
Metacompiling OWL Ontologies

Anders Nilsson1 and Görel Hedin2

1 Department of Automatic Control
Lund University, Sweden

2 Department of Computer Science
Lund University, Sweden

Abstract. Ontologies, formal knowledge representation, and reasoning
are technologies that have begun to gain substantial interest in recent
years. We present a high-level declarative approach to writing applica-
tion programs for specific ontologies, based on viewing the ontology as a
domain-specific language.
Our approach is based on declarative meta-compilation techniques. We
have implemented a tool using this approach that allows typed front-
ends to be generated for specific ontologies, and to which the desired
functionality can be added as separate aspects. Our tool makes use of the
JastAdd meta-compilation system which is based on reference attribute
grammars. We describe the architecture of our tool and evaluate the
approach on applications in industrial robotics.

1 Introduction

The semantic web [23] aims at formalizing large portions of knowledge in a
form which enhances interoperability of usually distributed systems, and which
introduces provisions for a common understanding of basic terms. The term
ontology is normally used in this context to denote a logical formalization of a
particular domain of knowledge, stored in a commonly understood format and
accessible via the world wide web or a similar mechanism.

There are already many tools for handling ontologies in different formats.
Ontology editors for the well known ontology notation OWL [15, 16], for example
Protégé [17] and OntoStudio [5], typically store the information in a knowledge
database as RDF triplets (subject, predicate, and object).

Access and manipulation of such knowledge, can be done either at the generic
level, i.e., in terms of the triplets, or at a domain-specific level, where the on-
tology is used for interpreting the knowledge as a domain-specific programming
model. Examples of tools working at the generic level include semantic reasoners,
such as FaCT++ [21] or Pellet [11], which can infer new facts from the knowl-
edge base, and the standard query language SPARQL [19], which allows the
knowledge base to be queried. The knowledge base can also be directly accessed
programmatically, using a generic API, like the Jena Owl API [8].

While the generic level is appropriate for general reasoning over arbitrary on-
tologies, the domain-specific level is often more appropriate for applications tied

to a specific ontology. For example, a hierarchical structure is easy and natural
to represent as a tree at the domain-specific level, but needs to be represented as
separate triplets of knowledge at the generic level, making generic information
retrieval cumbersome and error-prone: Instead of simply traversing a tree struc-
ture, each level of nodes must be retrieved using new queries and the hierarchical
structure must be maintained outside the knowledge database in the application
logic.

There are many tools that can be used to support writing applications at
the domain-specific level. These tools typically represent the knowledge as an
object-oriented model, introducing classes for the concepts in the ontology, and
interpreting predicates to model class and object relationships like inheritance
and part-of relations. Typically, this domain-specific model is accessible through
an API in an object-oriented programming language, like Java, and which is
generated from the ontology schema. Examples of such tools include RDFReac-
tor [22] and Owl2Java [24]. A related approach is that of providing mappings
between RDF and object-oriented models, such as EMF, e.g., [7].

However, a plain generated API has its limitations. First, the application
programmer might like to enrich the generated semantic model with application-
specific computations, for example in the form of additional fields and methods.
Second, such application code should be separated from the generated API:
we do not want the application programmer to edit generated code. Third, for
computing properties of the semantic model, it can be advantageous to use
high-level declarative programming. Fourth, the ontology might change, and it
is desirable that the application code can be reasonably robust to such changes.

In this paper, we provide a solution that supports these requirements. We
note that the problem of writing the application program is similar to writing
a compiler: we need to parse information, analyze it, and generate some kind
of output as a result. By using an object-oriented language, we can map the
triplets for a specific ontology dialect to a typed object-oriented abstract syntax
tree that is easy to perform computations on. For example, a subclass triplet,
like (PincerGripper, subclassof, Gripper), would be mapped to a subclass rela-
tion between the corresponding classes in the object-oriented language. And a
composition restriction, like (Gripper, has, OpenSkill), would be mapped to a
parent-child relation in the abstract syntax tree.

Implementing the classes for such an abstract syntax tree by hand would
be awkward, however, since they will then be sensitive to future changes to the
description specification. Even small changes to the structure could imply a lot
of work to adjust the compiler to the changes.

As is not uncommon, such problems become easier to solve by moving up
to the next abstraction level. By implementing a meta-compiler, a compiler for
OWL that, as output, generates a compiler for the description language spec-
ified in OWL, the abstraction level is raised. Instead of having to handle the
dependencies between description language and tools manually, there is now one
single specification for both description language and tool generation. The fact

that these description languages are XML-based helps in that the parsing syntax
is given beforehand.

We have implemented such a meta-compiler for OWL, called JastOwl. Jas-
tOwl is implemented using the JastAdd meta-compilation system [3] which sup-
ports high-level declarative computations on the abstract syntax tree by means
of reference attribute grammars [6], and aspect-oriented modularization using
inter-type declarations [10].

The rest of this paper is structured as follows. In section 2 we describe the
architecture of JastOwl. Section 3 gives an example application of using JastOwl
in the area of industrial robotics, and section 4 evaluates the approach. Related
work is discussed in section 5, and section 6 concludes the paper.

2 JastOwl, a Meta-Compiler for OWL

Figure 1 shows the use of the JastOwl meta-compiler. Given an OWL ontology
and hand-written application aspects, a dedicated compiler is generated that
can parse an OWL knowledge database following the constraints defined by the
ontology, and process that information according to the application aspects.
For example, the dedicated compiler could generate vendor-specific configura-
tion files for a particular robot, or interface classes for particular sensors and
actuators. The dedicated compiler could also be a more advanced interactive
application, communicating with an active robot, for example, to employ a skill
server database to reason about what tools to attach to a robot to accomplish a
specific task. These are just a few examples of possible applications.

In the middle part of the figure we see the generation of the dedicated com-
piler: JastOwl parses the ontology and generates specifications for the dedicated
compiler, namely a parsing grammar, an abstract grammar, and a JastAdd as-
pect that contains methods for serialization. The parsing grammar is run through
a parser generator, JavaCC in our case [13], to produce the parser for the ded-
icated compiler. The abstract grammar and the generated JastAdd aspects are
combined with hand-written application aspects and run through JastAdd to
generate the remaining part of the dedicated compiler.

The JastOwl tool is itself generated using JavaCC and JastAdd, as shown in
the top part of the figure. The architecture is general, and we could use the same
architecture to generate similar tools for other ontology notations than OWL,
and for other file formats (there exists a sister tool for XML).

The JastOwl tool analyzes the ontology to find class declarations and restric-
tions on individuals of these classes in order to generate the JastAdd abstract
grammar, see Fig. 2. The abstract grammar corresponds to an object-oriented
API with a type hierarchy and traversal methods for abstract syntax trees follow-
ing the grammar. The generated JastAdd aspect adds OWL/XML serialization
methods to this API. The handwritten application aspects use the combined API
to generate the desired robotics code for an input knowledge database. Examples
of such generated code could be interface classes, communication protocol code,
and skill server reasoning code.

Robotics
Ontology
(OWL)

Knowledge
database
(OWL)

puts
constraints
on

Handwritten application
aspects for generating
robotics code

JavaCC +
 JastAdd

JavaCC +
 JastAdd

Dedicated
robotics
compiler

JastOwl

OWL abstract grammar

OWL parsing grammar

JastAdd aspects
JastAdd aspects

Source code for
JastOwl meta compiler

Examples of generated
robotics code

Interface classes

Communication
protocol
code

Skill server
reasoning

Robotics
abstract grammar

Robotics
parsing grammar

Serialization aspect

Generated source code for
dedicated robotics compiler

Fig. 1. The JastOwl meta compiler. JastOwl generates a dedicated compiler descrip-
tion (abstract grammar, parsing grammar, and serialization code) for a given ontology.
This description can be extended with application-specific handwritten aspects to gen-
erate the dedicated compiler. JastOwl is itself generated using JastAdd and JavaCC.

2.1 Generation Details and Limitations

The conceptual differences between Description Logic (DL) and Object Oriented
(OO) systems as well as different ways of bridging the gap have been described
in several papers. Kalyanpur et.al. [9] maps OWL classes to Java interfaces and
properties to untyped Java lists while for example RDFReactor [22] uses a more
elaborate approach where the OWL class hierarchy is being flattened to fit the
Java single inheritance model. RDFReactor also handles OWL properties in a
typed way in the generated Java code.

The development of JastOWL, on the other hand, has so far not been aimed
towards a complete representation of DL in OO or a front-end to existing rea-
soners. Instead, the original idea was to implement a pragmatic toolkit in order
to make it easier to write software that extracts knowledge from an ontological
knowledge source and makes something out of it. For example, to generate access
code or to generate communication protocol code.

The JastOWL translation of OWL concepts is similar to how RDFReactor
does it, but with some limitations: The current version directly translates OWL
classes into Java classes limiting us to ontologies where multiple inheritance is
not used. OWL properties are handled similarly. For each property, child nodes
will be generated for the corresponding domain class in the JastAdd abstract
grammar, see Fig. 2. Multiple range properties are not yet supported.

It can be noted that the ontology and knowledge database are often stored
in the same OWL file. Both the meta-compiler and the generated compiler will
then operate on the same OWL file, but with very different goals. The meta-
compiler looks for declarations of classes and restrictions, while the generated
compiler is mainly interested in the instances of the aforementioned classes and
restrictions.

To evaluate the approach, several prototype applications have been imple-
mented, primarily in the area of industrial robotics.

3 SIARAS Skillserver Example

The example described here was developed as a part of the EU-project SIARAS
Skill-Based Inspection and Assembly for Reconfigurable Automation Systems
(FP6 - 017146) http://www.siaras.org. The main goal of the SIARAS project
was to facilitate simple dynamic reconfiguration of complex production pro-
cesses, by introducing the concepts of skill-based manufacturing and structured
knowledge.

3.1 Ontology Structure

At the top level, see top left of Fig. 3, the ontology is split into six categories:

ObjectBase Every physical object can be modeled as a simple Part, or as an
Assembly consisting of parts or other assemblies.

Operation The vocabulary needed for talking about operations3 that are per-
formed by a device.

PhysicalObject A work cell consists of PhysicalObjects. Some objects, Devices,
are active and have skills, while other, Workpieces, are passive and are being
manipulated by the devices.

Property The Property hierarchy enumerates those properties of devices and
skills which are interesting for the skill server to reason about.

Skill A Skill represents an action that might be performed (by a device) in the
context of a production process.

Task The definition of a Task concept. It is not yet being used, but serves as a
placeholder for possible future extension.

3 An operation has been defined earlier as an instantiated skill. It is the basic element
of task representation.

Start ::= Element*;

abstract Thing : ComplexElement ::=;

abstract Element;

ComplexElement : Element ::= OwlIdentifier Attribute* Element*;

ValueElement : ComplexElement;

RdfDeclaration : ComplexElement;

abstract SimpleElement : Element ::= <LITERAL>;

Attribute ::= Value;

Value ::= <STRING_LITERAL>;

OwlIdentifier ::= <IDENTIFIER>;

PhysicalObject : Thing ::= hasProperty:Thing*;

Device : PhysicalObject ::= skill:Thing* subDevice:Thing* software:Thing*;

Abstract : Thing ::=;

Software : Abstract ::=;

Skill : Thing ::= hasProperty:Thing* isSkillOf:Thing*;

EndEffector : Device ::=;

Actuator : Device ::=;

CompoundDevice : Device ::=;

Sensor : Device ::=;

ManufacturingDevice : Device ::=;

CommunicationDevice : Device ::=;

Computer : Device ::=;

ManipulationAndHandlingDevice : Device ::=;

DisplacementDevice : ManipulationAndHandlingDevice ::=;

Fixture : ManipulationAndHandlingDevice ::=;

Robot : ManipulationAndHandlingDevice ::=;

Fig. 2. An OWL ontology and the corresponding generated abstract grammar. Solid
edges indicate an is superclass of relation, and dashed edges an is part of relation.

Most devices are not useful in isolation in a manufacturing cell, but must be
combined with other devices to make a meaningful compound device. For exam-

Fig. 3. Parts of the SIARAS robotics ontology.

ple, consider a possible set of devices needed for an industrial robot to perform
drilling in workpieces: robot controller, I/O board, robot arm, drilling machine,
drill bit. None of these devices is by itself capable of drilling a hole at a specified
location; a drilling machine can not position itself at the correct position, nor
can it drill a hole without a drill bit attached to it. Only by connecting4 together
all the devices mentioned above may the resulting compound device perform a
drilling operation.

Since the skill server is supposed to generate configurations for a robot cell,
it must also be able to reason about how, and when, devices are connected to
each other. We have therefore introduced a device relationship in the ontology,
hasSubDevice ↔ isSubDeviceOf , in order to model compound devices. A dif-
ference compared to other relations in the ontology is that it is dynamic instead
of static. Device instances in a device library will not typically be statically con-
nected to any other device instance. Instead, a task description where a specific
device instance is used, must also specify how it is connected to other devices
listed in the task description. An example on specifying device relations is shown
in Fig. 4.

4 Connect should here not be taken literally but in a logical sense: controls/is con-
trolled by.

controller_1: ABB_IRC5

ioboard_1: dig328

robot_1: ABB_IRB-140

clamp_1: AngleGripper

drillmachine_1: Bosch_GBM_10_RE

drillbit_1: DrillBit_HSS_8mm

SubDevice: controller_1,ioboard_1

SubDevice: controller_1,robot_1

SubDevice: drillmachine_1,drillbit_1

SubDevice: robot_1,drillmachine_1

controller 1

ioboard 1 robot 1

drillmachine 1

drillbit 1

Fig. 4. Device specification from a task description on the left. Corresponding device
tree on the right.

We should also keep in mind that device relations may change during execu-
tion of a task description, for example by using a tool exchanger. Revisiting the
example in Fig. 4 using a tool changer, we get a changing device tree such as
one shown in Fig. 5. In the beginning of the task description, there is no device
attached to the robot arm (if we do not consider the tool exchanger itself) —
the middle tree in the figure. When the robot attaches a drilling machine, the
device tree transforms to the left one. Finally replacing the drilling machine with
a gripper results in the rightmost version of the device tree.

Yet another aspect of combining devices in compound ones is computing their
properties out of the properties of their elements. In come cases this operation
is obvious: e.g., a gripper can hold an object, thus a robot equipped with a grip-
per can also hold an object (simple inheritance). However, the allowed payload
for such a compound device will not be inherited, but rather computed in a
particular way. For example:

min(payload(robot)− weight(gripper),payload(gripper))

There seems to be no obvious way to devise a generic inheritance mechanism for
compounds; we currently assume that this will be specified by the user, although
other possibilities are investigated.

3.2 Handling Knowledge

A lot of what the skill server is really about, is to transform information (knowl-
edge) between different representations. First, the skill server needs to parse an
ontology description, various local ontology extensions and a number of device
descriptions from different device libraries, and build an internal representation
of how the various parts of a manufacturing cell (devices, other physical objects,
software, etc.) are interconnected, which is suitable for performing reasoning and

controller 1

ioboard 1 robot 1

drillmachine 1

drillbit 1

controller 1

ioboard 1 robot 1

controller 1

ioboard 1 robot 1

gripper 1

Fig. 5. Changing device tree when using a tool exchanger with the robot.

feasibility analysis. In the other end of the skill server pipeline, it needs to be
able to generate configurations for the industrial robot cell. This is actually, at
some level of abstraction, quite similar to what is done by any compiler for a
programming language.

But, unlike a traditional compiler, the skill server is also used as a knowledge
manager, keeping an abstract knowledge representation of the cell. As the man-
ufacturing process executes. the cell state changes. For example, state changes
occur when tools are replaced using tool changers or when work pieces are joined
(glued, welded, screwed, etc.) together to finally form a product. As the cell state
changes, the skill server internal representation of the device configurations must
also change. As they are parts of a tree structure, we can simply model man-
ufacturing cell state changes as moving branches of the syntax tree from one
position to another.

Data inferred from the knowledge base is described as attributes of syntax
tree nodes, declaratively defined by equations in a JastAdd application aspect.
The declarative definition allows the information to be automatically updated
whenever the syntax tree is changed. Currently, this is done simply by flushing
all cached attribute values. New values are then computed on demand as needed.
This works well as long as the syntax tree is not very large, and has not been a
practical problem for our applications so far.

As an example of the use of JastAdd application aspects, consider the sce-
nario shown in Fig. 5 where a robot is supposed to switch tools from a drilling
machine to a gripper in order to be able to fulfill the operations mandated by the
robot cell task. The skill server will then first check which ones of the available
drilling machines, if any, could be used to perform the upcoming operations.
Restrictions are given, for example, by the width and depth of the hole to drill,
and by the workpiece material.

As a simplified version of this problem, consider the following grammar.

S t a r t : := Element ∗ ;
a b s t r a c t Element ;
S k i l l : Element : := <Id> Prope r t y ∗ ;
Grasp : S k i l l ;
D r i l l : S k i l l ;
Dev i ce : Element : := <Id> S k i l l U s e ∗ ;
S k i l l U s e : := <Id>;
P rope r t y : := <Value>;

To find the devices that can grasp, we need to look in each device, find
which skills the device has by matching the SkillUse nodes to the appropriate
Skill nodes, and finding out if one of those Skills is a Grasp object. This is
accomplished by the following attributes and equations.

c o l l Set<Device> S t a r t . d ev i c e sWi thGra sp ()
[new HashSet<Device >()] with add ;

Dev ice c o n t r i b u t e s t h i s
when canGrasp ()
to S t a r t . d ev i c e sWi thGra sp () f o r r o o t () ;

syn boo l ean Dev ice . canGrasp () {
f o r (S k i l l U s e u : g e t S k i l l U s e s ()) {

i f (u . d e c l () != n u l l && u . d e c l () . canGrasp ()) r e t u r n t r u e ;
}
r e t u r n f a l s e ;

}

syn Element S k i l l U s e . d e c l () = lookup (g e t I d ()) ;
i n h Element S k i l l U s e . l ookup (S t r i n g i d) ;
eq S t a r t . getE lement (i n t i n d e x) . l ookup (S t r i n g i d) {

f o r (Element e : ge tE l ement s ()) {
i f (e . matches (i d)) r e t u r n e ;

}
r e t u r n n u l l ;

}

syn boo l ean Element . canGrasp () = f a l s e ;
eq Grasp . canGrasp () = t r u e ;

syn boo l ean Element . matches (S t r i n g i d) = f a l s e ;
eq S k i l l . matches (S t r i n g i d) = i d == ge t I d () ;

i n h S t a r t Dev ice . r o o t () ;
eq S t a r t . getE lement (i n t i n d e x) . r o o t () = t h i s ;

This works as follows. The root of the abstract syntax tree, i.e., the Start

node, has an attribute devicesWithGrasp that is a list of the devices we are
looking for. It is defined as a so called collection attribute to which so called
contributions contribute elements. In this case each Device contributes itself to
this collection if it can grasp things.

To check if a Device can grasp things, it checks through its SkillUses.
These are bound to Skill objects through a reference attribute decl, which is
in turn defined through an inherited attribute lookup. The attributes canGrasp,
matches, and root, are helper attributes.

Note that more code is needed to implement the actual reasoning, i.e., to
match the set of restrictions imposed by the workpiece and operation to be
carried out onto the set of properties of the retrieved devices. Based on some
(given) optimization criteria the “best” device will be chosen.

4 Evaluation

The current JastOwl prototype, consisting of about 1500 lines of JastAdd code,
can analyze a non-trivial OWL document and then generate a JastAdd abstract
grammar, as well as a JavaCC parser description, for the description language
as described by the OWL document. Regardless of which changes are done in
the OWL-based specification, both the abstract and concrete grammars for the
description language can be automatically generated.

In order to comprise a fully usable application, in the form of a dedicated
compiler, application code, here in the form of JastAdd aspects, is needed. If
the ontology changes, there is a possibility that the application code has to be
changed as well. However, due to the use of high-level attribution mechanisms,
the code is relatively insensitive towards changes in the syntax tree structure
and to additions of new ontology classes or relations. In particular, equations
for inherited attributes apply to complete subtrees and are therefore relatively
insensitive to minor changes in the possible forms of the syntax tree. Likewise
for contributions to collection attributes.

Recapitulating the four requirements from Section 1 we find that they are all
satisfied. Aspect orientation in the form of static code weaving enables us to add
desired functionality to the generated front-end in a modular fashion. We may
re-generate the grammars and front-end code while not risking to accidentally
delete any of the manually supplied code. Reference attribute grammars, as part
of JastAdd, supplies a compact way to implement references to data stored in
nodes in different parts of the tree, in effect transforming it to a directed graph.

Also performance-wise the proposed method of automatically generating a
JastAdd based dedicated compiler front-end for ontological knowledge seems to
be a good choice. The SIARAS skillserver could use any one of two different back-
ends to access a library of device knowledge; either a backend based on Protégé
with Pellet as reasoner, or a backend based on JastAdd, developed using the
JastOwl meta compiler. The task of, for example, returning all grippers capable
of lifting at least 0.5kg took around 3 seconds to execute using the JastOwl
meta-compiler approach, and more than 20 seconds using the Protégé/Pellet
back-end.

5 Related Work

The idea to take some kind of schema representation and generate a dedicated
parser, model classes, and serialization code, is used in many other tools. In
particular, there are many XML tools that employ this idea. Examples include
JAXB [4] which is a part of the Java SE platform. Similar techniques also exist
for OWL, for example [9], and is implemented by several tools, including Protege.

Whereas these tools generate high-level classes and APIs for particular schema
or ontologies, JastOwl differs by basing the generation on a corresponding ab-
stract grammar, and by supporting the modular addition of application-specific
functionality to the generated classes. Furthermore, this added functionality can

be specified at a high level, using declarative reference attribute grammars. Be-
cause the JastOwl tool is itself generated, it is also possible to add alternative
serialization formats easily, that work for any ontology.

There are several other tools that provide high-level processing of schema-
based formalisms by making use of grammarware, but that focus on term rewrit-
ing rather than analysis and computations on an AST [1, 20].

An early approach to apply attribute grammars for schema-based notations
was that of Psaila [18]. In this approach, it was suggested that the DTD schema
for a class of XML documents was extended directly with attributes and equa-
tions to provide semantics to XML documents.

Cowan [2] presents an interesting way of connecting an OO Java model in
the form of Javabeans with an RDF model using Java annotations and runtime
reflection/introspection. However, no support for automatically generating Jav-
abeans corresponding to a given RDF model has been found, and the developer
is then left with the task of manually coding the needed Javabeans.

6 Conclusions

In this paper we have proposed how meta-compilation based on reference at-
tribute grammars can be used for developing tools for analyzing and manipu-
lating ontological knowledge databases. By implementing a meta compiler, in
this case a compiler parsing an ontology description in OWL, producing both
abstract and concrete grammars for a dedicated compiler, we can get rid of the
often tedious and error prone work of implementing such applications, as well as
simplifying the maintenance of them as the ontology changes.

The application code can be modularized as aspects separate from the gen-
erated compiler source code, and can be programmed at a declarative high level
using attributes. The separation of user submitted code from generated code
result in fairly good robustness to changes in the ontology.

The JastOwl meta compiler has so far been used in several ontology re-
lated experiments and prototypes. Originally developed within the SIARAS
project [12] (http://www.siaras.org/), JastOwl has also been used in in-
dustrial robotics ontology experiments within the european RoSta project [14]
(http://www.robot-standards.eu/). Currently there is ongoing work within
the ROSETTA project
(http://www.fp7rosetta.org/) where we are investigating the possibilities of
using ontologies in conjunction with self-describing communication protocols.

Experiences so far indicate that our method of using the JastOwl meta-
compiler with the JastAdd toolkit is an efficient way, both in lines of code as
well as regarding performance, for analyzing and/or manipulating ontological
knowledge.

References

1. Bravenboer, M.: Connecting XML processing and term rewriting with tree gram-
mars. M. Sc. thesis. Utrecht University (November 2003)

2. Cowan, T.: Jenabean: Easily bind javabeans to RDF (April 2008),
http://www.ibm.com/developerworks/java/library/j-jenabean/index.html

3. Ekman, T., Hedin, G.: The JastAdd System - modular extensible compiler con-
struction. Science of Computer Programming 69, 14–26 (October 2007)

4. Fialli, J., Vajjhala, S.: The Java Architecture for XML Binding (JAXB). JSR
Specification (2003)

5. ontoprise GmBH: OntoStudio semantic modelling environment (2011),
http://www.ontoprise.de/en/products/ontostudio/

6. Hedin, G.: Reference Attributed Grammars. In: Parigot, D., Mernik, M. (eds.)
Proceedings of the 2nd International Workshop on Attribute Grammars and their
Applications (WAGA99). pp. 153–172. INRIA Rocquencourt France (March 1999)

7. Hillairet, G., Bertrand, F., Lafaye, J.Y.: Bridging emf applications and rdf data
sources. In: Semantic Web Enabled Software Engineering (SWESE 2008). Karl-
sruhe (Oct 2008)

8. Jena: Jena – a semantic web framework for java. http://jena.sourceforge.net/
(2009), site accessed on November 5, 2009

9. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic mapping of owl
ontologies into java. In: Maurer, F., Ruhe, G. (eds.) SEKE. pp. 98–103 (2004)

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. Lecture Notes in Computer Science 2072, 327–355 (2001),
citeseer.nj.nec.com/kiczales01overview.html, http://eclipse.org/aspectj/

11. LLC, C..P.: Pellet: Owl2 reasoner for Java (2011), http://clarkparsia.com/pellet
12. Malec, J., Nilsson, A., Nilsson, K., Nowaczyk, S.: Knowledge-Based Reconfigura-

tion of Automation Systems. In: Automation Science and Engineering, 2007. CASE
2007. IEEE International Conference on. pp. 170–175 (2007)

13. Java-CC Parser Generator, metamata Inc. http://www.metamata.com
14. Nilsson, A., Muradore, R., Nilsson, K., Fiorini, P.: Ontology for robotics: A

roadmap. In: Advanced Robotics, 2009. ICAR 2009. International Conference on.
pp. 1–6 (June 2009)

15. Web ontology language (2004), http://www.w3.org/2004/OWL/
16. Web ontology language, version 2 (2009), http://www.w3.org/TR/owl2-overview
17. The protégé ontology editor and knowledge acquisition system (2009),

http://protege.stanford.edu/
18. Psaila, G., Crespi-Reghizzi, S.: Adding semantics to XML. Workshop on Attribute

Grammars, WAGA (1999)
19. SPARQL: SPARQL protocol and RDF query language.

http://www.w3.org/TR/rdf-sparql-query/ (January 2008)
20. Stap, G.: XML document transformation processes using ASF+ SDF. M. Sc. thesis.

University of Amsterdam (2007)
21. Tsarkov, D.: FaCT++ (2007), http://owl.man.ac.uk/factplusplus/
22. Völkel, M.: Rdfreactor – from ontologies to programatic data access. In: Proc. of

the Jena User Conference 2006. HP Bristol (Mai 2006)
23. W3C: Semantic web (2001), http://www.w3.org/2001/sw
24. Zimmermann, M.: Knowledge-Based Design Patterns for Detailed Ship Structural

Design. Ph.D. thesis, University of Rostock (May 2010)

