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Distributed Control of Positive Systems

Anders Rantzer

Abstract

For positive systems, and more generally positively dominated systems, it is shown that distributed

H∞-optimal controllers can be computed using linear programming, with a complexity that scales

linearly with the number of states and interconnections. Hence two fundamental advantages are achieved

compared to classical methods for multivariable control: Distributed implementations and scalable com-

putations. The results are illustrated by examples from control of mechanical structures, transportation

networks and electrical power transmission.

I. INTRODUCTION

Classical methods for multi-variable control, such as LQG and H∞, suffer from a lack of

scalability that make them hard to use for large-scale systems. The difficulties come from

both computational complexity and from the absence of distributed structure in the resulting

controllers. The complexity can be traced back to the fact that even stability verification of a

linear system withn states generally requires a Lyapunov function involvingn2 quadratic terms.

This is true even if the system matrices are sparse. However,the situation improves drastically if

we restrict our attention to system matrices with nonnegative off-diagonal entries. Then stability

and performance can be verified using a Lyapunov function with only n linear terms. Sparsity

can be exploited in performance verification and even synthesis of distributed controllers can be

done with a complexity that grows linearly with the number ofnonzero entries in the system

matrices.

Given the striking difference between the two types of stability criteria, it is natural to ask

how restrictive the second category is when it comes to applications. After all, linear state

space models with negative off-diagonal elements are very common. However, there are strong

indications that the basic ideas have far-reaching implications:
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1) The essential monotonicity property extends beyond system matrices with nonnegative

off-diagonal entries. A sufficient assumption is that the transfer functions involved are

“positively dominated”.

2) The desired structure appears naturally in many important application areas, such as

mechanical systems, economics, transportation networks,power systems and biology.

3) In control applications, the condition on positive dominance need not apply to the open

loop process. Instead, a large-scale control system can often be structured into local control

loops that give positive dominance, thereby enabling scalable methods for optimization of

the global performance.

The paper is structured as follows: Sections II-III introduce background literature and notation.

Stability criteria for positive systems are cited in section IV. These results are not new, but stated

on a form convenient for later use and explained with emphasis on scalability. Section V shows

how the stability criteria can be exploited in synthesis of stabilizing controllers using distributed

linear programming. The techniques are then refined in section VI to optimizeH∞ and L1

performance. Section VII extends the techniques to positively dominated transfer functions. An

alternative approach to performance evaluation is given insection VIII. This approach relies on

semi-definite programming, but enables optimization of multiple objectives simultaneously. An

application to electrical power transmission is given.

II. BACKGROUND

The study of matrices with nonnegative coefficients has a long history dating back to the

Perron-Frobenius Theorem in 1912. A classic book on the topic is [2]. The theory is used in

Leontief economics [14], where the states denote nonnegative quantities of commodities. Systems

defined by nonnegative matrices (so called positive systems) appear in the study of Markov chains

[21], where the states denote nonnegative probabilities and in compartment models [9], where

the states could denote quantities of chemical species in anorganism. A nice introduction to the

subject is given in [15].

A fundamental property of linear maps described by a positive matrix is that they are con-

tractive in Hilbert’s projective metric [3], [12]. This metric is closely related to the Lyapunov

functionmax{x1, . . . , xn} −min{x1, . . . , xn} that is used for analysis of consensus algorithms

[21], [24]. For more recent contributions, see [18], [22].
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A nonlinear counterpart to positive systems is monotone systems, characterized by the property

that a partial ordering of initial states is preserved. Suchdynamical systems were studied in a

series of papers by Hirsch [6], [7], showing that monotonicity under some additional assumptions

implies convergence almost everywhere. Positive systems have also gained attention in the control

literature and increasingly so during the last decade. See for example [25], [5], [10]. Feedback

stabilization of positive linear systems was studied in [13], [19] and basic control theory for

nonlinear monotone systems was developed in [1]. A recent result by Tanaka and Langbort [23]

shows that decentralized controllers can be optimized for positive systems using semi-definite

programming. The criterion is the closed loopH∞ norm and the authors show that diagonal

quadratic storage functions can be used without conservatism. Several of the main results in this

paper can be viewed as extensions of this work.

III. N OTATION

Let R+ denote the set of nonnegative real numbers. The inequalityX > 0 (X ≥ 0) means

that all elements of the matrix (or vector)X are positive (nonnegative). For a symmetric matrix

X, the inequalityX ≻ 0 means that the matrix is positive definite. The matrixA ∈ Rn×n is

said to beHurwitz if all eigenvalues have positive real part. It isSchur if all eigenvalues are

strictly inside the unit circle. Finally, the matrix is saidto beMetzler if all off-diagonal elements

are nonnegative. The notationCHn×m
∞ represents the set ofn ×m matrices whose entries are

analytic in the right half plane and continuous on the imaginary axis (including infinity) .

IV. D ISTRIBUTED STABILITY VERIFICATION

Proposition 1: Let A ∈ Rn×n be Metzler. Then the following are equivalent:

(1.1) The matrixA is Hurwitz.

(1.2) There exists aξ ∈ R
n such thatξ > 0 andAξ < 0.

(1.3) There exists az ∈ Rn such thatz > 0 andzTA < 0.

(1.4) There exists adiagonal matrix P ≻ 0 such thatATP + PA ≺ 0.

(1.5) The matrix−A−1 exists and has nonnegative entries.

Moreover, if ξ = (ξ1, . . . , ξn) and z = (z1, . . . , zn) satisfy the conditions of (1.2) and (1.3)

respectively, thenP = diag(z1/ξ1, . . . , zn/ξn) satisfies the conditions of (1.4).
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Fig. 1. Level curves of Lyapunov functions corresponding tothe conditions (1.2), (1.3) and (1.4) in Proposition 1:

If Aξ < 0, thenV (x) = maxi(xi/ξi) is a Lyapunov function with rectangular level curves. IfzTA < 0, thenV (x) = zTx is

a linear Lyapunov function. Finally ifATP + PA ≺ 0 andP ≻ 0, thenV (x) = xTPx is a quadratic Lyapunov function for

the systemẋ = Ax.

Remark 1. Each of the conditions (1.2), (1.3) and (1.4) corresponds toa Lyapunov function of

a specific form. See Figure 1.

Remark 2. One of the main observations of this paper is that verification and synthesis of positive

control systems can be done with methods that scale linearlywith the number of interconnections.

For stability, this claim follows directly from Proposition 1: Givenξ, verification of the inequality

Aξ < 0 requires a number of scalar additions and multiplications that is directly proportional to

the number of nonzero elements in the matrixA. In fact, the search for a feasibleξ also scales

linearly, since integration of the differential equationξ̇ = Aξ with ξ(0) = ξ0 for an arbitrary

ξ0 > 0 generates a feasibleξ(t) in finite time provided thatA is Metzler and Hurwitz.

Proof of Proposition 1. The equivalence between (1.1), (1.2), (1.4) and (1.5) is theequivalence

between the statementsG20, I27, H24 andN38 in [2, Theorem 6.2.3]. The equivalence between

(1.1) and (1.3) is obtained by applying the equivalence between (1.1) and (1.2) to the transpose

of A. Moreover, ifξ = (ξ1, . . . , ξn) andz = (z1, . . . , zn) satisfy the conditions of (1.2) and (1.3)

respectively, thenP = diag(z1/ξ1, . . . , zn/ξn) gives (ATP + PA)ξ = AT z + PAξ < 0 so the

symmetric matrixATP + PA is Hurwitz and (1.4) follows. ✷

Example 1. Transportation network. Consider a dynamical system interconnected according
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I1

I3

I0

I2

x1x2

x3x4

Fig. 2. A graph of interconnected systems. In Example 1 the interpretation is a transportation network and each arrow indicates

a transportation link. In Example 2 the interpretation is instead a vehicle formation and each arrow indicates the use ofa distance

measurement.

to the graph illustrated in Figure 2:



ẋ1

ẋ2

ẋ3

ẋ4



=




−1 − ℓ31 ℓ12 0 0

0 2− ℓ12 − ℓ32 ℓ23 0

ℓ31 ℓ32 3− ℓ23 − ℓ43 ℓ34

0 0 ℓ43 −4 − ℓ34







x1

x2

x3

x4




(1)

The model could for example be used to describe an transportation network connecting four

buffers. The statesx1, x2, x3, x4 represent the contents of the buffers and the parameterℓij

determines the rate of transfer from bufferj to buffer i. Without such transfer the content of

the second and third buffer would grow exponentially due to the unstable internal dynamics of

those buffers.

Notice that the dynamics can be written asẋ = Ax whereA is a Metzler matrix provided that

everyℓij is nonnegative. Hence, by Proposition 1, stability is equivalent to existence of numbers

ξ1, . . . , ξ4 > 0 such that



−1− ℓ31 ℓ12 0 0

0 2− ℓ12 − ℓ32 ℓ23 0

ℓ31 ℓ32 3− ℓ23 − ℓ43 ℓ34

0 0 ℓ43 −4− ℓ34







ξ1

ξ2

ξ3

ξ4



<




0

0

0

0




Given these numbers, stability can be verified by a distributed test where the first buffer verifies

the first inequality, the second buffer verifies the second and so on. ✷
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Example 2. Vehicle formation or Distributed Kalman Filter. Another dynamical system,

which can be viewed as a dual of the previous one, is the following:



ẋ1 = −x1 + ℓ13(x3 − x1)

ẋ2 = 2x2 + ℓ21(x1 − x2) + ℓ23(x3 − x2)

ẋ3 = 3x3 + ℓ32(x2 − x3) + ℓ34(x4 − x3)

ẋ4 = −4x4 + ℓ43(x3 − x4)

(2)

The model could for example be used to describe a platoon of four vehicles. The parametersℓij

represent position adjustments based on distance measurements between the vehicles. Without

these adjustments only the first and last vehicle maintain a stable position, while the position

error in the second and third vehicle grow exponentially. Again, stability can be verified by a

distributed test where the first vehicle verifies the first inequality, the second vehicle verifies the

second inequality and so on. ✷

A discrete time counterpart to Proposition 1 can be stated asfollows:

Proposition 2: Let B ∈ R
n×n
+ . Then the following statements are equivalent:

(2.1) The matrixB is Schur stable.

(2.2) There is aξ ∈ Rn such thatξ > 0 andBξ < ξ.

(2.3) There exists az ∈ Rn such thatz > 0 andBT z < z.

(2.4) There is adiagonal matrix P ≻ 0 such thatBTPB ≺ P .

(2.5) The matrix(I − B)−1 exists and has nonnegative entries.

Moreover, if ξ = (ξ1, . . . , ξn) and z = (z1, . . . , zn) satisfy the conditions of (2.2) and (2.3)

respectively, thenP = diag(z1/ξ1, . . . , zn/ξn) satisfies the conditions of (2.4).

Proof. The equivalence between (2.1) and (2.5) is proved by [2, Lemma 6.2.1]. SettingA = B−I

gives the equivalence between (2.2), (2.3) and (2.5) from the equivalence between (1.2), (1.3)

and (1.5).

Supposeξ = (ξ1, . . . , ξn) and z = (z1, . . . , zn) satisfy the conditions of (2.2) and (2.3)

respectively. SetP = diag(z1/ξ1, . . . , zn/ξn) andyk =
√
ξkzk for k = 1, . . . , n. Then

P−1/2BTPBP−1/2y = P−1/2BTPBξ < P−1/2BTPξ = P−1/2BT z < P−1/2z = y

so P−1/2BTPBP−1/2 is Schur. HenceP−1/2BTPBP−1/2 ≺ I and (2.4) follows. Finally, the

implication from (2.4) to (2.1) is standard. ✷
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V. D ISTRIBUTED STABILIZATION BY L INEAR PROGRAMMING

The next step is to search for stabilizing feedback laws by distributed optimization. This can

be done using the following theorem:

Theorem 3: Let the matricesA ∈ Rn×n, E ∈ Rn×m, F ∈ Rm×n, K ∈ Rm×m be given and let

D be the set ofm×m diagonal matrices with entries in[0, 1]. Suppose that(I −LK)−1 exists

andA+E(I −LK)−1LF is Metzler for allL ∈ D. If F andK have nonnegative coefficients,

then the following two conditions are equivalent:

(3.1) There existsL ∈ D such thatA+ E(I − LK)−1LF is Hurwitz.

(3.2) There existξ ∈ Rn
+, µ ∈ Rm

+ with µ ≤ Fξ +Kµ andAξ + Eµ < 0.

Alternatively, if E andK have nonnegative coefficients, then (3.1) is equivalent to

(3.3) There existp ∈ Rn
+, q ∈ Rm

+ with q ≤ ETp+KT q andAT p+ F Tq < 0.

Remark 3. It is natural to compare the expressionA+E(I−LK)−1LF with the “state feedback”

expressionA+BL of standard linear quadratic optimal control. A major difference is the presence

of F andK which make the optimization into a problem of “static outputfeedback” rather than

state feedback. Another difference is the diagonally structuredL instead of a full matrix. The

diagonal structure gives a much higher degree of flexibility, particularly in the specification of

distributed controllers.

Remark 4. If the diagonal elements ofD are restricted toR+ instead of[0, 1], then the condition

µ ≤ Fξ +Kµ is replaced by0 < Fξ +Kµ.

Remark 5. Each row of the vector inequalities can be verified separately to get a distributed test.

Proof of Theorem 3. Suppose (3.1) holds. LetA + E(I − LK)−1LF be Hurwitz and define

ξ ∈ Rn
+ with [A + E(I − LK)−1LF ]ξ < 0. Let µ = (I − LK)−1LFξ. Thenµ = L(Fξ +Kµ)

andAξ + Eµ = (A + E(I − LK)−1LF )ξ < 0.

Conversely, suppose that (3.2) holds. ChooseL ∈ D to getµ = (I − LK)−1LFξ. Then

[A+ E(I − LK)−1LF ]ξ = Aξ + Eµ < 0

soA+E(I−LK)−1LF is Hurwitz. The equivalence between (3.1) and (3.3) followsimmediately

by replacingA+ E(I − LK)−1LF with its transpose. ✷
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Example 3 Consider the system (1) and the problem to find feedback gainsℓij ∈ [0, ℓ ] that

stabilize the transportation network. The problem can be solved by applying linear programming

to condition (3.2) with

A = diag{−1, 2, 3,−4} K = 0 L = diag{ℓ31, ℓ12, ℓ32, ℓ23, ℓ43, ℓ34}/ℓ

E =




−1 1 0 0 0 0

0 −1 −1 1 0 0

1 0 1 −1 −1 1

0 0 0 0 1 −1




F =




ℓ 0 0 0

0 ℓ 0 0

0 ℓ 0 0

0 0 ℓ 0

0 0 ℓ 0

0 0 0 ℓ




It turns out that the linear program is feasible if and only ifℓ > 2, in which caseL =

diag{0, 1, 0, 1, 1, 0} is stabilizing.

If we instead consider the vehicle formation,E andF are replaced byF T andET respectively,

so we need to use condition (3.3) instead. ✷

A discrete time counterpart to Theorem 3 is given without proof:

Theorem 4: Let the matricesA ∈ Rn×n, E ∈ Rn×m, F ∈ Rm×n, K ∈ Rm×m be given and

let D be the set ofm × m diagonal matrices with entries in[0, 1]. Suppose that(I − LK)−1

exists andA + E(I − LK)−1LF is non-negative for allL ∈ D. If F andK have nonnegative

coefficients, then the following are equivalent:

(4.1) There isL ∈ D such thatA+ E(I − LK)−1LF is Schur.

(4.2) There existξ ∈ Rn
+, µ ∈ Rm

+ with µ ≤ Fξ +Kµ andAξ + Eµ < ξ.

Alternatively, if E andK have nonnegative coefficients, then (4.1) is equivalent to

(4.3) There existp ∈ Rn
+, q ∈ Rm

+ with q ≤ ETp+KT q andAT p+ F Tq < p.

VI. D ISTRIBUTED OPTIMIZATION OF INPUT-OUTPUT PERFORMANCE

It is also natural to move beyond stability and optimize input-output performance. The con-

nection between stability and performance is established by the following theorem.

Theorem 5: Suppose thatG(s) = C(sI − A)−1B + D whereA ∈ R
n×n is Metzler, while

B ∈ R
n×1
+ , C ∈ R

1×n
+ andD ∈ R+. Then the following two conditions are equivalent:

(5.1) The matrixA is Hurwitz and‖G‖∞ < γ.

February 29, 2012 DRAFT
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(5.2) The matrix


A B

C D − γ


 is Hurwitz.

Moreover, ifA is Hurwitz, then‖G‖∞ = G(0) .

Proof. First note that the maximummaxω |G(iω)| must be attained atω = 0 since

|G(iω)| =
∣∣∣∣D +

∫ ∞

0

CeAtB

∣∣∣∣ dt ≤ |D|+
∫ ∞

t

|CeAtB|dt = D − CA−1B = G(0)

Hence‖G‖∞ < γ may equivalently be written

D − CA−1B < γ

Suppose that (5.1) holds. By Proposition 1 there existsξ > 0 such thatAξ < 0. Definex =

ξ −A−1B. Thenx > 0 since−A−1 ≥ 0 and

Ax+B = Aξ < 0

If ξ is sufficiently small, we also getCx+D < γ so

A B

C D − γ




x
1


 <


0
0


 (3)

and (5.2) holds. Conversely, (5.2) implies that (3) holds for somex, soAx < 0 and

−A−1B < x D − CA−1B < Cx+D < γ

so (5.1) follows. ✷

A discrete time version can be stated as follows.

Theorem 6: Let G(z) = C(zI − A)−1B + D whereA ∈ R
n×n
+ , B ∈ R

n×1
+ , C ∈ R

1×n
+ and

D ∈ R+. Then the following two conditions are equivalent:

(6.1) The matrixA is Schur and‖G‖∞ < γ.

(6.2) The matrix


 A B

γ−1C γ−1D


 is Schur.

Moreover, ifA is Schur, then‖G‖∞ = G(1) .

Combining Theorem 5 with Theorem 3 gives a linear programming formulation of the problem

to minimize input-output gain:

February 29, 2012 DRAFT
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Corollary 7: Let D be the set ofm×m diagonal matrices with entries in[0, 1]. Suppose that

D is scalar and thatA+ ELF is Metzler for allL ∈ D.

If the matricesB,C,D andF have nonnegative coefficients, then the following two conditions

are equivalent:

(7.1) There existsL ∈ D such thatA+ ELF is Hurwitz and

‖C[sI − (A+ ELF )]−1B +D‖∞ < γ. (4)

(7.2) There existξ ∈ Rn
+, µ ∈ Rm

+ with

Aξ + Eµ+B < 0 Cξ +D < γ µ ≤ Fξ

If ξ, µ satisfy (7.2), then (7.1) holds for everyL such thatµ = LFξ.

Alternatively, if B,C,D andE are nonnegative, then (7.1) is equivalent to

(7.3) There existp ∈ R
n
+, q ∈ R

m
+ with

ATp+ F T q + CT < 0 BT p+D < γ q ≤ ETp

If p, q satisfy (7.3), then (7.1) holds for everyL such thatq = LET p.

Proof. According to Theorem 5, condition (7.1) holds if and only if there existsξ ∈ Rn
+ with


A + ELF B

C D − γ




ξ
1


 < 0 (5)

Given (5), the inequalities of (7.2) hold withµ = LFξ. Conversely, given (7.2), the inequalities

of (5) follow provided thatµ = LFξ. This proves the desired equivalence between (7.1) and

(7.2). The equivalence between (7.1) and (7.3) follows immediately by replacingG(s) with its

transpose. ✷

We conclude the section by pointing out that for scalar positive systems, all induced norms

are equal:

Theorem 8: For a scalar impulse responseg(t) and w ∈ Lp[0,∞), let g ∗ w denote the

convolution ofg andw. Suppose thatg(t) ≥ 0 and
∫∞

0
g(t)dt < ∞. Then the induced norm

‖g‖p−ind = supw
‖g∗w‖p
‖w‖p

satisfies

‖g‖p−ind =

∫ ∞

0

g(t)dt p ∈ [1,∞]

February 29, 2012 DRAFT
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Proof. It is well known that‖g‖2−ind = maxω |G(eiω)| whereG(s) =
∫∞

0
g(t)e−stdt. When

g(t) ≥ 0, the maximum must be attained atω = 0 since

|G(iω)| =
∣∣∣∣
∫ ∞

0

g(t)eiωtdt

∣∣∣∣ ≤
∫ ∞

0

g(t)dt = G(0)

Moreover

‖y(t)‖1 =
∫ ∞

0

∣∣∣∣
∫ t

0

g(t− τ)w(τ)dτ

∣∣∣∣dt ≤
∫ ∞

0

∫ t

0

g(t− τ)|w(τ)|dτdt

=

∫ ∞

0

(∫ ∞

τ

g(t− τ)dt

)
|w(τ)

∣∣dτ =

(∫ ∞

0

g(t)dt

)
‖w‖1

with equality whenw(t) ≥ 0 for all t. Similarly

|y(t)| =
∣∣∣∣
∫ ∞

0

g(τ)w(t− τ)dτ

∣∣∣∣ ≤
∫ ∞

0

g(τ)
∣∣w(t− τ)

∣∣dτ ≤
(∫ ∞

0

g(τ)dτ

)
‖w‖∞

with equality if w is constant. Hence the desired equality

‖g‖p−ind =

∫ ∞

0

g(t)dt (6)

has been proved forp = 1, p = 2 and p = ∞. The Riesz-Thorin convexity theorem [8,

Theorem 7.1.12] shows that‖g‖p−ind is a convex function ofp for 1 ≤ p ≤ ∞, so (6) must hold

for all p ∈ [1,∞]. ✷

VII. POSITIVELY DOMINATED SYSTEMS

As indicated before, a transfer matrixG ∈ CH
m×n
∞ is called positively dominated if every

matrix entry satisfies|Gjk(iω)| ≤ Gjk(0) for ω ∈ R. The set of all such matrices is denoted

DH
m×n
∞ . Some properties follow immediately:

Proposition 9: Let G,H ∈ DH
n×n
∞ . Then GH ∈ DH

n×n
∞ and aG + bH ∈ DH

n×n
∞ when

a, b ∈ R+. Moreover‖G‖∞ = ‖G(0)‖.

The following property is also fundamental:

Theorem 10: Let G ∈ DH
n×n
∞ . Then(I −G)−1 ∈ DH

n×n
∞ if and only if G(0) is Schur.

Proof. That (I −G)−1 is stable and positively dominated implies that[I −G(0)]−1 exists and

is nonnegative, soG(0) must be Schur according to Proposition 2. On the other hand, if G(0)

is Schur we may chooseξ ∈ R+ andǫ > 0 with G(0)ξ < (1− ǫ)ξ. Then for everyz ∈ Cn with

0 < |z| < ξ ands ∈ C with Re s ≥ 0 we have

|G(s)tz| ≤ G(0)t|z| < (1− ǫ)t|z| for t = 1, 2, 3, . . .

February 29, 2012 DRAFT
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Hence
∑∞

k=0G(s)tz is convergent and bounded above by
∑∞

k=0G(0)t|z| = [I−G(0)]−1|z|. The

sum of the series solves the equation[I−G(s)]
∑∞

k=0G(s)tz = z, so therefore
∑∞

k=0G(s)tz =

[I−G(s)]−1z. This proves(I−G)−1 is stable and positively dominated and the proof is complete.

✷

Theorem 11: Let D be the set ofm×m diagonal matrices with entries in[0, 1]. Suppose that

B ∈ DH
n×1
∞ , C ∈ DH

1×n
∞ , D ∈ DH∞ andA+ ELF ∈ CH

n×n
∞ for all L ∈ D. Assume that the

off-diagonal entries of A+ ELF are positively dominated for allL ∈ D.

If F ∈ DH
m×n
∞ , then the following two conditions are equivalent:

(11.1) There existsL ∈ D such that(I −A−ELF)−1 ∈ CH
n×n
∞ is positively dominated and

‖C(I −A−ELF)−1
B+D‖∞ < γ.

(11.2) There existξ ∈ Rn
+, µ ∈ Rm

+ with

A(0)ξ + E(0)µ+B(0) < ξ C(0)ξ +D(0) < γ µ ≤ F(0)ξ

If ξ, µ satisfy (11.2), then (11.1) holds for everyL such thatµ = LF(0)ξ.

Alternatively,E ∈ DH
n×m
∞ , then (11.1) is equivalent to

(11.3) There existp ∈ Rn
+, q ∈ Rm

+ with

A(0)Tp+ F(0)T q +C(0)T < p B(0)Tp+D(0) < γ q ≤ E(0)Tp

If p, q satisfy (11.3), then (11.1) holds for everyL such thatq = LE(0)Tp.

Proof. Theorem 10 shows that (11.1) holds if and only ifA(0) − E(0)LF(0) is Schur and

C[I −A(0)−E(0)LF(0)]−1
B(0)+D(0) < γ. According to Theorem 6, this is true if and only

if 
A(0) + E(0)LF(0) B(0)

γ−1
C(0) γ−1

D(0)


 (7)

is Schur. By Proposition 2 this is equivalent to existence ofξ ∈ Rn
+ such that


A(0) + E(0)LF(0) B(0)

γ−1
C(0) γ−1

D(0)




ξ
1


 <


ξ
1




This is equivalent to (11.2) if we setµ = LF(0)ξ, so the desired equivalence between (11.1)

and (11.2) in Theorem 11 follows. The equivalence between (11.1) and (11.3) is obtained by

replacingG(s) with its transpose. ✷
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Example 4 Consider a mechanical structure consisting ofN point-masses connected by springs.

The dynamics is described by the equations

ẍi =
∑

j

ℓij(xj − xi) + ui + wi i = 1, . . . , N

whereui is an external control force,wi is a disturbance andℓij is the spring constant between

the point massesi andj. Suppose that local control lawsui = −kixi−diẋ are given withdi ≥ ki

and consider the problem to find spring constantsℓij that minimize the gain fromw1 to x1.

The closed loop system has the following frequency domain description

Xi(s) =
1

s2 + dis+ ki

[
∑

j

ℓij(Xj(s)−Xi(s)) +Wi(s)

]
i = 1, . . . , N

Similarly to Example 3, we write this on matrix form as

X = G(ELF +W )

whereL = diag{ℓ12, ℓ13, ℓ23, . . .}, G = diag{G1, . . . ,Gn}, Gi(s) = (s2 + dis + ki)
−1 and the

matrix E is nonnegative. Theorem 11 can then be applied with

A = 0 D = 0

B =
[
G1 0 . . . 0

]T
E = GE

C =
[

1 0 . . . 0
]

F = F

to find the optimal spring constants. However, notice thatℓij andℓji must be optimized separately,

even though by symmetry they must be equal at optimum. ✷

VIII. T HE KYP LEMMA FOR POSITIVE SYSTEMS

For multi-variable input-output gains we may follow the path suggested by [23] and replace

Theorem 5 by a positive systems counterpart of the Kalman-Yakubovich-Popov lemma:

Theorem 12: Let A ∈ R
n×n be Metzler and Hurwitz, whileB ∈ R

n×m
+ . Suppose that all

entries ofQ ∈ R(n+m)×(n+m) are nonnegative, except for the lastm diagonal elements. Then the

following statements are equivalent:

(12.1)


(iωI −A)−1B

I



∗

Q


(iωI − A)−1B

I


 � 0 for ω ∈ [0,∞).
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(12.2)


−A−1B

I




∗

Q


−A−1B

I


 � 0.

(12.3) There exists a diagonalP � 0 such thatQ+


A

TP + PA PB

BTP 0


 � 0.

Our proof of Theorem 12 will rely on the following result, which can be found in [11,

Theorem 3.1]:

Proposition 13 (Positive Quadratic Programming ): SupposeM0, . . . ,MK ∈ Rn×n are Met-

zler matrices andb1, . . . , bK ∈ R. Then

max xTM0x = max trace(M0X)

s.t. x ∈ Rn
+ s.t. X � 0

xTMkx ≥ bk trace(MkX) ≥ bk

k = 1, . . . , K k = 1, . . . , K

(8)

Moreover, the maximum of (8) is finite if and only if there exist τ1, . . . , τK ≥ 0 such that

M0 +
∑K

k=1 τkMk is negative semi-definite.

Remark 6. The problem on the right is always convex and readily solvable by semidefinite

programming. The problem on the left is generally not a convex program, since the matrices

Mk may be indefinite. However, the maximization on the left is concave in(x2
1, . . . , x

2
n) [16].

This is because every productxixj is the geometric mean of two such variables, hence concave

[4, p. 74].

Proof. Every x satisfying the constraints on the left hand side of (8) corresponds to a matrix

X = xxT satisfying the constraints on the right hand side. This shows that the right hand side

of (8) is at least as big as the left.

On the other hand, letX = (xij) be any positive definite matrix. In particular, the diagonal

elementsx11, . . . , xnn are non-negative andxij ≤ √
xiixjj. Let x = (

√
x11, . . . ,

√
xnn). Then the

matrix xxT has the same diagonal elements asX, but has off-diagonal elements
√
xiixjj instead

of xij . The fact thatxxT has off-diagonal elements at least as big as those ofX, together with the

assumption that the matricesMk are Metzler, givesxTMkx ≥ trace(MkX) for k = 1, . . . , K.

This shows that the left hand side of (8) is at least as big as the right.
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For the last statement, note that the conditionstrace(MkX) ≥ bk are linear inX, so strong

duality holds [20, Theorem 28.2] and the right hand side of (8) has a finite maximum if and

only if M0 +
∑K

k=1 τkMk � 0 for someτ1, . . . , τK ≥ 0. ✷

Proof of Theorem 12. Puttingω = 0 gives (12.2) from (12.1). The matrix−A−1 is nonnegative,

so (12.2) gives




x

w





T

Q





x

w



≤ 0 for all x ∈ Rn
+, w ∈ Rm

+ with

x ≤ −A−1Bw (9)

The inequality (9) follows from (but is not equivalent to) the constraint0 ≤ Ax + Bw, which

can also be written0 ≤ Aix + Biw for i = 1, . . . , n, whereAi andBi denote thei:th rows of

A andB respectively. For non-negativex andw, this is equivalent to

0 ≤ xi(Aix+Biw) i = 1, . . . , n (10)

Hence (12.2) implies that




x

w





T

Q





x

w



≤ 0 for x ∈ Rn
+, w ∈ Rm

+ satisfying (10). By Proposition 13,

the same bound must hold forx ∈ Rn, w ∈ Rm and there existτ1, . . . , τn ≥ 0 such that the

quadratic form

σ(x, w) =

[
x

w

]T

Q

[
x

w

]
+
∑

i

τixi(Aix+Biw)

is negative semi-definite. DefineP = diag(τ1, . . . , τn) � 0. Integrating overt gives

0 ≥
∫ ∞

0



[
x

w

]T

Q

[
x

w

]
+ xTP (Ax+Bw)


 dt

For square integrable solutions toẋ = Ax+Bw, x(0) = 0 we get

0 ≥
∫ ∞

0



[
x

w

]T

Q

[
x

w

]
+

d

dt
(xTPx)


 dt =

∫ ∞

0

[
x(t)

w(t)

]T

Q

[
x(t)

w(t)

]
dt

which in frequency domain implies (12.1). Hence (12.1)⇔(12.2)⇔(12.3). ✷

For interconnected systems it is common to have constraintson several subsystems. For such

situations, the following theorem is useful:
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Theorem 14: Let A ∈ R
n×n be Metzler and Hurwitz, whileB ∈ R

n×m
+ . Suppose that all

entries ofQ1, . . . , QK ∈ R(n+m)×(n+m) are nonnegative, except for the lastm diagonal elements.

Let q1, . . . , qK ∈ R. Then the following statements are equivalent:

(14.1) The equatioṅx = Ax+Bw, x(0) = 0 has a square integrable solution with
∫ ∞

0

[
x

w

]T
Qk

[
x

w

]
dt > qk k = 1, . . . , K

(14.2) There exists no(τ1, . . . , τK) 6= 0 with τk being nonnegative numbers andP � 0 a

diagonal matrix such that

K∑

k=0

τkQk +


A

TP + PA PB

BTP 0


 � 0

K∑

k=0

τkqk ≥ 0

If (14.1) is true, then there exist̂w ∈ Rm
+ and Tǫ > 0 such that the conditions of (14.1) hold

whenw(t) = ŵ for t ∈ [0, Tǫ] andw(t) = 0 for t > Tǫ.

Proof. For k = 1, . . . , K andw ∈ L
m
2 [0,∞), define

σk(w) =

∫ ∞

0

[
x

w

]T
Qk

[
x

w

]
dt− qk

whereẋ = Ax+Bw, x(0) = 0. It was shown in [17, Theorem 4.1] that the set

Σ =
{
(σ1(w), . . . , σK(w)) : w ∈ L

m
2 [0,∞)

}

has convex closureΣ in RK . Failure of the statement (14.1) means thatΣ does not intersect the

open positive orthant. This implies existence of separating hyperplane, i.e. a vector(τ1, . . . , τK) 6=
0 with τk ≥ 0 and

∑

k

τkσk(w) ≤ 0 for all w ∈ L
m
2 [0,∞) (11)

The condition (11) holds if and only if
∑K

k=0 τkqk ≥ 0 and

(iωI − A)−1B

I




∗( m∑

k=0

τkQk

)
(iωI − A)−1B

I


 � 0 for ω ∈ [0,∞) (12)

so (14.2) fails according to Theorem 12.

Conversely, if (14.1) holds then
∫ ∞

0

[
x

w

]T( m∑

k=0

τkQk

)[
x

w

]
dt >

K∑

k=0

τkqk

so either
∑K

k=0 τkqk < 0, or the left hand side is strictly positive, in which case (12) fails. Hence

(14.2) holds by Theorem 12. ✷
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Fig. 3. Illustration of the power transmission network described by equation (13).

Example 5. Electrical Power Transmission. Consider a power transmission network illustrated

in Figure 3 and described by the equations




C1v̇1 = Y12(v2 − v1) + Y14(v4 − v1) + i1

C2v̇2 = Y12(v1 − v2) + Y23(v3 − v2) + Y24(v4 − v2) + i2

C3v̇3 = Y23(v2 − v3) + i3

C4v̇4 = Y14(v1 − v4) + Y24(v2 − v4) + i4

(13)

The power generated in nodek at timet is given byvk(t)ik(t). Consider the problem to minimize

losses in the network subject to constraints on power demands in the nodes:

Minimize
∑4

k=1

∫∞

0
vk(t)ik(t)dt

subject to (13) with
∫∞

0
vkikdt ≤ Pk and

∫∞

0
v2kdt ≤ V max

k for k = 1, . . . , 4

The state dynamics as well as the quadratic forms have the Metzler structure required by

Theorem 14, so the minimal losses can be found by semi-definite programming overτk using

condition (14.2). Moreover, the theorem states that minimal losses can be achieved by keeping

the voltages constant for a long period of time. ✷

IX. CONCLUSIONS

The results above indicate that the monotonicity properties of positive systems and positively

dominated systems bring remarkable benefits to control theory. Most important is the opportunity

for scalable verification and synthesis ofH∞ optimal performance. In particular, the optimal

February 29, 2012 DRAFT



18

solution comes with a certificate (the numbersξk, µk) that makes it possible to verify optimality

locally, without access to a global model.

Many important problems remain open for future research. Here are two examples:

• How can the scalable methods for verification be extended to monotone nonlinear systems

in a nonconservative way?

• How can local controllers be designed to get positively dominated interactions with optimal

properties? (This would be in contrast with the mass-springexample where the local control

parametersdi andki were fixed.)
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