by applying the equivalence betw(1.1) and (1.2) to the transpose
of A. Moreover, if§ = (&,...,&,) andz = (2, ..., z,) satisfy the conditions of{1.2) andl (1.3)
respectively, then? = diag(z, /&1, ..., 2,/&) gives (ATP + PA)¢ = ATz + PAE < 0 so the
symmetric matrixA” P 4+ PA is Hurwitz and [(1.4) follows. O

Example 1. Transportation network. Consider a dynamical system interconnected according

February 29, 2012 DRAFT



Fig. 2. A graph of interconnected systems. In Example 1 ttexfnetation is a transportation network and each arrovcates
a transportation link. In Example 2 the interpretation stéad a vehicle formation and each arrow indicates the uaaistance

measurement.

to the graph illustrated in Figufé 2:

(1~ 05

Ty lo 0 0 1
To 0 2 — Ly — U3 a3 0 To
| = 1)
T3 31 U39 3 —log — {43 l34 T3
_.1'34_ L 0 0 643 —4 — 634_ _1’4_

The model could for example be used to describe an transiportaetwork connecting four
buffers. The states;, x5, x5, x4 represent the contents of the buffers and the parantgter
determines the rate of transfer from buffeto buffer ;. Without such transfer the content of
the second and third buffer would grow exponentially duehi® aunstable internal dynamics of
those buffers.

Notice that the dynamics can be writtenias- Az where A is a Metzler matrix provided that
every/;; is nonnegative. Hence, by Propositidn 1, stability is eglaiut to existence of numbers
&1, ...,& > 0 such that

(1 — 0y 01y 0 0 & 0
0 2 — U1y — U3y las 0 & _ |0
U3 39 3 — Loz — ly3 34 &3 0
0 0 ly3 —4 — l34] [&4] 0]
Given these numbers, stability can be verified by a disteitbwest where the first buffer verifies
the first inequality, the second buffer verifies the secord smon. O
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Example 2. Vehicle formation or Distributed Kalman Filter. Another dynamical system,

which can be viewed as a dual of the previous one, is the faligw

&1 = —x1 + li3(w3 — 21)
j,’g = 21’2 + 621(1’1 — .TQ) + 623(.7}3 — 1’2) (2)

j,’g = 31’3 + 632(1’2 — .Tg) + 634(.7}4 — 1’3)

j}4 = —4.754 + 643(.7}3 — 1’4)

\

The model could for example be used to describe a platoonusfehicles. The parametefs
represent position adjustments based on distance measuieivetween the vehicles. Without
these adjustments only the first and last vehicle maintaitalales position, while the position
error in the second and third vehicle grow exponentiallyaifig stability can be verified by a
distributed test where the first vehicle verifies the firsgumaity, the second vehicle verifies the
second inequality and so on. O

A discrete time counterpart to Proposition 1 can be stateftblbsvs:

Proposition 2: Let B € R7*". Then the following statements are equivalent:

(2.1) The matrixB is Schur stable.

(2.2) There is & € R™ such thatt > 0 and B¢ < &.

(2.3) There exists a € R™ such that: > 0 and BYz < 2.

(2.4) There is aliagonal matrix P = 0 such thatBT PB < P.

(2.5) The matrix( — B)~! exists and has nonnegative entries.
Moreover, if ¢ = (&,...,&,) andz = (z,...,2,) satisfy the conditions of (2.2) and (2.3)
respectively, therP = diag(z1 /&1, - . ., 2,/&,) satisfies the conditions of (2.4).
Proof. The equivalence betwedd (2.1) aht (2.5) is proved by [2, La®R.1]. Settingd = B—T1
gives the equivalence betwedn (2.2), (2.3) dnd (2.5) froenetfiuivalence betweehl (1.2)] (1.3)
and [1.5).

Supposet = (&1,...,&,) and z = (zy,...,2,) satisfy the conditions of[{2.2) andl(2.3)
respectively. SeP’ = diag(z1/&1, ..., 2,/&,) andy, = /&2y, for k=1,....n. Then

P~Y2BTppp~Y2y = p~Y2BTpPR¢ <« P~12BTpg = P~Y2RT, <« P12, =y
so P~Y/2BTPBP~'/2 is Schur. HenceP~/2BT" PBP~'/2 < I and [2.4) follows. Finally, the

implication from [2.4) to[(R.1) is standard. a
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V. DISTRIBUTED STABILIZATION BY LINEAR PROGRAMMING

The next step is to search for stabilizing feedback laws Byributed optimization. This can
be done using the following theorem:

Theorem 3. Let the matricesd € R"*" E € R™™ F € R™*" K € R™*™ be given and let
D be the set ofn x m diagonal matrices with entries A, 1]. Suppose that/ — LK)~! exists
and A+ E(I — LK)"'LF is Metzler for all L € D. If F and K have nonnegative coefficients,
then the following two conditions are equivalent:

(38.1) There existd € D such thatd + F(I — LK)"'LF is Hurwitz.

(3.2) There exist € RY, p € R} with p < F§ + Kpand A + Ep < 0.

Alternatively, if & and K have nonnegative coefficients, then (3.1) is equivalent to

(3.3) There exisp € R?, g € R with ¢ < ETp+ KTqg and ATp+ FTq < 0.

Remark 3. It is natural to compare the expressidn- E(I — LK)~ LF with the “state feedback”
expressioM+ BL of standard linear quadratic optimal control. A major diffiece is the presence
of F and K which make the optimization into a problem of “static outfegdback” rather than
state feedback. Another difference is the diagonally stined . instead of a full matrix. The
diagonal structure gives a much higher degree of flexibipgrticularly in the specification of

distributed controllers.

Remark 4. If the diagonal elements @ are restricted t&R . instead of|0, 1], then the condition
< F&+ Kpis replaced by < F¢ + K.

Remark 5. Each row of the vector inequalities can be verified sepagrateget a distributed test.

Proof of Theorem [3. Supposel[(3.1) holds. Let + E(I — LK)~'LF be Hurwitz and define
¢ € R? with [A+ E(I — LK)"'LF|¢ < 0. Let u = (I — LK) "'LF¢. Thenp = L(FE + Kp)
and Aé + Eu=(A+ FE(I — LK)"'LF)¢ < 0.
Conversely, suppose thatl (3.2) holds. Chofse D to gety = (I — LK) 'LF¢. Then
[A+ E(I — LK) 'LF]¢ = AS + Ep < 0

S0OA+E(I—LK) 'LF is Hurwitz. The equivalence betweén (3.1) (3.3) followmediately
by replacingA + E(I — LK)~ LF with its transpose. O
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Example 3 Consider the systeni](1) and the problem to find feedback gajns [0,¢] that
stabilize the transportation network. The problem can theesidoy applying linear programming
to condition [(8.2) with

A = diag{—l, 2, 3, —4} K = 0 L = diag{fgl,512,632,523,643%34}/?
{000
-1 1 0 0 0 O 0 ¢ 00
0 -1 -1 1 0 0 0 ¢ 00
E: F: _
1 0 1 -1 =1 1 00 ¢ 0
0O 0 0 0 1 -1 00 ¢ 0
000 ¢

It turns out that the linear program is feasible if and only/if> 2, in which caselL =
diag{0,1,0,1,1,0} is stabilizing.

If we instead consider the vehicle formatidnand F' are replaced by and E” respectively,
so we need to use conditionl (3.3) instead. O

A discrete time counterpart to Theoréin 3 is given withoutofiro

Theorem 4: Let the matricesA € R™*" F € R™™ F € R™" K € R™ be given and
let D be the set ofn x m diagonal matrices with entries ii0, 1]. Suppose that/ — LK)™!
exists andA + F(I — LK)~'LF is non-negative for all, € D. If F' and K have nonnegative
coefficients, then the following are equivalent:

(4.1) There isL € D such thatd + E(I — LK)~'LF is Schur.

(4.2) There exist € R, p € R} with p < F§¢ + Kpand A + Ep < .
Alternatively, if & and K have nonnegative coefficients, then (4.1) is equivalent to

(4.3) There exisp € R, ¢ € R7 with ¢ < E"p+ KTq and ATp + F7q < p.

VI. DISTRIBUTED OPTIMIZATION OF INPUT-OUTPUT PERFORMANCE

It is also natural to move beyond stability and optimize irputput performance. The con-
nection between stability and performance is establishethé following theorem.

Theorem 5: Suppose thaG(s) = C(sI — A)"'B + D where A € R™" is Metzler, while
B e R, C e Ry and D € R,. Then the following two conditions are equivalent:

(5.1) The matrixA is Hurwitz and||G|s < 7.
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A
(5.2) The matrix is Hurwitz.

C D-—»vy

Moreover, if A is Hurwitz, then||G||. = G(0) .

Proof. First note that the maximumax, |G(iw)| must be attained ab = 0 since

|G(iw)| = 'D+/ CeMB
0

dt < |D| + / ICeBldt = D — CA™'B = G(0)
t

Hence||G||. < v may equivalently be written

D—CA'B <~

Suppose that {5.1) holds. By Propositidn 1 there exjsts 0 such thatA¢ < 0. Definexr =
¢ — A7'B. Thenz > 0 since—A~! > 0 and

Az + B =A¢ <0
If £ is sufficiently small, we also get'x + D < v so
A B

< (3)
C D—~| |1 0

and [5.2) holds. Conversely,](5.2) implies thHat (3) holdssfomez, so Az < 0 and

—~A'B<ux D—-CA'B<Cx+D<x

so (5.1) follows. O

A discrete time version can be stated as follows.
Theorem 6: Let G(z) = C(z — A)"'B + D where A € R, B € RY*!, C € RI*" and
D € R,. Then the following two conditions are equivalent:

(6.1) The matrixA is Schur and|G|| < 7.

(6.2) The matrix is Schur.

¢ 47D

Moreover, if A is Schur, then|G|/. = G(1) .
Combining Theorernl5 with Theorem 3 gives a linear prograngrfdinmulation of the problem

to minimize input-output gain:
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Corollary 7: Let D be the set ofn x m diagonal matrices with entries A, 1]. Suppose that
D is scalar and thatl + ELF' is Metzler for all L € D.
If the matricesB, C, D and F' have nonnegative coefficients, then the following two ctiads

are equivalent:
(7.1) There existd. € D such thatd + FLF is Hurwitz and
|C[sI — (A+ ELF)]"'B+ Do < - (4)
(7.2) There exist € R", 1 € R with
AA+Epn+B<0 CeE+D <y uw< F¢

If &, satisfy (7.2), then (7.1) holds for every such thaty = LF¢€.
Alternatively, if B, C, D and E are nonnegative, then (7.1) is equivalent to

(7.3) There exisp € R}, ¢ € R with
ATp+ FTg+CT <0 BTp+D <~ g < ETp
If p,q satisfy (7.3), then (7.1) holds for evefy such thaty = LEp.
Proof. According to Theoreril5, conditionl(7.1) holds if and onlyhkte exists. € R’} with

A+ELF B | |¢
C D—~| |1

<0 (5)

Given (B), the inequalities of{7.2) hold with= LF¢. Conversely, giver {7.2), the inequalities
of (B) follow provided thaty = LF¢. This proves the desired equivalence betwéén (7.1) and
(@.2). The equivalence betwednd (7.1) and (7.3) follows imiiately by replacing(s) with its
transpose. O

We conclude the section by pointing out that for scalar pasisystems, all induced norms
are equal:

Theorem 8: For a scalar impulse respongét) and w € L,[0,00), let g * w denote the
convolution ofg and w. Suppose thag(¢) > 0 and f0°° g(t)dt < oco. Then the induced norm

Ig]lp—ina = sup,, 2%l satisfies

l[wllp

19llp—ina = / g(t)dt pelodl

February 29, 2012 DRAFT



11

Proof. It is well known that||g[|>—ina = max, |G(e™)| where G(s) = [, g(t)e *'dt. When

g(t) > 0, the maximum must be attained at= 0 since

GGl - [ “g(t)emdt‘ < ["stwar - co)

Moreover

o= [ | [ tt=rarlie< [ [ gt = i

= [ o)l = ([ o) o,

with equality whenw(t) > 0 for all ¢. Similarly

/Ooog(f)w(t—r)dr < /Owg(T)\w(t—T)}dT < </0°°g(7)d7> el

with equality if w is constant. Hence the desired equality

P — / " gyt 6)

has been proved fop = 1, p = 2 and p = oo. The Riesz-Thorin convexity theorem| [8,

ly()] =

Theorem 7.1.12] shows thay||,—ina IS @ convex function op for 1 < p < oo, so [6) must hold

for all p € [1, o0]. O

VIl. POSITIVELY DOMINATED SYSTEMS

As indicated before, a transfer mati® € CHZ*" is called positively dominated if every
matrix entry satisfie$G,;(iw)| < G;;(0) for w € R. The set of all such matrices is denoted
DHZ*". Some properties follow immediately:

Proposition 9: Let G,H € DH}*". ThenGH € DH>" and oG + bH € DH.*" when
a,b € R,. Moreover||G|| . = ||G(0)]].

The following property is also fundamental:

Theorem 10: Let G € DH". Then(I — G)~! € DHZ™ if and only if G(0) is Schur.

Proof. That(/ — G)™! is stable and positively dominated implies that- G(0)]~! exists and
is honnegative, s@x(0) must be Schur according to Propositldn 2. On the other h&r@{0)
is Schur we may choosge R, ande > 0 with G(0)¢ < (1 —¢€)¢. Then for every: € C™ with
0 < |z] < ¢ ands € C with Re s > 0 we have

|G(s)'z] < G(0)Yz] < (1 —e)'|7] fort=1,2,3,...
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Hence) ;2 , G(s)'z is convergent and bounded above®y~ , G(0)!|z| = [I—G(0)]"!|z|. The
sum of the series solves the equatjdr- G(s)] Y ,-, G(s)'z = z, so therefore) ;- G(s)'z =
[I—G(s)]™'z. This proveg7—G)~! is stable and positively dominated and the proof is complete
O

Theorem 11: Let D be the set ofn x m diagonal matrices with entries if, 1|. Suppose that
B € DH"', C € DHY", D € DH,, and A + ELF € CH”*" for all L € D. Assume that the
off-diagonal entries of A + ELF are positively dominated for all. € D.

If F € DHZ*", then the following two conditions are equivalent:

(11.1) There existd, € D such that/ — A —ELF)~! € CH2*" is positively dominated and

|IC(I— A —ELF)"'B+ Dl < 7.

(11.2) There exist € R, 1 € R with

A(0)¢+E(0)p +B(0) < ¢ C(0)§+D(0) <~ n<F(0)¢
If ¢, u satisfy (11.2), then (11.1) holds for evefysuch thaty = LF(0)¢.

Alternatively, E € DH ™, then (11.1) is equivalent to
(11.3) There exisp € R"}, ¢ € R with

A0 p+F0)¢+C0O0)" <p  BO)p+D(0) <y  ¢<E0)p

If p,q satisfy (11.3), then (11.1) holds for evefysuch thaty = LE(0)%p.

Proof. Theorem[ID shows thaf ({11.1) holds if and onlyAf0) — E(0)LF(0) is Schur and
C[I — A(0) —E(0)LF(0)]7'B(0) + D(0) < . According to Theorerl6, this is true if and only
if

A(0) +E(0)LF(0)  B(0)

(7)
y~1C(0) v~'D(0)

is Schur. By Propositionl 2 this is equivalent to existence efRR’} such that

§ 3
<
1 1
This is equivalent to[(11.2) if we set = LF(0)¢, so the desired equivalence betwekenl (11.1)

and [11.2) in Theorem11 follows. The equivalence betwédhljland [(111.3) is obtained by

replacingG(s) with its transpose. O

A(0) + E(0)LF(0)  B(0)
7~1C(0) 7~'D(0)
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Example 4 Consider a mechanical structure consisting\opoint-masses connected by springs.

The dynamics is described by the equations
xZ:Z&](mJ—xZ)jLumel Zzl,,N
j

whereuw; is an external control forcey; is a disturbance and; is the spring constant between
the point massesand ;. Suppose that local control laws = —k;x; —d,; & are given withd; > k;
and consider the problem to find spring constahtghat minimize the gain fromw; to ;.

The closed loop system has the following frequency domastrigtion

1

Xi(g) = —
i(5) s2+dis+k;

D 0i(X5(s) = Xi(s)) + Wils) i=1,...,N
j
Similarly to Example 3, we write this on matrix form as

X = G(ELF + W)

where L = diag{ﬁlg, 613, 623, .. .}, G = diag{Gl, e Gn}, GZ(S> = (82 +d;s + ]{Zi)_l and the

matrix £ is nonnegative. Theorem]11 can then be applied with

A= D—0
T

B:klo.”o] E—GE

C:[1 o.“o] F—r

to find the optimal spring constants. However, notice thaand/;; must be optimized separately,

even though by symmetry they must be equal at optimum. O

VIIl. THE KYP LEMMA FOR POSITIVE SYSTEMS

For multi-variable input-output gains we may follow the Ipatuggested by [23] and replace
Theorem b by a positive systems counterpart of the Kalmadasdyavich-Popov lemma:

Theorem 12: Let A € R™"™ be Metzler and Hurwitz, whileB € R’}*™. Suppose that all
entries ofQ € R™)x(+m) gre nonnegative, except for the lastdiagonal elements. Then the

following statements are equivalent:

(iwl — A)"'B (iwl — A)"'B
(12.1) Q =<0 for w € [0, c0).
1 1
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—A"'B —A°'B
(12.2) Q < 0.
I

_ _ ATP+PA PB
(12.3) There exists a diagon&l = 0 such that@ + .
B'P 0

Our proof of Theoreni_12 will rely on the following result, vahi can be found in[[11,
Theorem 3.1]:
Proposition 13 (Positive Quadratic Programming ): SupposeM,, ..., My € R™*" are Met-

zler matrices and,...,bx € R. Then
max z! Myx = max trace(MyX)
st. zeR} st. X>=0 (8)
T Mz > by trace( M, X) > by,
k=1,... K k=1,...,K
Moreover, the maximum of {8) is finite if and only if there exis,...,7x > 0 such that

My + Z,f:l M}, IS negative semi-definite.

Remark 6. The problem on the right is always convex and readily solvdiy} semidefinite
programming. The problem on the left is generally not a ceregram, since the matrices
M, may be indefinite. However, the maximization on the left in@ave in(2%, ..., 22) [16].

This is because every productr; is the geometric mean of two such variables, hence concave
[4], p. 74].

Proof. Every z satisfying the constraints on the left hand side[df (8) spo&ds to a matrix
X = x27 satisfying the constraints on the right hand side. This shthat the right hand side
of (8) is at least as big as the left.

On the other hand, leX = (z;;) be any positive definite matrix. In particular, the diagonal
elementsryy, . . ., z,, are non-negative and; < ,/z;7;;. Letx = (\/711,...,\/Znn). Then the
matrix zz" has the same diagonal elements¥asbut has off-diagonal elementgz;;z;; instead
of z;;. The fact that:z” has off-diagonal elements at least as big as thos€,abgether with the
assumption that the matricéd, are Metzler, givest” Myx > trace(M,X) for k =1,... K.
This shows that the left hand side 6f (8) is at least as big agitfnt.
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For the last statement, note that the conditionge(M, X) > b, are linear inX, so strong
duality holds [20, Theorem 28.2] and the right hand side §fh@s a finite maximum if and

only if My + 3% 7M, < 0 for somer,, ... 7% > 0. O
Proof of Theorem[I2. Puttingw = 0 gives [12.2) from[(112.1). The matrix A~! is nonnegative,
T
so (12.2) gives[“} Q H <0 for all z € R}, w € R7 with
< —A"'Buw 9

The inequality [(B) follows from (but is not equivalent to)etltonstraint) < Ax + Bw, which
can also be writteth < A,z + B;w for i = 1,...,n, where A; and B; denote the:th rows of

A and B respectively. For non-negativeand w, this is equivalent to
T
Hence[(1R2.2) implies th t”] Q |“|<0forz € R, w € RY satisfying [I0). By Propositidn 13,

the same bound must hold far € R", w € R™ and there exist,...,7, > 0 such that the

guadratic form

— - T — -
xXr xXr
o(z,w) = Q + Z 1,2 (Aix + Bw)
_w_ _’LU_ i
is negative semi-definite. Defin@ = diag(n,...,7,) = 0. Integrating ovet gives
o0 i T T i T
xr T
0> / Q + 2" P(Az + Bw) | dt
0 w | | w

For square integrable solutions to= Az + Bw, 2(0) = 0 we get

o (21" [z d <1 z(t) ’ x(t)
_ T —
o= | H o)t ) [w@)] Q[w@)]dt
which in frequency domain implie§ (12.1). Hen€el(12:112.2)=(12.3). O

For interconnected systems it is common to have constramtseveral subsystems. For such

situations, the following theorem is useful:
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Theorem 14: Let A € R™*" be Metzler and Hurwitz, whileB € R’}*™. Suppose that all
entries ofQ+, ..., Qx € RMmx(+m) gre nonnegative, except for the lastdiagonal elements.
Let ¢1,...,qx € R. Then the following statements are equivalent:

(14.1) The equatiori = Ax + Bw, x(0) = 0 has a square integrable solution with

00 T
[l el

(14.2) There exists nory, ..., 7x) # 0 with 7, being nonnegative numbers atl = 0 a

dt > q k=1,...,.K

diagonal matrix such that
K K
ATP+PA PB
> 7Qk + . =0 > T =0
k=0 B'P 0 k=0
If (14.1) is true, then there exist € R and7. > 0 such that the conditions of (14.1) hold
whenw(t) = w for ¢t € [0,7,] andw(t) = 0 for t > T..

Proof. Fork=1,..., K andw € LJ'[0,c0), define

o= [[o] @]

wherei = Az + Bw, z(0) = 0. It was shown in[[17, Theorem 4.1] that the set
= {(Ul(w), o) s we Lgn[o,oo)}
has convex closur in R¥. Failure of the statemerf (14.1) means thadoes not intersect the

open positive orthant. This implies existence of sepagdiyperplane, i.e. a vector, ..., 7x) #

0 with , > 0 and

Zmak(w) <0 forall w e L350, 00) (1)
k
The condition[(1l1) holds if and only IEkK:o Tqr > 0 and
’I—A‘lB* o jwl — A)~'B
(il = 4) <ZTka) (WI=47B _, forwe [0,00)  (12)
I — I

so (14.2) fails according to Theordm]12.
Conversely, if[(14.1) holds then

o0 T m K
/ [x] (ZTka> [x dt > g
o LW k=0 w k=0
SO eitheerK:O Trqr < 0, or the left hand side is strictly positive, in which calse)(ffls. Hence
(I4.2) holds by Theoreim 12. O
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i1 ia

() =—

s C o
U3 V2

Fig. 3. |lllustration of the power transmission network désed by equation[(13).

Example 5. Electrical Power Transmission. Consider a power transmission network illustrated

in Figure[3 and described by the equations

p

C101 = Yia(va — v1) + Yiu(vg — v1) + 44

Colg = Yia(v1 — vg) + Yag(v3 — v2) + Yau(vg — v2) + 49 13)
Cs03 = Yag(va — v3) + i3

Cyvy = Y14(v1 — vg) + You(v2 — v4) + iy

The power generated in nodeat timet is given byuy(t)ix(t). Consider the problem to minimize

losses in the network subject to constraints on power demanthe nodes:
Minimize S, _, [0 vr(t)ix(t)dt
subject to [(IB) with[;~ vxirdt < Py and [~ vpdt < V> fork=1,....4

The state dynamics as well as the quadratic forms have thelédestructure required by
Theorem 14, so the minimal losses can be found by semi-definégramming over;, using
condition [14.2). Moreover, the theorem states that mihiosses can be achieved by keeping

the voltages constant for a long period of time. O

IX. CONCLUSIONS

The results above indicate that the monotonicity propemiepositive systems and positively
dominated systems bring remarkable benefits to controlyh&tost important is the opportunity

for scalable verification and synthesis &t optimal performance. In particular, the optimal
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solution comes with a certificate (the numbégs.;) that makes it possible to verify optimality

locally, without access to a global model.

Many important problems remain open for future researchetdee two examples:

How can the scalable methods for verification be extendeddoatone nonlinear systems
in a nonconservative way?

How can local controllers be designed to get positively dated interactions with optimal
properties? (This would be in contrast with the mass-spexagmple where the local control

parametersl; and k; were fixed.)
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