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Abstract

A quantized feedback system is a control system in which finite-level quanti-
zation of signal values is involved in the feedback loop. Quantized feedback
is found in many engineering systems including mechanical systems and net-
worked systems because multilevel-valued devices such as A/D (Analog-to-
Digital) converters, on/off switching actuators, and digital communication
networks are widely used in these systems. The purpose of this thesis is to
establish a unified approach for the stability analysis of quantized feedback
systems.

In this thesis, we first provide the motivation for developing a new frame-
work for the stability analysis of quantized feedback systems. The stability
analysis of quantized feedback systems is difficult in many cases because the
traditional small gain theorem cannot be successfully applied owing to the
nonlinearities caused by the finite-level quantization. This thesis shows the
difficulties involved by using two examples: an uncertain networked control
system with a rate-limited communication channel and a feedback system
involving a uniform quantizer. Through the stability analysis of these exam-
ples, we discuss the need for introducing a new notion of stability and a new
framework for analysis.

A new framework for the stability analysis of quantized feedback systems
is then developed. In particular, we introduce a new notion of small ℓp signal
ℓp stability in this thesis. This is a practical and reasonable notion for the
stability of quantized feedback systems; in contrast, classical stability no-
tions such as finite gain ℓp stability and asymptotic stability are occasionally
too strong and not achievable in the presence of finite-level quantization of
signals. The small level theorem is derived to give a sufficient condition for a
feedback system to be small ℓp signal ℓp stable. A new class of uncertainty,
level bounded uncertainty, is also introduced in this thesis. This is useful
in approximating some classes of nonlinearities that include quantization er-
rors. Using all these new notions and theorems, we provide a mathematical
framework for the stability analysis of nonlinear systems that is applicable
to a wide class of quantized feedback systems.
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Finally, the use of the proposed framework is demonstrated by addressing
two important issues related to quantized feedback systems: robust stabiliza-
tion of an uncertain networked control systems over a rate-limited commu-
nication channel and stability analysis of a networked control system that is
affected by finite-level quantization and packet dropouts. In the first exam-
ple, quantitative analysis is provided for the combined effect of quantization
and the model uncertainty in the system dynamics on the stability of the en-
tire networked control system. In the second example, we elucidate the effect
of quantization and packet dropouts on the stability of the overall networked
control system. While the quantitative analyses of the stabilities of these two
networked control systems have remained unresolved problems, the proposed
framework provides us with a systematic approach for solving both of these
important issues.
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Notations and Definitions

∈ belong to
⊂ subset (strict or not)
∪ union
∅ empty set
R set of real numbers
R+ set of nonnegative real numbers
R

n set of real n-dimensional vectors
R

m×n set of m× n real matrices
N set of natural numbers
Z+ set of nonnegative integers
aij the (i, j)-th component of a matrix A

‖x‖p (1 ≤ p < ∞) p-norm of a vector x ∈ R
n, i.e., ‖x‖p := (

∑n
i=1 |xi|p)1/p

‖x‖∞ ∞-norm of a vector x ∈ R
n, i.e., ‖x‖∞ := max1≤i≤n |xi|

‖A‖1 1-norm of a constant matrix A ∈ R
n×m:

‖A‖1 := max1≤i≤n

∑m
j=1 |aij|

f |[a,b] restriction of a function f to an interval [a, b]
Pτ truncation operator at time τ :

Pτf(t) :=

{

f(t) (0 ≤ t ≤ τ),
0 (τ < t).

ℓp (1 ≤ p < ∞) space of functions f : Z+ → R
n s.t.

∑∞
t=0 ‖f(t)‖pp < ∞

ℓ∞ space of functions f : Z+ → R
n s.t. supt≥0 ‖f(t)‖∞ < ∞

ℓe extended space of functions:
ℓe := {f : Z+ → R

n | Pτf ∈ ℓp, ∀τ ∈ Z+}
‖f‖ℓp (1 ≤ p ≤ ∞) ℓp norm of a signal f ∈ ℓp, that is,

‖f‖ℓp =
{ ∑∞

t=0 ‖f(t)‖pp (1 ≤ p < ∞),
supt≥0 ‖f(t)‖∞ (p = ∞).

‖F‖ℓp-ind (1 ≤ p ≤ ∞) ℓp induced norm of a map F

The following notations are also used.

• The upper and lower linear fractional transformations (LFTs) are de-
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noted by

Fu

([

M11 M12
M21 M22

]

,∆
)

= M22 +M21∆(I −M11∆)−1M12,

Fl

([

M11 M12
M21 M22

]

,∆
)

= M11 +M12∆(I −M22∆)−1M21.

• A function α : R+ → R+ is said to belong to class K (α ∈ K) if it is
continuous, zero at zero, and strictly increasing.

• A map H : ℓe → ℓe is said to be causal if

PτHu = PτHPτu

holds for ∀τ ∈ Z+ and ∀u ∈ ℓe. H is said to be strictly causal if

PτHu = PτHPτ−1u

holds for ∀τ ∈ Z+ and ∀u ∈ ℓe.
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Chapter 1

Introduction

1.1 Quantized feedback systems

A quantized feedback system is a control system in which the feedback loop
involves finite-level quantization of signal values. Feedback control with
quantized signals is used in many engineering systems such as mechanical
systems and networked systems. Various digital devices with finite-level-
valued signals are often involved in mechanical systems, e.g., A/D (Analog-
to-Digital) converters, multilevel-valued sensors, on/off switching actuators,
and so on. Communication channels in networked control systems can trans-
mit only a finite amount of information per unit of time. Therefore, in such
networked systems, we have to deal with signals that are quantized with
finitely many levels. Because of the increasing and widespread use of com-
munication networks and digital devices in recent times, quantized feedback
systems have become prevalent in our society.

Quantized feedback systems give rise to challenging problems in the anal-
ysis and synthesis of control systems. Owing to the nonlinearities caused by
the finite-level quantization of signals, the analysis and design of quantized
feedback systems are complicated. In particular, it is often difficult to em-
ploy the classical small gain theorem and some traditional analysis tools to
establish the stability of feedback systems. Many studies have focused on
overcoming this difficulty and providing a systematic method for the anal-
ysis and synthesis of this important class of control systems (see, e.g., [23]
and the references therein).

One of the most widely investigated quantized feedback systems is the
single-loop feedback system shown in Figure 1.1. In this feedback system,
the signal s is assumed to take its value in a given finite set. The develop-
ment of this quantized feedback system was motivated by some applications

1



1.1. QUANTIZED FEEDBACK SYSTEMS

K

P

Q

✲

❄

u

y

s = quantized signal

Figure 1.1: A quantized feedback system

of networked control systems and mechanical systems. In networked control
systems, s represents the channel symbol that is transmitted over, for exam-
ple, an intervening communication channel. The system P represents a plant
to be controlled, and the devices Q and K are an encoder and a decoder-
controller, respectively. Then, this feedback system can be viewed as a sim-
plified model for a networked control system including a rate-limited com-
munication channel. This quantized feedback system can also be considered
as a model of a mechanical system with a multilevel-valued sensor/actuator.
The device Q is, for example, a multilevel-valued sensor, and K is a con-
troller that produces the control input u based on the quantized signals. In
the last decade, the stability analysis of this quantized feedback systems has
been actively studied with the increasing applications of mechanical systems
and networked control systems involving quantized signals.

Noteworthy results on the stability analysis of this quantized feedback
system have been reported in [37, 32, 15, 20, 21]. It should be noted that in
these works, various notions of stability have been proposed because strong
stabilities such as asymptotic stability and finite gain ℓp stability are occa-
sionally not achievable when finite-level quantization of a signal is involved
in the feedback loop. A weaker stability notion, containability, is introduced
in [37]. The boundedness of the Euclidean norm of the plant state at each
time instant is studied in [32] under the assumption that a bound on the
Euclidean norm of the external disturbance at each time instant is given.
The authors of [15] have discussed the problem of achieving the input-to-
state stability to external disturbances for the quantized feedback systems.
In [20], the tight condition for exponential stability has been derived for a
feedback system that is not driven by external disturbances. With regard
to works on stochastic setups, [21] is noteworthy in that it derives the tight
condition on quantization for the mean square stabilizability of the quantized
feedback systems.

There still remain many unresolved problems in the analysis and synthe-
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CHAPTER 1. INTRODUCTION

sis of quantized feedback systems. In fact, for the quantized feedback system
shown in Figure 1.1, stability analysis is difficult when the controlled plant
P includes uncertainty in its system dynamics. Because model uncertainty is
indeed inevitable in practical control systems, robust stability analysis and
robust stabilization of uncertain networked control systems are considered
as important issues. Although [28] recently showed that the input-to-state
stability of a networked control system involving finite-level quantization is
robust with respect to some perturbation in the system dynamics, the quan-
titative analysis has yet been carried out. Another important issue is the
stabilization of quantized feedback systems with “simple” quantizers. While
most of the stabilizing quantizers employed in the previous works mentioned
above are complicated and time-variant devices, the stabilization of systems
with time-invariant quantizers, such as uniform quantizers and on/off switch-
ing actuators, is practically significant. The stabilization of the single-loop
system shown in Figure 1.1 with a memoryless (static) quantizer has been
recently discussed in [5, 9, 29]. The analysis and synthesis of more prac-
tical and complicated quantized feedback systems, e.g., networked control
systems subject to combined effects of several channel properties of quanti-
zation, packet dropouts, and delays, have not yet been carried out.

Because of the increasing applications of such quantized feedback systems,
nowadays many studies have focused on developing a systematic approach
to resolve these unaddressed problems.

1.2 Robust control approach

This thesis develops a new framework for the stability analysis of quantized
feedback systems, inspired by the basic concepts of Robust Control Theory.
Using these concepts has been one of the most successful ways to analyze the
stability of a wide class of nonlinear systems. Because the set of quantized
feedback systems is a class of nonlinear systems, it is rather natural to expect
some of the essential concepts pertaining to robust control frameworks to
be helpful in the establishment of a framework for the stability analysis of
quantized feedback systems.

First, it should be recalled that while robust control frameworks have
been well known to enable us to deal with model uncertainties (see, e.g.,
textbooks [41, 8]), they also provide useful ways to analyze the stability of
some classes of nonlinear systems. Figure 1.2 shows the concept. In this fig-
ure, a given nonlinear system is expressed as a feedback interconnection of a
nominal system G and an error system ∆ by appropriate system transforma-
tions. The nominal system is typically chosen from a set of tractable systems

3



1.2. ROBUST CONTROL APPROACH

P f

K
Q

G

∆

(a) Original nonlinear system (b) Model for stability analysis

Figure 1.2: Robust control approach

such as the set of linear time-invariant (LTI) systems. The error system ∆ is
generally nonlinear and represents the gap between the nominal system and
the original nonlinear system. Robust control frameworks provide theoreti-
cal and computational tools to establish the stability of the feedback system
shown in Figure 1.2 (b) in the case in which G and ∆ belong to particular sets
of systems. For example, when the subsystems G and ∆ both have bounded
ℓp gains, the well-known small gain theorem [13] can be applied to the stabil-
ity analysis of the nonlinear feedback system. S-procedure [38] is employed
for stability analysis when ∆ satisfies integral quadratic constraints [19]. In
this manner, classical robust control frameworks provide us with methods to
analyze the stability of these particular classes of nonlinear feedback systems.

Most recently, [35, 22] have attempted to extend these concepts per-
taining to classical robust control frameworks to the stability analysis of
quantized feedback systems. These studies addressed the stability analysis
of quantized feedback systems by decomposing the original system into a
feedback interconnection of some tractable subsystems, and they provided
a theorem to establish the stability of the feedback system. Because the
classical frameworks are not directly applicable to quantized feedback sys-
tems, new frameworks have been developed. Specifically for feedback systems
with measurements and inputs with finitely many quantization levels, Tar-
raf, Megretski, and Dahleh [35] proposed a framework for robust stability
analysis based on deterministic finite state machine models and several new
stability notions. Liberzon and Nešić suggested the decomposition of a class
of quantized feedback systems into the feedback interconnection of its dis-
crete and continuous subsystems and the use of the input-to-state small-gain
theorem [22] for stability analysis.

The research presented in this thesis is along similar lines and is motivated
by a desire to establish a unified and systematic approach to the stability
analysis of a wide class of quantized feedback systems. In particular, we

4



CHAPTER 1. INTRODUCTION

introduce a new and practical notion of stability for quantized feedback sys-
tems and provide a set of mathematical tools for the stability analysis of a
feedback system based on this stability notion. The proposed framework is
applicable to a wide class of quantized feedback systems and enables us to
tackle several important unresolved problems.

1.3 Contributions and organization of the the-

sis

A new framework for the stability analysis of quantized feedback systems is
developed in this thesis. We introduce a new stability notion and provide a
set of theorems to establish the stability of a feedback system based on the
new stability notion. A new set of nonlinear systems is introduced to approx-
imate some classes of nonlinearities including quantization errors. With all
these new notions and mathematical tools, we provide a systematic approach
to the stability analysis of a wide class of quantized feedback systems. The
usefulness of the proposed framework is demonstrated by solving two un-
resolved problems: robust stabilization of an uncertain networked control
system over a rate-limited communication channel and stability analysis of
a networked control system that is affected by both finite-level quantization
and packet dropouts. A simple uniform quantizer is employed in the latter
problem.

The contributions of this thesis are as follows:

• The motivation for developing a new framework for the stability analy-
sis of quantized feedback systems is provided. It is difficult or occasion-
ally impossible to apply the classical small gain theorem to establish the
stability of quantized feedback systems. By demonstrating these diffi-
culties with two examples, we provide the motivation for introducing a
reasonable notion of weak stability and a new framework for stability
analysis. (Chapter 2)

• A new notion of small ℓp signal ℓp stability is introduced. This is a
practical and reasonable stability notion for quantized feedback sys-
tems. (Chapter 3)

• Small level theorem is derived as a key theorem for the stability analysis
of quantized feedback systems. This theorem gives a sufficient condition
for a feedback system to be small ℓp signal ℓp stable. (Chapter 3)

5



1.3. CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

• A novel class of uncertainty, level bounded uncertainty, is introduced.
This new class of nonlinear maps enables us to effectively approximate
some classes of model uncertainties and nonlinearities including quan-
tization errors. (Chapter 3)

• A new framework for stability analysis and robust stability analysis is
developed based on the ℓp signal ℓp stability. With regard to robust
stability analysis, we derive conditions for the robust stability of feed-
back systems against two classes of uncertainties: the traditional gain
bounded uncertainty and level bounded uncertainty. (Chapter 3)

• Robust stabilization of an uncertain networked control system over a
rate-limited communication channel is studied based on the proposed
framework. We derive a sufficient condition on the data rate of the
communication channel for the existence of an encoder-controller pair
that robustly stabilizes the networked control system. The combined
effect of quantization and model uncertainty on the stabilizability of
the entire system is evaluated by the derived condition. The robust
stabilization of an uncertain networked control system demonstrates
the usefulness of the proposed framework for the stability analysis of
quantized feedback systems. (Chapter 4)

• Stability of a networked control system subject to finite-level quanti-
zation and packet dropouts is investigated. A sufficient condition on
quantization parameters for the stability of the system is derived for
a given triple of plant, controller, and packet dropout parameter. The
effect of quantization and packet dropouts on the stability of the net-
worked system is evaluated. This is another example that shows the
usefulness of the proposed framework. (Chapter 5)

This thesis is organized as follows.
Chapter 2 provides the motivation of the thesis by discussing the difficul-

ties involved in the stability analysis of two important examples of quantized
feedback systems. In particular, we show that the classical small gain theo-
rem is not applicable to these two examples.

In Chapter 3, a new framework for stability and robust stability analyses
is developed. We first introduce a new notion of small ℓp signal ℓp stability
and derive a condition for a feedback system to be small ℓp signal ℓp stable.
A new class of uncertainty, level bounded uncertainty, is introduced in this
chapter. We then examine the robust stability of a feedback system against
two classes of uncertainties: level bounded uncertainty and the traditional
gain bounded uncertainty.

6



CHAPTER 1. INTRODUCTION

Chapter 4 is devoted to the robust stabilization of an uncertain system
over a rate-limited communication channel. By utilizing the framework pro-
posed in Chapter 3, we evaluate the trade-off between the quantization and
the model uncertainty in the plant dynamics for the robust stabilizability of
the networked control system.

Chapter 5 studies the stability of a networked control system affected by
finite-level quantization and packet dropouts. We elucidate the combined
effect of the quantizer and packet dropouts on the stability of the networked
control system.

Chapter 6 concludes the thesis.

7



1.3. CONTRIBUTIONS AND ORGANIZATION OF THE THESIS
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Chapter 2

Difficulties Involved in Stability
Analysis of Quantized Feedback
Systems

This chapter discusses the motivation of this thesis for developing a new
framework for the stability analysis of quantized feedback systems. Toward
this end, we discuss the difficulties involved in applying the small gain theo-
rem to the stability analysis of two examples of quantized feedback systems:
an uncertain networked control system with a rate-limited communication
channel and a feedback system involving a uniform quantizer. Through the
stability analyses of these quantized feedback systems, we show the motiva-
tion for introducing a new and reasonable stability notion and a framework
for stability analysis based on the stability.

This chapter is organized as follows. Section 2.1 serves as a preliminary
and discusses the definitions of several stability notions. Section 2.2 intro-
duces the small gain theorem. Section 2.3 discusses the stability analysis of
two examples of quantized feedback systems. Section 2.4 summarizes this
chapter.

2.1 Classical stability notions

This section discusses the definitions of several existing stability notions re-
lated to this thesis. These notions are repeatedly referred to throughout this
thesis.

Definition 1. (ℓp stability, see, e.g., [13])
A map H: ℓe → ℓe is ℓp stable if there exist a class K function α and a

9



2.1. CLASSICAL STABILITY NOTIONS

H1

H2

✲ ❞ ✲

✻
❞✛✛

❄
r1 e1 z1

r2e2z2

+

+

Figure 2.1: Feedback system for stability analysis

nonnegative constant β such that

‖H(u)|[0,τ ]‖ℓp ≤ α(‖u|[0,τ ]‖ℓp) + β ∀u ∈ ℓe, ∀τ ∈ Z+. (2.1)

In addition, H is called unbiased if we can take β = 0.
The feedback system shown in Figure 2.1 is called ℓp stable if there exist

a class K function α and a nonnegative constant β such that

‖z|[0,τ ]‖ℓp ≤ α(‖r|[0,τ ]‖ℓp) + β ∀r ∈ ℓe, ∀τ ∈ Z+, (2.2)

where z := (z1, z2) and r := (r1, r2).

Definition 2. (finite gain ℓp stability, see, e.g., [13])
A map H: ℓe → ℓe is finite gain ℓp stable if there exist nonnegative constants
γ and β such that

‖H(u)|[0,τ ]‖ℓp ≤ γ‖u|[0,τ ]‖ℓp + β ∀u ∈ ℓe, ∀τ ∈ Z+. (2.3)

The infimum of γ satisfying the above inequality is called the ℓp gain of H.
In addition, H is called unbiased if we can take β = 0.

Definition 3. (small signal ℓp stability, [36]) A map H: ℓe → ℓe is small
signal ℓp stable if there exist nonnegative constants γ and c such that

[[

u ∈ ℓe ∩ {u | ‖u‖ℓ∞ ≤ c} ⇒ ‖H(u)|[0,τ ]‖ℓp ≤ γ‖u|[0,τ ]‖ℓp
]]

∀u ∈ ℓe, ∀τ ∈ Z+. (2.4)

Definition 4. (local ℓp stability, [2])
A map H: ℓe → ℓe is local ℓp stable if there exist positive constant ǫ and
nonnegative constant γ such that

[[

‖u|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖H(u)|[0,τ ]‖ℓp ≤ γ‖u|[0,τ ]‖ℓp
]]

∀u ∈ ℓe, ∀τ ∈ Z+. (2.5)

10



CHAPTER 2. DIFFICULTIES INVOLVED IN STABILITY ANALYSIS
OF QUANTIZED FEEDBACK SYSTEMS

2.2 Small gain theorem

The small gain theorem provides a condition for the feedback system shown
in Figure 2.1 to be ℓp stable. It plays a key role in the classical robust
control framework. See, e.g., the standard textbook [13] for the proof of this
theorem.

Theorem 1. (Small gain theorem) Consider the feedback system shown in
Figure 2.1, and assume that the following three conditions hold.

(i) For the subsystem H1 : e1 7→ z1, there exist nonnegative constants γ1
and β1 such that

‖z1|[0,τ ]‖ℓp ≤ γ1‖e1|[0,τ ]‖ℓp + β1 ∀e1 ∈ ℓe, ∀τ ∈ Z+. (2.6)

(ii) For the subsystem H2 : e2 7→ z2, there exist nonnegative constants γ2
and β2 such that

‖z2|[0,τ ]‖ℓp ≤ γ2‖e2|[0,τ ]‖ℓp + β2 ∀e2 ∈ ℓe, ∀τ ∈ Z+. (2.7)

(iii) γ1γ2 < 1.
Then, the feedback system is ℓp stable. In particular,

‖z1|[0,τ ]‖ℓp ≤
γ1‖r1|[0,τ ]‖ℓp + γ1γ2‖r2|[0,τ ]‖ℓp + β1 + γ1β2

1− γ1γ2
(2.8)

‖z2|[0,τ ]‖ℓp ≤
γ1γ2‖r1|[0,τ ]‖ℓp + γ2‖r2|[0,τ ]‖ℓp + β2 + γ2β1

1− γ1γ2
(2.9)

hold true for all r1 ∈ ℓpe, r2 ∈ ℓpe, and τ ∈ [0,∞).

2.3 Motivating examples

While Theorem 1 has been successfully applied to the stability analysis of
many applications of nonlinear systems, it is difficult and occasionally im-
possible to establish the stability of quantized feedback systems based on
this theorem. In this section, we examine the stabilities of two examples of
quantized feedback systems and discuss the difficulties involved in applying
the small gain theorem to them.

2.3.1 Robust stabilization of an uncertain networked
control system over a rate-limited channel

In this subsection, we investigate the robust stabilization of a networked
control system in which an uncertain plant is controlled over a rate-limited

11
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Figure 2.2: Uncertain networked control system

communication channel. As can easily be expected, the stability of such a
networked control system is affected by quantization, or a rate constraint, at
a channel and model uncertainty in the plant dynamics. We wish to quanti-
tatively evaluate the combined effect of quantization and model uncertainty
on the stability of the entire networked control system.

System description

Consider the uncertain networked control system shown in Figure 2.2. The
plant is modeled as the feedback interconnection of an LTI nominal plant
P and an ℓp stable uncertainty ∆. This uncertain plant is controlled over a
rate-limited communication channel.

Each system is described in detail below.
Nominal plant P : A nominal plant is defined as a causal LTI map P :
ℓe → ℓe that maps (e1, u) to (z1, y):

[

z1
y

]

= P

[

e1
u

]

, P :=

[

P11 P12

P21 P22

]

, (2.10)

where u and y are the control input and the measured output, respectively.
The nominal plant is connected with the uncertainty through (e1, z1).
Uncertainty ∆: The plant uncertainty ∆ is modeled as a possibly non-
linear and time-varying unbiased map that has a finite ℓp gain less than a
given level 1/γ > 0. In other words, ∆ belongs to the set Bγ

∆ defined below.

Bγ
∆ :=

{

∆ : ℓe → ℓe | ‖∆(e2)|[0,τ ]‖ℓp ≤
1

γ
‖e2|[0,τ ]‖ℓp , ∀τ ∈ Z+, ∀e2 ∈ ℓe

}

.

(2.11)

12
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Channel: The communication channel is modeled as a noiseless digital
channel that transmits one of 2R symbols at each time instant. That is,

s(t) ∈ A := {0, 1, · · · 2R − 1} (2.12)

where A is the alphabet of the channel symbols and s(t) represents the
channel symbol at time t. We call R the data rate, or simply rate, of this
channel.
Encoder En: The encoder En is a causal map from the observed output
to the channel symbol, such that

En : (y(0), · · · , y(t)) 7→ s(t). (2.13)

That is, En quantizes the measured outputs and sends the quantized symbol
s(t) to the communication channel. Note that because R is finite, the infor-
mation about the measured output transmitted to the controller is limited.
This is called the rate constraint.
Controller K: The controller K is a causal map that generates the control
input from the received channel symbols:

K : (s(0), · · · , s(t)) 7→ u(t). (2.14)

In this example, we assume that the encoder and the controller know the
exact dynamics of each other. For the encoder, this is equivalent to saying
that the past inputs u(0), u(1), · · · , u(t−1) as well as y(0), y(1), · · · , y(t) are
available, namely,

En : (y(0), · · · , y(t))× (u(0), · · · , u(t− 1)) 7→ s(t). (2.15)

In turn, this assumption is necessary for the controller to estimate the
plant state from the received channel symbols.

Robust stabilization

Within the setup described above, we study the robust stabilization of the
uncertain feedback system. In particular, when an uncertain plant is given,
we wish to derive a condition on R for the existence of (En, K) that robustly
stabilize the networked control system. A stabilizing encoder-controller pair
should be given if R satisfies the derived condition.

The small gain theorem is not applicable to the robust stability analysis
of the networked control system. Because the uncertainty ∆ has a bounded
ℓp gain less than or equal to 1/γ, the small gain theorem tells us that the
uncertain feedback system is ℓp stable for all ∆ ∈ Bγ

∆ if the ℓp gain of the

13
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‖x‖ℓp

O
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rate at 0 and ∞

α(‖e1‖ℓp)

‖e1‖ℓp

Figure 2.3: Achievable input-output relation

nominal part Fl(P,K ◦ En) shown in Figure 2.2 is less than γ. However, it
can be shown that under a finite rate constraint, there are no causal encoder-
controller pairs such that Fl(P,K ◦ En) has finite ℓp gain even in a simple
case.

To be more specific, consider the case in which P is an unstable LTI
system and z1(t) = y(t) = x(t), the plant state. Suppose that there exists
an encoder-controller pair such that the closed-loop system Fl(P,K ◦ En)
is unbiased ℓp stable (see Definition 1 in Section 2.1 for the unbiased ℓp

stability), namely, there exists a class K function α satisfying

‖x‖ℓp ≤ α(‖e1‖ℓp). (2.16)

It is shown by Martins [16] that for any encoder-controller pair and any α
satisfying the above, there holds

sup
‖e1‖ℓp∈(0,2

δ1 )

α(‖e1‖ℓp)
‖e1‖ℓp

= ∞ ∀δ1 > 0, (2.17)

sup
‖e1‖ℓp>2−δ2

α(‖e1‖ℓp)
‖e1‖ℓp

= ∞ ∀δ2 > 0. (2.18)

Inequalities (2.17) and (2.18) imply that α has an unbounded growth rate at
‖e1‖ℓp = 0 and ‖e1‖ℓp = ∞ (Figure 2.3). Thus, we cannot make Fl(P,K◦En)
finite gain ℓp stable, and we cannot use the traditional small gain theorem
to establish the robust stability of the feedback system shown in Figure 2.2.

This example implies that in such an uncertain networked control system
involving finite-level quantization, the traditional ℓp stability is too restrictive
and the small gain theorem is not successfully applicable. We thus need a
new reasonable stability notion and a framework for stability analysis based
on it for quantized feedback systems.

14
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Figure 2.4: System with a uniform quantizer

2.3.2 Stability analysis of systems involving a uniform
quantizer

We consider a feedback system including a uniform quantizer in this subsec-
tion. This quantized feedback system is also an important example because
devices such as on/off switching actuators and memoryless multilevel-valued
sensors are widely used in mechanical systems today. While such quantiz-
ers are practically important, their use gives rise to difficulties in deriving a
non-conservative condition for the stability of the quantized feedback system.

System description

Consider the quantized feedback system shown in Figure 2.4. The system
G is a single-input, single-output LTI system. The function q : R → V :=
{0,±d,±2d, · · · ,±md} denotes a uniform static quantizer, where d ∈ R+

and m ∈ N are positive constants. As shown in Figure 2.5, this quantizer
produces a quantized symbol by rounding its input to the nearest discrete
value in V:

q(u) =



































md, if
(

m− 1
2

)

d ≤ u,
(m− 1)d, if

(

m− 3
2

)

d ≤ u <
(

m− 1
2

)

d,
...

...
0, if − 1

2
d ≤ u < 1

2
d,

...
...

−md, if u < −
(

m− 1
2

)

d.

(2.19)

The constant d is the step size, whereas

M := 2m+ 1 (2.20)

is the number of quantization levels.

Stability analysis

For the quantized feedback system described above, we wish to elucidate the
effect of quantization on the stability of the entire system. In particular, we
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Figure 2.7: Quantization error ∆q

want to obtain a stability condition in terms of the quantization parameters
M and d.

The feedback system shown in Figure 2.4 is equivalently transformed to
the system shown in Figure 2.6, where

e1 = u, z1 = v − u, e2 = w − u, z2 = y. (2.21)

The system ∆q : e1 7→ z1 represents the quantization error at the static
quantizer. Its input-output relation is shown in Figure 2.7. The system G̃ is
the corresponding linear system.

A simple application of the small gain theorem to this feedback system
leads to a conservative stability condition. In fact, for any value of M and
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d, the nonlinear map ∆q satisfies

‖z1|[0,τ ]‖ℓ∞ ≤ ‖e1|[0,τ ]‖ℓ∞ ∀e1 ∈ ℓe, ∀τ ∈ Z+. (2.22)

This implies that ∆q belong to the set B1
∆, which is defined in (2.11). By

using the small gain theorem, it can be shown that the feedback system is
ℓ∞ stable if the linear system G̃ satisfies

‖G̃‖ℓ∞-ind < 1. (2.23)

However, the stability analysis does not give any information on the relation-
ship between the stability and the step size d or the numberM of quantization
levels of the quantizer. This indicates that the traditional ℓ∞ gain bounded
uncertainty does not effectively approximate the quantization error and leads
to a conservative stability condition.

This observation motivates us to introduce a new class of uncertainty that
is suitable for approximating the quantization error.

2.4 Summary

In this chapter, we have provided a motivation for introducing a new notion of
stability and a new framework for the stability analysis of quantized feedback
systems. Specifically, we have discussed the difficulties involved in applying
the small gain theorem to two examples of quantized feedback systems. In
the first example, it was shown that the small gain theorem is not applicable
to the robust stability analysis of a networked control system. In the second
example, a simple application of the small gain theorem led to a conservative
condition for the stability of a feedback system with a uniform quantizer.
On account of these examples, we were motivated to introduce a reasonable
stability notion for quantized feedback systems and a framework for stability
analysis based on this notion.
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Chapter 3

A New Framework for Stability
Analysis of Quantized Feedback
Systems

A new framework for the stability analysis of quantized feedback systems
is developed in this chapter. In the previous chapter, we have shown the
difficulties involved in successfully applying the small gain theorem to the
stability analysis of quantized feedback systems. Motivated by our observa-
tion, we develop a new framework that is applicable to the stability analysis
of quantized feedback systems. In particular, we introduce a new notion of
small ℓp signal ℓp stability. This is a reasonable and practical notion of stabil-
ity for quantized feedback systems. We then derive a sufficient condition for
the stability of a feedback system in the sense of the new stability notion. A
new class of uncertainty, level bounded uncertainty, is also introduced. This
set of systems is useful for approximating some classes of nonlinearities that
include quantization errors.

This chapter is organized as follows. Section 3.1 introduces a new notion
of small ℓp signal ℓp stability and discusses the relationship with some other
stability notions. Section 3.2 presents the derivation of the small level the-
orem and provides a condition for a feedback system to be small ℓp signal
ℓp stable. Section 3.3 discusses robust stability analysis against two classes
of uncertainties. Section 3.4 demonstrates the usefulness of a new class of
uncertainty, level bounded uncertainty, with an example. Section 3.5 sum-
marizes this chapter. All the proofs of the theorems used in this chapter are
presented in Appendices.
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3.1. SMALL ℓP SIGNAL ℓP STABILITY

3.1 Small ℓp signal ℓp stability

The new notion of small ℓp signal ℓp stability is defined as follows.

Definition 5. (small ℓp signal ℓp stability) A map H: ℓe → ℓe is said to be
small ℓp signal ℓp stable with attenuation level γ and input bound ǫ if

[[

‖u|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖H(u)|[0,τ ]‖ℓp ≤ γǫ
]]

∀u ∈ ℓe, ∀τ ∈ Z+ (3.1)

holds for given positive constants ǫ and γ. The map H is simply said to
be small ℓp signal ℓp stable if there exist some positive constants ǫ and γ
satisfying (3.1).

The feedback system shown in Figure 2.1 is called small ℓp signal ℓp stable
if there exist positive constants ǫ and γ such that

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖z|[0,τ ]‖ℓp ≤ γǫ
]]

∀r ∈ ℓe, ∀τ ∈ Z+. (3.2)

Small ℓp signal ℓp stability is a weaker stability notion than the traditional
ℓp stability (see Definition 1 in Section 2.1 for ℓp stability). In fact, small ℓp

signal ℓp stability implies ℓp boundedness of the output only for the inputs
with small ℓp norm whereas ℓp stability guarantees the ℓp boundedness of the
output for all ℓp inputs. Moreover, small ℓp signal ℓp stability differs from
finite gain ℓp stability [13], small signal ℓp stability [36], and local ℓp stability
[2] (see Definitions 2, 3, and 4 for the definitions of these notions) in that it
does not use the notion of ℓp gains. Instead, the attenuation level of a map
is expressed in terms of the ratio of the local upper bounds of the ℓp norms
of input-output signals.

While the small ℓp signal ℓp stability is generally a weaker than ℓp stability,
as described above, in the special case of linear maps, these stability notions
are equivalent, as shown in the following theorem.

Theorem 2. Suppose that H: ℓe → ℓe is a linear map. Then, H is small ℓp

signal ℓp stable if and only if it is ℓp stable.

Proof. See Appendix 3.A.

3.2 Small level theorem

We derive a sufficient condition for the small ℓp signal ℓp stability of the
feedback system shown in Figure 2.1.
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Theorem 3. (Small level theorem) For the feedback system shown in Fig-
ure 2.1, assume that the following four conditions hold true.

(i) For the subsystem H1 : e1 7→ z1, there exist positive constants ǫ1 and
γ1 such that

[[

‖e1|[0,τ−1]‖ℓp ≤ ǫ1 ⇒ ‖z1|[0,τ ]‖ℓp ≤ γ1ǫ1
]]

∀e1 ∈ ℓe, ∀τ ∈ Z+. (3.3)

(ii) For the subsystem H2 : e2 7→ z2, there exist positive constants ǫ2 and
γ2 such that

[[

‖e2|[0,τ ]‖ℓp ≤ ǫ2 ⇒ ‖z2|[0,τ ]‖ℓp ≤ γ2ǫ2
]]

∀e2 ∈ ℓe, ∀τ ∈ Z+. (3.4)

(iii) ǫ1 > γ2ǫ2
(iv) ǫ2 > γ1ǫ1
Then, the feedback system is small ℓp signal ℓp stable. In particular,

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒
(

‖z1|[0,τ ]‖ℓp ≤ δ1 and ‖z2|[0,τ ]‖ℓp ≤ δ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+ (3.5)

holds for

ǫ := min {ǫ2 − γ1ǫ1, ǫ1 − γ2ǫ2} , δ1 := γ1ǫ1, δ2 := γ2ǫ2. (3.6)

Proof. See Appendix 3.B.

This theorem is not simply a local version of the small gain theorem.
In fact, we do not assume that each of the subsystems has a finite ℓp gain.
Instead, we assume small ℓp signal ℓp stability for each subsystem and derive
a condition for the small ℓp signal ℓp stability of the feedback system. Note
that conditions (iii) and (iv) in the above theorem imply γ1γ2 < 1, which is
analogous to the small gain condition in the traditional small gain theorem
[13]. In this thesis, we call this theorem the small level theorem.

It should also be noted that the bounds on ℓp norms of signals are charac-
terized in (3.5) and (3.6) in terms of the attenuation levels and input bounds
of both subsystems. Because small ℓp signal ℓp stability is a weak stability
notion if there is no specification on its attenuation level or input bound, it
should be occasionally important to achieve the small ℓp signal ℓp stability
of an entire control system for some fixed values of ǫ and γ. Theorem 3
provides a sufficient condition on the attenuation levels and input bounds
of the subsystems for achieving a specified small ℓp signal ℓp stability in the
feedback system.
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Two special cases of the above theorem can be easily verified.
First, in the case in which each of the subsystems H1 or H2 is unbiased

linear or finite gain ℓp stable with a gain less than or equal to γ1 or γ2,
respectively, Theorem 3 can be reduced to a special case of Theorem 1, the
traditional small gain theorem with zero biases.

Second, in the case in which one of the subsystems, H2, is linear or finite
gain ℓp stable with gain γ2, we have the following theorem.

Theorem 4. For the feedback system shown in Figure 2.1, assume that the
following three conditions hold true.

(i) For the subsystem H1 : e1 7→ z1, there exist positive constants ǫ1 and
γ1 such that

[[

‖e1|[0,τ−1]‖ℓp ≤ ǫ1 ⇒ ‖z1|[0,τ ]‖ℓp ≤ γ1ǫ1
]]

∀e1 ∈ ℓe, ∀τ ∈ Z+. (3.7)

(ii) The subsystem H2 : e2 7→ z2 is finite gain ℓp stable with gain γ2 and
bias β2, namely,

‖z2|[0,τ ]‖ℓp ≤ γ2‖e2|[0,τ ]‖ℓp + β2 ∀e2 ∈ ℓe, ∀τ ∈ Z+. (3.8)

(iii) The positive constants ǫ1, γ1, γ2, and β2 satisfy

(1− γ1γ2)ǫ1 > β2. (3.9)

Then, the feedback system is small ℓp signal ℓp stable. In particular,
[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒
(

‖z1|[0,τ ]‖ℓp ≤ δ1 and ‖z2|[0,τ ]‖ℓp ≤ δ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+ (3.10)

holds for

ǫ =
(1− γ1γ2)ǫ1 − β2

1 + γ2
, δ1 = γ1ǫ1, δ2 =

(1 + γ1)γ2ǫ1 + β2

1 + γ2
. (3.11)

Proof. See Appendix 3.C.

When we can take the bias β2 = 0 in the above theorem, the condition
(3.9) is replaced by an inequality γ1γ2 < 1.

Example 1. Recall the feedback system with a uniform quantizer described
in Subsection 2.3.2. Assume, to be more specific, a state space representation
of linear system G̃ in Figure 2.6 is given by

G̃ :

{

x(t+ 1) = Ax(t) + Be2(t), x(0) = x0,
z2(t) = Cx(t),

(3.12)
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where A ∈ R
n×n is Schur stable, and B ∈ R

n×m and C ∈ R
p×n are matrices.

Let g(t) denote the impulse response of the LTI system, namely,

g(t) =

{

0 if t = 0,
CAt−1B if t ≥ 1.

(3.13)

It is then well-known [6],[40] that

γ2 := max
i=1,··· ,q

+∞
∑

τ=0

m
∑

j=1

|gi,j(τ)| = max
i=1,··· ,q

m
∑

j=1

+∞
∑

τ=0

|gi,j(τ)| < +∞,

κ2 := max
0≤t<∞

‖CAt‖1 < +∞. (3.14)

and the input-output relation

‖z2|[0,τ ]‖ℓ∞ ≤ γ2‖e2|[0,τ ]‖ℓ∞ + κ2‖x0‖∞ (3.15)

holds true for the LTI subsystem.
It can also be shown that the nonlinear system ∆q satisfies
[[

‖e1|[0,τ−1]‖ℓ∞ ≤ Nd

2
⇒ ‖z1|[0,τ ]‖ℓ∞ ≤ d

2

]]

∀e1 ∈ ℓe, ∀τ ∈ Z+.

Then, it is implicit from Theorem 4 that if γ2 < N , then we can define a
non-empty set of initial states

X0 :=

{

x

∣

∣

∣

∣

‖x‖∞ ≤ (1− γ2
N
)
Nd

2κ2

}

(3.16)

and the feedback system shown in Figure 2.6 is small ℓ∞ signal ℓ∞ stable for
all initial states x0 ∈ X0.

This example shows that conditions on admissible initial states, in addi-
tion to gains, of subsystems are required for the small level theorem. In fact,
the bias term β2 and the attenuation levels γ1 and γ2 in Theorems 3 and 4 are
dependent on initial conditions as is shown in the above example. When we
consider the attenuation level of small ℓ∞ signal ℓ∞ stability, instead of the
gain, of H2, the effect of its initial condition is “absorbed” in the attenuation
level constant. Specifically in the above example, the subsystem H2 defined
by (3.12) satisfies
[[

‖e2|[0,τ ]‖ℓ∞ ≤ ǫ2 ⇒ ‖z2|[0,τ ]‖ℓ∞ ≤ γ′
2ǫ2
]]

∀e2 ∈ ℓe, ∀τ ∈ [0,∞) (3.17)

for any fixed ǫ2 > 0 where

γ′
2 := γ2 +

β2

ǫ2
. (3.18)

It can be seen that the effect of β2 is included in the attenuation level γ′
2.
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Figure 3.1: Feedback system for robust stability analysis

The following proposition can be directly shown from the definition of
strict causality.

Theorem 5. Assume that the subsystem H1 : e1 7→ z1 is strictly causal.
Namely,

PτH1e1 = PτH1Pτ−1e1 (3.19)

holds for ∀τ ∈ Z+ and ∀e1 ∈ ℓe. Then, condition (3.3), or equivalently
(3.7), is satisfied if

[[ ‖e1‖ℓp ≤ ǫ1 ⇒ ‖z1‖ℓp ≤ γ1ǫ1 ]] ∀e1 ∈ ℓp (3.20)

holds for the positive constants ǫ1 and γ1.

3.3 Robust stability analysis

Based on the results obtained in the previous section, we examine the robust
stability of the feedback system shown in Figure 3.1, where M is the nominal
system and ∆ is the uncertainty. In this section, we consider two important
classes of uncertainties: the traditional gain bounded uncertainty and level
bounded uncertainty. The latter is a novel class of uncertainty introduced in
this chapter. It enables us to effectively approximate some classes of nonlin-
earities that include quantization errors. Against each class of uncertainties,
in this section, we derive a sufficient condition for the robust small ℓp signal
ℓp stability of the feedback system.

The class of ℓp gain bounded uncertainty is defined by a set of possibly
nonlinear and time-varying maps with gains less than or equal to a given
level 1/γ > 0:

Bγ
∆ := {∆ : ℓe → ℓe | ‖∆(e2)|[0,τ ]‖ℓp ≤

1

γ
‖e2|[0,τ ]‖ℓp

∀e2 ∈ ℓe, ∀τ ∈ Z+}. (3.21)
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The class of ℓp level bounded uncertainty is defined by a set of small ℓp

signal ℓp stable maps with given input bounds ǫ > 0 and attenuation levels
less than or equal to 1/γ > 0.

SBǫ,γ
∆ := {∆ : ℓe → ℓe | ‖e2|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖∆(e2)|[0,τ ]‖ℓp ≤

ǫ

γ

∀e2 ∈ ℓe, ∀τ ∈ Z+}. (3.22)

Note that the inclusion relation Bγ
∆ ⊂ SBǫ,γ

∆ holds for any fixed ǫ and γ.
We wish to answer the following two questions in this section:
[RS-Bγ

∆
] Robust stability analysis against ℓp gain bounded uncertainty:

Find a condition on M shown in Figure 3.1 such that the feedback system
is small ℓp signal ℓp stable for all ∆ ∈ Bγ

∆.
[RS-SBǫ,γ

∆
] Robust stability analysis against ℓp level bounded uncertainty:

Find a condition on M shown in Figure 3.1 such that the feedback system
is small ℓp signal ℓp stable for all ∆ ∈ SBǫ,γ

∆ .
For simplicity, we use the following assumption hereafter.

Assumption 1. M is strictly causal.

Under Assumption 1, we shall derive a sufficient condition on M for the
robust small ℓp signal ℓp stability of the feedback system shown in Figure 3.1.

It is implicit from Theorems 3 and 4 that the conditions for robust sta-
bility conditions on M shown in Figure 3.1 against SBǫ,γ

∆ and Bγ
∆ are given

in the following theorems.

Theorem 6. [RS-SBǫ,γ

∆
] Suppose that for the nominal system M : e1 7→ z1,

there exist positive constants ǫ1 and γ1 < γ such that

(i) [[ ‖e1‖ℓp ≤ ǫ1 ⇒ ‖z1‖ℓp ≤ γ1ǫ1 ]] ∀e1 ∈ ℓp, (3.23)

(ii) ǫ

γ
< ǫ1 <

ǫ

γ1
. (3.24)

Then, under Assumption 1, the feedback system shown in Figure 3.1 is
small ℓp signal ℓp stable for all ∆ ∈ SBǫ,γ

∆ . In particular, for all ∆ ∈ SBǫ,γ
∆

[[

‖r|[0,τ ]‖ℓp ≤ ǫ′ ⇒
(

‖z1|[0,τ ]‖ℓp ≤ δ1 and ‖z2|[0,τ ]‖ℓp ≤ δ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+ (3.25)

holds for

ǫ′ := min

{

ǫ− γ1ǫ1, ǫ1 −
ǫ

γ

}

, δ1 := γ1ǫ1, δ2 :=
ǫ

γ
. (3.26)
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Proof. See Appendix 3.D.

Theorem 7. [RS-Bγ

∆
] Suppose that M is small ℓp signal ℓp stable with

attenuation level less than γ, namely, there exist positive constants ǫ1 and
γ1 < γ such that

[[ ‖e1‖ℓp ≤ ǫ1 ⇒ ‖z1‖ℓp ≤ γ1ǫ1 ]] ∀e1 ∈ ℓp. (3.27)

Then, under Assumption 1, the feedback system shown in Figure 3.1 is small
ℓp signal ℓp stable for all ∆ ∈ Bγ

∆. In particular, for all ∆ ∈ Bγ
∆,

[[

‖r|[0,τ ]‖ℓp ≤ ǫ′ ⇒
(

‖z1|[0,τ ]‖ℓp ≤ δ1 and ‖z2|[0,τ ]‖ℓp ≤ δ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+ (3.28)

holds for

ǫ′ =
γ − γ1
γ + 1

ǫ1, δ1 = γ1ǫ1, δ2 =
γ1 + 1

γ + 1
ǫ1. (3.29)

Proof. See Appendix 3.E.

Note also that we have condition (3.24) on the input bound of M for
the robust stability against SBǫ,γ

∆ , whereas there is no such condition for the
robust stability against Bγ

∆.
When M is an LTI system, we have the following theorems for the robust

small ℓp signal ℓp stability in Figure 3.1 against each class of uncertainties.
In particular, a necessary and sufficient condition for robust small ℓp signal
ℓp stability is derived against Bγ

∆.

Theorem 8. [RS-SBǫ,γ

∆
] Suppose that M : e1 7→ z1 is an LTI system.

The feedback system shown in Figure 3.1 is small ℓp signal ℓp stable for all
∆ ∈ SBǫ,γ

∆ if M satisfies

(i)
[[ ‖z1‖ℓp ≤ γ1‖e1‖ℓp + β1 ]] ∀e1 ∈ ℓp, (3.30)

(ii) (

1− γ1
γ

)

ǫ > β1. (3.31)

In particular,

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒
(

‖z1|[0,τ ]‖ℓp ≤ δ1 and ‖z2|[0,τ ]‖ℓp ≤ δ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+ (3.32)
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holds for

ǫ =

(

1− γ1
γ

)

ǫ− β2

1 + γ1
, δ1 =

ǫ

γ
, δ2 =

(

1 + 1
γ

)

γ1ǫ+ β1

1 + γ1
. (3.33)

Proof. Theorem 8 is immediate from Theorem 4.

Theorem 9. [RS-Bγ

∆
] Suppose M : e1 7→ z1 is an LTI system. The feedback

system shown in Figure 3.1 is small ℓp signal ℓp stable for all ∆ ∈ Bγ
∆ if and

only if

‖M‖ℓp-ind < γ. (3.34)

In particular, if M satisfies

[[ ‖z1‖ℓp ≤ γ1‖e1‖ℓp + β1 ]] ∀e1 ∈ ℓp, (3.35)

then

‖z1|[0,τ ]‖ℓp ≤
γγ1‖r1|[0,τ ]‖ℓp + γ1‖r2|[0,τ ]‖ℓp + γβ1

γ − γ1
(3.36)

‖z2|[0,τ ]‖ℓp ≤
γ1‖r1|[0,τ ]‖ℓp + ‖r2|[0,τ ]‖ℓp + β1

γ − γ1
(3.37)

hold true for all r1 ∈ ℓpe, r2 ∈ ℓpe, and τ ∈ [0,∞).

Proof. See Appendix 3.F.

3.4 Contribution of level bounded uncertainty

The new class of uncertainty, level bounded uncertainty, is useful in approx-
imating some classes of nonlinearity that include quantization errors. In
this section, we demonstrate the advantage of the use of this new class of
uncertainty by recalling the example described in Subsection 2.3.2.

Let us again consider the stability analysis of the feedback system with a
uniform quantizer, which has been described in Subsection 2.3.2. In this ex-
ample, the quantization error ∆q (see Figure 2.7 for the input-output relation
of ∆q) has not been effectively approximated by an ℓ∞ gain bounded uncer-
tainty, and therefore, a conservative stability condition has been derived.
Specifically, the ℓ∞ gain of ∆q is neither dependent on the quantization pa-
rameter d or M . The effect of quantization on the stability of the feedback
system has therefore not been assessed.
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The level bounded uncertainty, in contrast, effectively approximates the
quantization error. It is easily shown that for the system ∆q : e1 7→ z1, there
holds

[[

‖e1|[0,τ ]‖ℓ∞ ≤ Md

2
⇒ ‖z1|[0,τ ]‖ℓ∞ ≤ d

2

]]

∀e1 ∈ ℓe, ∀τ ∈ Z+.

That is, ∆q is small ℓ∞ signal ℓ∞ stable with attenuation level

γ1 :=
d
2

Md
2

=
1

M
(3.38)

and input bound

ǫ1 :=
1

2
Md. (3.39)

In other words, ∆q belongs to the set SBǫ1,γ1
∆ . It should be emphasized

that SBǫ1,γ1
∆ is parametrized by the step size and the number of levels of

quantization.
By using this result, some relationships between the quantization param-

eters and the small ℓ∞ signal ℓ∞ stability of the feedback system can be
obtained. It is implicit from Theorem 8 that the feedback system shown in
Figure 2.4 is small ℓ∞ signal ℓ∞ stable if G̃ : e2 7→ z2 satisfies

(i) [[ ‖z2‖ℓp ≤ γ2‖e2‖ℓp + β2 ]] ∀u ∈ ℓp, (3.40)

(ii) 1

2
(1−Mγ1)Md > β2. (3.41)

In particular, when β2 can be taken as zero, that is, when G̃ is unbiased finite
gain stable, the stability condition is given by

γ2 := ‖G̃‖ℓ∞-ind < M.

From the above stability condition, it is clear that the number of quantization
levels and the step size affect the small ℓ∞ signal ℓ∞ stability. Moreover, the
step size and the number of quantization levels affect the bound on the ℓ∞

norm of the signals of the feedback system. In fact,






‖r|[0,τ ]‖ℓ∞ ≤ ǫ ⇒
‖(v − y)|[0,τ ]‖ℓ∞ = ‖z1|[0,τ ]‖ℓ∞ ≤ δ1,

and
‖y|[0,τ ]‖ℓ∞ = ‖z2|[0,τ ]‖ℓ∞ ≤ δ2









∀r ∈ ℓe, ∀τ ∈ Z+
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holds for

ǫ =
1

4
Md(1−Mγ2)−

β2

2
, δ1 =

d

2
, δ2 =

(M + 1)dγ2 + 2β2

2(1 + γ2)

for this quantized feedback system. The bound on the ℓ∞ norm of the quan-
tization error depends on the step size, and the bound on the ℓ∞ norm of
the admissible disturbance input and the bound on ‖y|[0,τ ]‖ℓ∞ depend on the
step size and the number of quantization levels of the quantizer.

This example shows the advantage of employing the new class of un-
certainty in approximating the nonlinearity caused by quantization for the
stability analysis of the quantized feedback system.

3.5 Summary

In this chapter, we have developed a new framework for the stability analysis
of quantized feedback systems based on the new notion of small ℓp signal ℓp

stability. The small level theorem has been derived as a key theorem for sta-
bility analysis. In the section dealing with robust stability analysis, sufficient
conditions for robust small ℓp signal ℓp stability have been derived against
two classes of uncertainties: gain bounded uncertainty and level bounded
uncertainty. We have also shown the usefulness of the class of level bounded
uncertainty for a feedback system including a uniform quantizer.

Appendix 3.A Proof of Theorem 2

We first discuss the sufficiency. Assume that H : u 7→ z is ℓp stable, namely,
there exist a class K function α and a nonnegative constant β such that

‖z|[0,τ ]‖ℓp ≤ α(‖u|[0,τ ]‖ℓp) + β ∀u ∈ ℓe, ∀τ ∈ Z+. (3.42)

Then, if we take γ := (α(ǫ) + β)/ǫ for an arbitrarily fixed positive constant
ǫ, (3.1) holds from the monotonic increase in α.

With regard to the necessity, assume that H is small ℓp signal ℓp stable.
From the definition of small ℓp signal ℓp stability, we obtain

[[

‖u|[0,τ ]‖ℓp = ǫ ⇒ ‖z|[0,τ ]‖ℓp ≤ γǫ = γ‖u|[0,τ ]‖ℓp
]]

∀τ ∈ Z+.

From the above inequality and the linearity of H, there exist some nonneg-
ative constants 0 < γ′ < γ and β such that

‖z|[0,τ ]‖ℓp ≤ γ′‖u|[0,τ ]‖ℓp + β ∀u ∈ ℓe, ∀τ ∈ Z+,
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which implies, in turn, that there holds (3.42) for a class K function

α(x) := γ′x

and a nonnegative constant β. Therefore, a map H is finite gain ℓp stable
and ℓp stable.

Appendix 3.B Proof of Theorem 3

Define

Tǫ :=







τ ≥ 1

∣

∣

∣

∣

∣

∣

∃r ∈ ℓe, ‖r|[0,τ ]‖ℓp ≤ ǫ s.t.
‖e1|[0,τ ]‖ℓp > ǫ1

or
‖e2|[0,τ ]‖ℓp > ǫ2







(3.43)

for the positive constant ǫ defined in (3.6). Because Tǫ = ∅ implies

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒
(

‖e1|[0,τ ]‖ℓp ≤ ǫ1 and ‖e2|[0,τ ]‖ℓp ≤ ǫ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+, (3.44)

we first prove Tǫ = ∅ for the boundedness of e1 and e2. Assume on the
contrary that Tǫ is non-empty, and we define k := minTǫ. This implies that
‖r|[0,k−1]‖ℓp ≤ ǫ, ‖e1|[0,k−1]‖ℓp ≤ ǫ1 and ‖e2|[0,k−1]‖ℓp ≤ ǫ2. It is implicit from
assumptions (i) and (ii) that ‖z1|[0,k]‖ℓp ≤ γ1ǫ1 and ‖z2|[0,k−1]‖ℓp ≤ γ2ǫ2, and
thus,

‖e2|[0,k]‖ℓp ≤ ‖z1|[0,k]‖ℓp + ‖r2|[0,k]‖ℓp ≤ γ1ǫ1 + ‖r2|[0,k]‖ℓp
≤ γ1ǫ1 + ‖r|[0,k]‖ℓp . (3.45)

Because ǫ ≤ ǫ2 − γ1ǫ1, ‖e2|[0,k]‖ℓp ≤ ǫ2 holds for every r ∈ ℓe satisfying
‖r|[0,k]‖ℓp ≤ ǫ. It follows, in turn, from assumption (ii) that

‖e1|[0,k]‖ℓp ≤ ‖r1|[0,k]‖ℓp + ‖z2|[0,k]‖ℓp ≤ ‖r|[0,k]‖ℓp + γ2ǫ2. (3.46)

This implies that ‖e1|[0,k]‖ℓp ≤ ǫ1 and ‖e2|[0,k]‖ℓp ≤ ǫ2 for every r ∈ ℓe satis-
fying ‖r|[0,k]‖ℓp ≤ ǫ, which contradicts the definition of k. Thus, Tǫ must be
empty, and hence, (3.44) is satisfied. It then follows from (3.3), (3.4), and
(3.44) that

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖z1|[0,τ ]‖ℓp ≤ ‖z1|[0,τ+1]‖ℓp ≤ γ1ǫ1
]]

∀r ∈ ℓe, ∀τ ∈ Z+ (3.47)
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and

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖z2|[0,τ ]‖ℓp ≤ γ2ǫ2
]]

∀r ∈ ℓe, ∀τ ∈ Z+. (3.48)

By combining (3.47) and (3.48), we obtain

‖z|[0,τ ]‖ℓp ≤ ‖z1|[0,τ ]‖ℓp + ‖z2|[0,τ ]‖ℓp ≤ γ1ǫ1 + γ2ǫ2 (3.49)

This proves the small ℓp signal ℓp stability of the feedback system, namely,

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖z|[0,τ ]‖ℓp ≤ δz
]]

∀r ∈ ℓe, ∀τ ∈ Z+,

where

δz := γ1ǫ1 + γ2ǫ2. (3.50)

Furthermore, (3.47) and (3.48) imply the relation (3.5).

Appendix 3.C Proof of Theorem 4

Define

ǫ :=
(1− γ1γ2)ǫ1 − β2

γ2 + 1
, (3.51)

Tǫ :=
{

τ ≥ 1|∃r s.t. ‖r|[0,τ ]‖ℓp ≤ ǫ and ‖e1|[0,τ ]‖ℓp > ǫ1
}

.

Because Tǫ = ∅ implies

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖e1|[0,τ ]‖ℓp ≤ ǫ1
]]

∀τ ∈ Z+, (3.52)

we first prove Tǫ = ∅ for the boundedness of e1 and z1. Assume on the
contrary that Tǫ is non-empty, and we define k := minTǫ. This implies that
‖r|[0,k−1]‖ℓp ≤ ǫ and ‖e1|[0,k−1]‖ℓp ≤ ǫ1. It is implicit from assumption (i) that
‖z1|[0,k]‖ℓp ≤ γ1ǫ1. Then, it follows from assumption (ii) that

‖e1|[0,k]‖ℓp ≤ ‖r1|[0,k]‖ℓp + ‖z2|[0,k]‖ℓp
≤ ‖r1|[0,k]‖ℓp + γ2‖e2|[0,k]‖ℓp + β2

≤ ‖r1|[0,k]‖ℓp + γ2(‖r2|[0,k]‖ℓp + ‖z1|[0,k]‖ℓp) + β2

≤ ‖r1|[0,k]‖ℓp + γ2‖r2|[0,k]‖ℓp + γ1γ2ǫ1 + β2

≤ (γ2 + 1)‖r|[0,k]‖ℓp + γ1γ2ǫ1 + β2. (3.53)
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This implies that ‖e1|[0,k]‖ℓp ≤ ǫ1 holds for every r ∈ ℓe satisfying ‖r|[0,k]‖ℓp ≤
ǫ, which contradicts the definition of k. Thus, Tǫ must be empty, and hence,
(3.52) is satisfied. It then follows from (3.53) and (3.52) that

[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖z1|[0,τ ]‖ℓp ≤ ‖z1|[0,τ+1]‖ℓp ≤ γ1ǫ1
]]

∀τ ∈ Z+. (3.54)

We next evaluate the upper bound on ‖z2|[0,τ ]‖ℓp . We see from (3.8), (3.51),
and (3.54) that if ‖r|[0,τ ]‖ℓp ≤ ǫ, then there holds

‖z2|[0,τ ]‖ℓp ≤ γ2‖e2|[0,τ ]‖ℓp + β2

≤ γ2(‖r2|[0,τ ]‖ℓp + γ1ǫ1) + β2

≤ γ2
(1− γ1γ2)ǫ1 − β2

γ2 + 1
+ γ1γ2ǫ1 + β2

=
(γ1 + 1)γ2ǫ1 + β2

γ2 + 1
. (3.55)

By combining (3.54) and (3.55), we obtain

‖z|[0,τ ]‖ℓp ≤ ‖z1|[0,τ ]‖ℓp + ‖z2|[0,τ ]‖ℓp

≤ (γ1 + γ2 + 2γ1γ2)ǫ1 + β2

γ2 + 1
. (3.56)

This proves the small ℓp signal ℓp stability of the feedback system, namely,
[[

‖r|[0,τ ]‖ℓp ≤ ǫ ⇒ ‖z|[0,τ ]‖ℓp ≤ δz
]]

∀r ∈ ℓe, ∀τ ∈ Z+, (3.57)

where

δz :=
(γ1 + γ2 + 2γ1γ2)ǫ1 + β2

1 + γ2
. (3.58)

Furthermore, (3.54) and (3.55) imply relation (3.11).

Appendix 3.D Proof of Theorem 6

Suppose that (3.23) and (3.24) hold. From Assumption 1 and Theorem 5,
for the subsystem M, we obtain

[[

‖e1|[0,τ−1]‖ℓp ≤ ǫ1 ⇒ ‖z1|[0,τ ]‖ℓp ≤ γ1ǫ1
]]

∀e1 ∈ ℓe, ∀τ ∈ Z+.

The definition of SBǫ,γ
∆ and (3.24) implies ǫ1 > γ2ǫ2, ǫ2 > γ1ǫ1 and

[[

‖e2|[0,τ ]‖ℓp ≤ ǫ2 ⇒ ‖z2|[0,τ ]‖ℓp ≤ γ2ǫ2
]]

∀e1 ∈ ℓe, ∀τ ∈ Z+

where γ2 := 1/γ and ǫ2 := ǫ.
It is then directly verified from Theorem 3 that the feedback system is

small ℓp signal ℓp stable for all ∆ ∈ SBǫ,γ
∆ . Moreover, (3.25) and (3.26) are

obtained from relationships (3.10) and (3.11).
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Appendix 3.E Proof of Theorem 7

Suppose that (3.27) holds. From Assumption 1 and Theorem 5,

[[

‖e1|[0,τ−1]‖ℓp ≤ ǫ1 ⇒ ‖z1|[0,τ ]‖ℓp ≤ γ1ǫ1
]]

∀e1 ∈ ℓe, ∀τ ∈ Z+

holds for the subsystem M. We have

‖z2|[0,τ ]‖ℓp ≤
1

γ
‖e2|[0,τ ]‖ℓp ∀e2 ∈ ℓe, ∀τ ∈ Z+ (3.59)

by the definition of Bγ
∆. Because γ1 < γ, it is implicit from Theorem 4 that

the feedback system is small ℓp signal ℓp stable for all ∆ ∈ Bγ
∆. Relationships

(3.28) and (3.29) are obtained from (3.10) and (3.11).

Appendix 3.F Proof of Theorem 9

The sufficiency is immediate from Theorem 7.
We next prove the necessity part. Assume that ‖M‖ℓp-ind ≥ 1. From

Theorem 2 in [39] (1 ≤ p < ∞) and Theorem 1 in [14] (p = ∞), there exists
a linear system ∆0 ∈ B∆ such that the feedback system shown in Figure 3.1
is not ℓp stable. Because the feedback interconnection of ∆0 and M is a
linear system, it is shown from Theorem 3 that for ∆0 ∈ B∆, the feedback
system is not small ℓp signal ℓp stable.

Inequalities (3.36) and (3.37) are implicit from Theorem 1.
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Chapter 4

Robust Stabilization over a
Rate-limited Communication
Channel

This chapter shows the usefulness of the framework that has been proposed in
Chapter 3. Toward this end, we demonstrate the use of the framework with
one unresolved problem: the robust stabilization of an uncertain networked
control system. By addressing this problem, we show the advantages of the
proposed framework in the stability analysis of quantized feedback systems.

The robust stabilization of a networked control system in which an uncer-
tain plant is controlled over a rate-limited communication channel has been
one of the important issues in the analysis and synthesis of quantized feed-
back systems. The stability of such an uncertain networked control system
is affected by both quantization at the channel and model uncertainty in
the plant dynamics. A low data rate at the communication channel, equiva-
lent to a coarse quantization, generally leads to a degradation of the control
performance of the system and can lead to instability in some cases. The
uncertainty in the plant dynamics should also affect the stability of the net-
worked control system. Although it has expectedly been assumed that there
should exist a trade-off between the data rate and the degree of uncertainty
for the robust stabilizability of the networked control system, the quantitative
analysis has not yet been carried out.

In this section, we use the framework proposed in Chapter 3 to derive a
condition on the data rate for the robust small ℓ∞ signal ℓ∞ stabilizability of
a networked control system. When the data rate satisfies the derived condi-
tion, a stabilizing encoder and controller pair will be given. Through robust
stability analysis and robust stabilization, this chapter shows the advantage
of the use of the proposed framework in the stability analysis of quantized
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feedback systems.
The remainder of this chapter is organized as follows. Section 4.1 discusses

the problem formulation. Section 4.2 discusses the robust stabilization of
the networked control system. Section 4.3 presents numerical examples and
simulation results. Section 4.4 summarizes this chapter.

4.1 Problem formulation

Consider the networked control system shown in Figure 2.2. A detailed
description of the same has already been given in Subsection 2.3.1.

In this chapter, we make the following assumption.

Assumption 2. A state-space realization of the nominal plant P is given by

x(t+ 1) = Ax(t) + Bu(t) + Ee1(t), x(0) = 0, (4.1a)

z1(t) = Cx(t), (4.1b)

y(t) = x(t), (4.1c)

where x(t) ∈ R
n represents the plant state. (A,B) is stabilizable and the en-

coder directly observes the plant state x(t). The initial state x(0) is assumed
to be zero.

This chapter derives a condition on the data rate for the robust small
ℓ∞ signal ℓ∞ stabilizability (p = ∞) of the feedback system shown in Fig-
ure 2.2. Namely, when an uncertain plant is given, we wish to derive under
Assumption 2 a condition on R for the existence of (En, K) such that

[[

‖r|[0,τ ]‖ℓ∞ ≤ ǫ ⇒ ‖z|[0,τ ]‖ℓ∞ ≤ γǫ
]]

∀r ∈ ℓe, ∀τ ∈ Z+ (4.2)

holds for some positive constants ǫ and γ, where r := (r1, r2) and z := (z1, z2).

4.2 Robust stabilization under rate constraint

Noting that Fl(P, K ◦En): e1 7→ z1 is strictly causal for any causal encoder-
controller pairs under Assumption 2, it is implicit from Theorem 7 that
the robust small ℓ∞ signal ℓ∞ stability of the feedback system for the fixed
(En, K) can be established in the following proposition.

Proposition 1. Fix the encoder-controller pair (K,En). Assume that there
exist positive constants ǫ1 and γ1 < γ such that

[[ ‖e1‖ℓ∞ ≤ ǫ1 ⇒ ‖z1‖ℓ∞ ≤ γ1ǫ1 ]] ∀e1 ∈ ℓ∞ (4.3)
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K0 De✛ ✛ ✛u x̂ s

K

Figure 4.1: Structure of K

holds for the nominal system Fl(P,K ◦En). Then, the feedback system shown
in Figure 2.2 is small ℓ∞ signal ℓ∞ stable for all ∆ ∈ Bγ

∆. In particular,

[[

‖r|[0,τ ]‖ℓ∞ ≤ ǫ ⇒
(

‖z1|[0,τ ]‖ℓ∞ ≤ δ1 and ‖z2|[0,τ ]‖ℓ∞ ≤ δ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+ (4.4)

holds for

ǫ =
γ − γ1
1 + γ

ǫ1, δ1 = γ1ǫ1, δ2 =
1 + γ1
1 + γ

ǫ. (4.5)

We then investigate a necessary or sufficient condition on R for the exis-
tence of (En, K) such that the nominal system Fl(P,K ◦ En) satisfies (4.3).
A sufficient condition will be obtained when the nominal plant P is a multi-
order system. If P is a scalar nominal plant, a necessary and sufficient
condition on the data rate for the existence of (En, K) satisfying (4.3) is
derived.

In order to prove the sufficiency part, we employ a constructive approach.
Toward this end, we hereafter consider the special class of K that has the
structure of the cascade connection of the following two subsystems (Fig-
ure 4.1):

• Decoder De: The decoder De is a causal map which produces a state
estimate x̂ from the received channel symbols (s(0), · · · , s(t)).

• LTI Controller K0: K0 is an LTI system which produces the control
input u(t) from the state estimate (x̂(0), · · · , x̂(t)).

It is easily seen from (2.10) and u = K0x̂ = K0x+K0(x̂− x) that

z1 = {P11 + P12(I −K0P22)
−1K0P22}e1

+ P12(I −K0P22)
−1K0(x̂− x). (4.6)
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K0

P✲

✛

✲ ✲

u y = x

z1e1

Figure 4.2: Nominal control system without a digital channel

We now define

Kγ
0 ={K0 : ℓe → ℓe |

K0 stabilizes the feedback system shown in Figure 4.2

in the sense of ℓ∞ stability 1,

and ‖P11 + P12(I −K0P22)
−1K0P21‖ℓ∞-ind < γ}

Assumption 3. The set Kγ
0 is non-empty, and we are given a controller

K0 ∈ Kγ
0 .

If the set Kγ
0 is non-empty, a controller K0 ∈ Kγ

0 can be obtained by
standard ℓ1 control techniques (see, e.g., [4]).

By the small gain theorem and Theorem 9, this assumption implies that
the uncertain plant P∆ = Fu(P,∆) is robustly stabilizable in the sense of
ℓ∞ stability and small ℓ∞ signal ℓ∞ stability by the LTI controller K0 in
the absence of the data rate constraint, namely, in the situation in which
the output x(t), instead of x̂(t), is directly available to the controller (see
Figure 4.2). Therefore, Kγ

0 6= ∅ is a necessary condition for the robust
stabilizability in our setting.

We also define

γ0 := ‖P11 + P12(I −K0P22)
−1K0P21‖ℓ∞-ind < γ,

κ0 := ‖P12(I −K0P22)
−1K0‖ℓ∞-ind.

In the remainder of this section, we employ the primitive quantizer pro-
posed by Tatikonda and Mitter [32] for the encoding-decoding algorithm with
a slight modification to satisfy the ℓ∞ setting. See Appendix 4.A for the de-
tailed description of the primitive quantizer. It should be noted that the
primitive quantizer is implemented under the following assumption.

1Note that the feedback system shown in Figure 4.2 is an LTI one.
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Assumption 4. The upper bound ǫ1 on ‖e1|[0,τ ]‖ℓ∞, τ ≥ 0 is available as
prior information for both of the encoder and the decoder.

We denote the encoder and decoder with the primitive quantizer by Eǫ1
pq

and Dǫ1
pq, respectively.

We can now state the main result of this chapter. The following theorem
gives a sufficient condition for the robust stabilizability under the data rate
constraint in the sense of small ℓ∞ signal ℓ∞ stability.

Theorem 10. Let ǫ1 be an arbitrary positive constant. Under Assumptions 2,
3, and 4, assume that there exist nonnegative integers R1, · · · , Rn satisfying

R1 +R2 + · · ·+Rn ≤ R, (4.7)
∥

∥FRJ̄
∥

∥

1
< 1, (4.8)

γ1 := γ0 +
ℏ
2

1−
∥

∥FRJ̄
∥

∥

1

‖T−1‖1‖TE‖1‖FR‖1κ0 < γ, (4.9)

where FR, J̄ , T , and ℏ are defined in Appendix 4.A.
(i) With the encoder-controller pair (K,En) = (K0 ◦Dǫ1

pq, E
ǫ1
pq), Fl(P, K ◦

En): e1 7→ z1 satisfies

[[ ‖e1‖ℓ∞ ≤ ǫ1 ⇒ ‖z1‖ℓ∞ ≤ γ1ǫ1 ]] ∀e1 ∈ ℓ∞, (4.10)

where γ1 ∈ (0, γ) is given in (4.9).
(ii) With the above encoder-controller pair, the feedback system shown in

Figure 2.2 is small ℓ∞ signal ℓ∞ stable for all ∆ ∈ Bγ
∆. In particular, for all

∆ ∈ Bγ
∆,

[[

‖r|[0,τ ]‖ℓ∞ ≤ ǫ ⇒
(

‖z1|[0,τ ]‖ℓ∞ ≤ δ1 and ‖z2|[0,τ ]‖ℓ∞ ≤ δ2
) ]]

∀r ∈ ℓe, ∀τ ∈ Z+ (4.11)

holds for

ǫ =
γ − γ1
1 + γ

ǫ1, δ1 = γ1ǫ1, δ2 =
1 + γ1
1 + γ

ǫ (4.12)

where γ1 ∈ (0, γ) is defined in (4.9).

Proof. See Appendix 4.B.

The conditions (4.7) and (4.8) are a sufficient condition for the existence
of an encoder-controller pair that stabilizes the nominal plant P . In fact,
it is well known that there exists an encoder-controller pair stabilizing the
nominal plant if FRJ̄ is Schur stable [32].
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It can easily be verified that the second term on the left-hand side of (4.9)
decays to zero when mini Ri goes to infinity. It is natural that the admissible
level of small ℓ∞ signal ℓ∞ stability of the nominal part is bounded by γ
when we consider R1, · · · , Rn to be sufficiently large, because γ is the bound
on the level for the robust small ℓ∞ signal ℓ∞ stabilizability of the networked
control system in the absence of the data rate constraint.

Equation (4.9) gives the trade-off between the stability margin and the
data rate. That is, for a large uncertainty, i.e., for a small γ, we need a large
R in order to guarantee the robust small ℓ∞ signal ℓ∞ stabilizability of the
feedback system.

In view of Proposition 1, the feedback system shown in Figure 2.2 is small
ℓ∞ signal ℓ∞ stable for all ∆ ∈ Bγ

∆ if Fl(P,K ◦ En) satisfies (4.10) for some
ǫ1 > 0 and γ1 ∈ (0, γ). In contrast, Theorem 10 gives a stronger result
because we can choose ǫ1 arbitrarily when applying the encoder-controller
pair (K0 ◦ Dǫ1

pq, E
ǫ1
pq). Moreover, it is seen from (4.12) that for fixed ǫ1 and

γ1, the admissible ℓ∞ norm bound on the exogenous signal r is given by

ǫ =
γ − γ1
1 + γ

ǫ1,

and conversely, if ǫ and γ1 are given, then ǫ1 is calculated as

ǫ1 =
1 + γ

γ − γ1
ǫ. (4.13)

Therefore, if ǫ is given as prior information rather than ǫ1, we can implement
Eǫ1
pq and Dǫ1

pq for any ǫ1 > 0 by using (4.13) (γ1 can be computed by (4.9)
independently of ǫ and ǫ1). This implies that the boundedness of z := (z1, z2)
is robustly guaranteed by (K0 ◦ Dǫ1

pq, E
ǫ1
pq) for an arbitrarily large exogenous

signal r under the assumption that the upper bound ǫ on ‖r‖ℓ∞ is known a
priori.

If the nominal plant is a scalar system, i.e.,







x(t+ 1) = ax(t) + u(t) + e1(t),
z1(t) = cx(t),
y(t) = x(t),

(4.14)

it is possible to derive the strict bound on R for the existence of an encoder-
controller pair that achieves (4.10) without restricting (En,De) to (Eǫ1

pq, D
ǫ1
pq).

Corollary 1. Assume that there exists an encoder-controller pair for which
Fl(P,K ◦ En) satisfies (4.10) for some ǫ1 > 0 and γ1 ∈ (0, γ). Then, there
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hold

|a| < 2R, (4.15)

|c|
1− |a|

2R

≤ γ. (4.16)

Conversely, if R satisfies

|a| < 2R, (4.17)

|c|
1− |a|

2R

< γ, (4.18)

then (4.10) is satisfied for any fixed ǫ1 > 0 and for

γ1 :=
|c|

1− |a|
2R

∈ (0, γ) (4.19)

by (K,En) = (K0 ◦Dǫ1
pq, E

ǫ1
pq), K0 = −a ∈ Kγ

0 (constant feedback gain).

Proof. See Appendix 4.C.

The only difference between the necessary condition and the sufficient
condition in the above corollary is that the inequality (4.16) in the sufficient
condition is strict, whereas (4.18) in the necessary condition is not a strict in-
equality. Thus, the obtained bound on the data rate is tight for the existence
of an encoder-controller pair satisfying (4.10).

Conditions (4.17) and (4.18) with |c| = 1 correspond to the robust stabi-
lizability conditions in Theorem 3.2 of [17] in the case in which there is no
parametric uncertainty in a.

Remark 1. It should be noted that the contribution of this chapter lies in the
robust stabilizability conditions in Theorem 10 and Corollary 1 and not in the
use of the primitive quantizer. In fact, we have employed it only to derive
a tight bound of R for the existence of an encoder-controller pair such that
Fl(P,K ◦En) satisfies (4.10) for some γ1 ∈ (0, γ). (Recall that the conditions
in Theorem 10 are also necessary in the case in which the nominal plant is a
scalar system.) This enables us to derive the conditions (4.7) - (4.9), which
represent the trade-off between the stability margin of the closed-loop system
and the data rate constraint.
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4.3 Numerical example

This section is devoted to numerical examples and simulation results.
Consider the third-order linear plant described by the following state-

space realization.

x(t+ 1) =





2 0 0

1 −2
√
3

0
√
3 0



 x(t) +





1
0
0



 u(t) +





1
0
0



 e1(t), x(0) = 0

z1(t) =
[

1 17
6

19
18

√
3
]

x(t),

y(t) = x(t).

The transfer function matrix of this plant is given by

P (z) =
1

(z − 1)(z − 2)(z + 3)









(

z − 1
2

) (

z − 1
3

) (

z − 1
2

) (

z − 1
3

)

(z − 1)(z + 3) (z − 1)(z + 3)
z z√
3

√
3









.

From Theorem 3.1 of [7], we recall that because P12(z) has only minimum
phase zeros,

min
K0: stabilizing

‖Fl(P,K0)‖ℓ∞-ind

is attained by the linear static feedback controller that assigns the closed-loop
poles at the above minimum phase zeros and at the origin. In this example,
this optimal static feedback controller is given by

K0 : u(t) =
[

5
6

−53
6

17
6

√
3
]

x(t)

with the optimal cost minK0 ‖Fl(P,K0)‖ℓ∞-ind = 1. For this controller K0

and the plant, we have

γ0 = ‖Fl(P,K0)‖ℓ∞-ind = 1,

κ0 = ‖P12(I −K0P22)
−1K0‖ℓ∞-ind = 14.5741.

Then, conditions (4.7) - (4.9) in Theorem 10 are reduced to

R1 +R2 +R3 ≤ R, (4.20)

max

{

3

2R1
,
1

2R2
,
2

2R3

}

< 1, (4.21)

1 +
14.5741max

{

1
2R1

, 1
2R2

, 1
2R3

}

1−max
{

3
2R1

, 1
2R2

, 2
2R3

} < γ. (4.22)
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Figure 4.3: Trade-off between the stability margin and the data rate con-
straint

Define

γ∗(R) = inf
γ,R1,R2,R3

{γ : (4.20), (4.21) and (4.22) hold.}.

Notice that 1/γ∗(R) serves as a lower bound of the stability margin of the
feedback system shown in Figure 2.2 with (K,En) = (K0 ◦ Dǫ1

pq, E
ǫ1
pq) at the

rate R. It is also obvious that supR>0 1/γ
∗(R) = 1/γ0, which is equal to 1

in this example. Figure 4.3 shows the trade-off between the stability margin
and the data rate constraint. 1/γ∗ is large for a large data rate R. In other
words, we need a large data rate in order to robustly stabilize the feedback
system against a large uncertainty.

We also see from the figure that the stability margin in the absence of
the data rate constraint is almost recovered at a data rate greater than 35.

We next performed the numerical simulations with (R1, R2, R3) = (10, 10, 10).
In this case, the left-hand side of (4.22) becomes γ1 = 1.0143. Thus, we take
γ = 1.2 > γ1 so that the feedback system is robustly stabilized by the
encoder-controller pair (K,En) = (K0 ◦Dǫ1

pq, E
ǫ1
pq).

We also set the upper bound of ‖r‖ℓ∞ to ǫ = 1, which leads to ǫ1 = 11.8454
by (4.13). In view of (3.54) and (3.55) in Theorem 3, upper bounds on ‖z1‖ℓ∞
and ‖z2‖ℓ∞ are given by

‖z1‖ℓ∞ ≤ γ1ǫ1 = 12.0145, (4.23)

‖z2‖ℓ∞ ≤
γ1

1
γ
+ 1

γ

1
γ
+ 1

ǫ1 = 10.8454. (4.24)
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We performed the simulations under the following two scenarios of the
uncertainty ∆.

(a) Linear time-invariant memoryless case: In this case, ∆ is a con-
stant feedback gain such that |∆| ≤ 1/γ. 20 values of ∆ are ran-
domly generated according to the uniform distribution over the interval
[−1/γ, 1/γ].

(b) Linear time-varying memoryless case: In this case, ∆ is a time-
varying linear feedback gain such that |∆(t)| ≤ 1/γ at each instant t.
20 sequences of ∆: Z+ → R are randomly generated according to the
independently identically distributed (i.i.d.) process with the uniform
distribution over [−1/γ, 1/γ], namely, ∆(t) ∼ U(−1/γ, 1/γ) ∀t ≥ 0,
where U(a, b) is the uniform distribution over [a, b].

In each scenario, 20 different sequences of the exogenous input r were
randomly generated according to the i.i.d. process with the uniform distribu-
tion over [−ǫ, ǫ]× [−ǫ, ǫ]. Hence, we simulated 20× 20 = 400 trials for each
scenario.

In both scenarios, all the output responses, denoted as z
(i)
1 , z

(i)
1 i =

1, · · · 400, did not exceed the norm bounds of (4.23) and (4.24). An ex-
ample of the input-output response of one among the 400 trials is shown in
Figures 4.4 and 4.5 for each scenario. The largest output norms among 400
trials were as follows1.

(a) max
i

‖z(i)1 ‖ℓ∞ = 4.1747, max
i

‖z(i)2 ‖ℓ∞ = 3.4118,

(b) max
i

‖z(i)1 ‖ℓ∞ = 3.3660, max
i

‖z(i)2 ‖ℓ∞ = 2.5733.

From these results, we see that the feedback system is robustly small ℓ∞

signal ℓ∞ stable for memoryless uncertainties. On the other hand, the ℓ∞

norms of z1 and z2 are much smaller than the upper bounds of (4.23) and
(4.24). This indicates that for this example, there is the conservativeness in
the conditions on the upper bounds on signal norms.

4.4 Summary

In this chapter, the robust small ℓ∞ signal ℓ∞ stabilization over a rate-limited
communication channel was studied by using the framework developed in

1The ℓ∞ norms of z1 and z2 are estimated by their peak values over the simulation
interval [0, 300].
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Figure 4.4: Simulation result (scenario (a))
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Figure 4.5: Simulation result (scenario (b))

Chapter 3. We explicitly derived a sufficient condition on the data rate R
for the existence of an encoder-controller pair that robustly stabilizes the
uncertain feedback system in the sense of small ℓ∞ signal ℓ∞ stability. This
indicates the usefulness of the proposed framework in the thesis.

45



4.A. PRIMITIVE QUANTIZER

Appendix 4.A Primitive Quantizer

We introduce the primitive quantizer proposed by Tatikonda and Mitter [32]
with a slight modification to conform with the ℓ∞ setting in this chapter.

The primitive quantizer is an encoding-decoding algorithm defined by the
four-tuple (c(t),R, L(t),Φ(t)). The variable c ∈ R

n represents the centroid,
R = (R1, · · · , Rn) ∈ R

n represents the rate vector, L(t) = (L1(t), · · · , Ln(t)) ∈
R

n represents the dynamic range, and Φ(t) is a nonsingular matrix that rep-
resents a coordinate transformation at time t.

This encoder partitions the region

Λ(t) = {x ∈ R
n|Φ(t)(x− c(t)) ∈ {[−L1(t), L1(t)]× · · · × [−Ln(t), Ln(t)]}}

into 2R boxes with side length (2Li(t)/2
Ri). Each box is labeled with a

symbol in the alphabet A = {0, 1, · · · , 2R − 1}. If x(t) lies in one of these 2R

boxes, the encoder sends out the corresponding symbol as s(t). If x(t) 6∈ Λ(t),
the encoder sends the special symbol representing overflow.

In turn, the decoder produces the state estimate x̂(t) = c(t), the centroid
of the symbol s(t). If s(t) is an overflow symbol, the decoder sets x̂(t) = 0.
There should be an agreement between the encoder and the decoder on which
symbol indicates a box and overflow.

The above algorithm needs 2R+1 symbols including the overflow symbol.
In fact, however, we design the parameters of the primitive quantizer so that
overflow does not occur. Thus, we need only 2R symbols in this algorithm.

We prepare several matrices to represent the dynamics of the primitive
quantizer, namely, the update rule of c(t), L(t), and Φ(t). Let T be a nonsin-
gular matrix that transforms A into a real Jordan canonical form TAT−1 =
J = diag(J1, · · · , Jn). Define block-diagonal matricesH = diag(H1, · · · , Hm)
and J̄ = diag(J̄1, · · · , J̄n), where each Hi and J̄i are associated with the i-th
Jordan block Ji:

Hi = I, if λi is a real eigenvalue,

Hi = diag[r(θi)
−1, · · · , r(θi)−1], r(θ)=

[

cos θ sin θ
− sin θ cos θ

]

,

if ρi(cos θi ± j sin θi) are complex eigenvalues,
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J̄i =











|λi| 1

|λi| . . .
. . . 1

|λi|











if λi is a real eigenvalue,

J̄i =











ρiI r̄(−θi)

ρiI
. . .
. . . r̄(−θi)

ρiI











,

r̄(θ) =

[

| cos θ| | sin θ|
| sin θ| | cos θ|

]

,

if ρi(cos θi ± j sin θi) are complex eigenvalues.

Here, we define

ℏ = sup
t≥0

‖H t‖1.

It is easily seen from the definition of H that ℏ ≤
√
2 generally holds. In

particular, we have ℏ = 1 if all the eigenvalues of A are real. In addition,
because H is an orthogonal matrix, ‖H t‖1 = ‖H−t‖1 holds for all t ≥ 0. This
implies ℏ = supt≥0 ‖H−t‖1.

Furthermore, we define

FR =











2−R1

2−R2

. . .

2−Rn











.

With the above matrices, the quantizer parameters are updated as

c(t+ 1) = Ax̂(t) + Bu(t), (4.25)

Φ(t+ 1) = HΦ(t), (4.26)

L(t+ 1) = J̄FRL(t) + ‖Φ(t+ 1)E‖1







ǫ1
...
ǫ1






, (4.27)

where the initial conditions are given by c(0) = 0, Φ(0) = T , and L(0) = 0,
respectively.
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If x(t) belongs to Λ(t), x̂(t) is the centroid of the box that x(t) falls into.
Thus, we have by construction,

Φ(t)(x(t)− x̂(t)) ∈
{[

−L1(t)

2R1
,
L1(t)

2R1

]

, · · · ,
[

−Ln(t)

2Rn
,
Ln(t)

2Rn

]}

for x(t) ∈ Λ(t).
The following lemmas are useful in the proof of the main result.

Lemma 1. For all t ≥ 0, x(t) ∈ Λ(t).

Proof. It can be shown in the same manner as Lemma 4.3 in [32].

Lemma 2. The following inequalities are true for all t ≥ 0.

‖Φ(t)E‖1 ≤ ℏ‖TE‖1,
‖Φ(t)−1‖1 ≤ ℏ‖T−1‖1.

Proof. Recall that ℏ ≥ ‖H t‖1 = ‖H−t‖1 for all t ≥ 0. Because Φ(t) = H tT
from (4.26), we have

‖Φ(t)E‖1 = ‖H tTE‖1 ≤ ‖H t‖1‖TE‖1 ≤ ℏ‖TE‖1
‖Φ(t)−1‖1 = ‖T−1H−t‖1 ≤ ‖T−1‖1‖H−t‖1 ≤ ℏ‖T−1‖1.

Appendix 4.B Proof of Theorem 10

Assume that all the conditions in Theorem 10 hold. Let ǫ1 be an arbitrary
positive constant.

(i) We see from (4.6) that

‖z1|[0,τ ]‖ℓ∞ ≤ ‖P11 + P12(I −K0P22)
−1K0P22‖ℓ∞-ind‖e1|[0,τ ]‖ℓ∞

+ ‖P12(I −K0P22)
−1K0‖ℓ∞-ind‖(x− x̂)|[0,τ ]‖ℓ∞

≤ γ0ǫ1 + κ0‖(x− x̂)|[0,τ ]‖ℓ∞ , ∀τ ≥ 0 (4.28)

holds for any e1 ∈ ℓ∞e such that ‖e1|[0,τ ]‖ℓ∞ ≤ ǫ1, and for any τ ≥ 0. We
evaluate ‖(x− x̂)|[0,τ ]‖ℓ∞ to derive an upper bound on ‖z1|[0,τ ]‖ℓ∞ .
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It follows from Lemmas 1 and 2 that

‖x(t)− x̂(t)‖∞ = ‖Φ−1(t)Φ(t)(x(t)− x̂(t))‖∞
≤ ‖Φ−1(t)‖1‖Φ(t)(x(t)− x̂(t))‖∞
≤ ℏ‖T−1‖1‖FRL(t)‖∞. (4.29)

Now, pre-multiplying (4.27) by FR yields

FRL(t+ 1) = FRJ̄FRL(t) + FR‖Φ(t+ 1)E‖1







ǫ1
...
ǫ1






,

L(0) = 0,

and thus

FRL(t) =
t−1
∑

i=0

(

FRJ̄
)i
FR‖Φ(t− i)E‖1







ǫ1
...
ǫ1






.

This implies by Lemma 2 that

‖FRL(t)‖∞ ≤
t−1
∑

i=0

∥

∥

∥

∥

∥

∥

∥

(

FRJ̄
)i ‖Φ(t− i)E‖1FR







ǫ1
...
ǫ1







∥

∥

∥

∥

∥

∥

∥

∞

≤
t−1
∑

i=0

∥

∥FRJ̄
∥

∥

i

1
‖Φ(t− i)E‖1‖FR‖1ǫ1

≤
t−1
∑

i=0

∥

∥FRJ̄
∥

∥

i

1
h‖TE‖1‖FR‖1ǫ1.

From (4.8), the above inequality results in

‖FRL(t)‖∞ =
1−

∥

∥FRJ̄
∥

∥

t

1

1−
∥

∥FRJ̄
∥

∥

1

h‖TE‖1‖FR‖1ǫ1

≤ ℏ

1−
∥

∥FRJ̄
∥

∥

1

‖TE‖1‖FR‖1ǫ1. (4.30)

Substituting (4.30) into (4.29) yields

‖x(t)− x̂(t)‖∞ ≤ ℏ
2

1−
∥

∥FRJ̄
∥

∥

1

‖T−1‖1‖TE‖1‖FR‖1ǫ1,
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and hence,

‖(x− x̂)|[0,τ ]‖ℓ∞ ≤ ℏ
2

1−
∥

∥FRJ̄
∥

∥

1

‖T−1‖1‖TE‖1‖FR‖1ǫ1 ∀τ ≥ 0 (4.31)

It thus follows from (4.28) and (4.31) that

‖z1‖ℓ∞ ≤
(

γ0 +
ℏ
2

1−
∥

∥FRJ̄
∥

∥

1

‖T−1‖1‖TE‖1‖FR‖1κ0

)

ǫ1.

Because (4.9) holds, we consider that (4.10) is satisfied by setting

γ1 = γ0 +
ℏ
2

1−
∥

∥FRJ̄
∥

∥

1

‖T−1‖1‖TE‖1‖FR‖1κ0. (4.32)

(ii) The robust stability of the feedback system with (K,En) = (K0 ◦
Dǫ1

pq, E
ǫ1
pq) is implicit from the strict causality of Fl(P,K ◦En), Proposition 1,

Theorem 5, and (4.10).

Appendix 4.C Proof of Corollary 1

We first prove the former part of the theorem. Assume that there exists
an encoder-controller pair such that Fl(P,K ◦ En) satisfies (4.10) for some
ǫ1 > 0 and γ1 ∈ (0, γ).

We define D(t) := sup‖e1‖ℓ∞≤ǫ1 ‖x(t)‖∞. Then, it was shown in [30] that,
with any controller K and encoder En, D(t) satisfies

lim sup
t→∞

D(t) ≥
{

ǫ1
1−

|a|

2R

(2R > |a|),
∞ (2R ≤ |a|).

(4.33)

This implies that if 2R ≤ |a|, for any positive number ǫM , there exists a trun-
cation time τ satisfying ‖x|[0,τ ]‖ℓ∞ ≥ ǫM , which contradicts to ‖z1|[0,τ ]‖ℓ∞ ≤
γ1ǫ1 ∀τ ≥ 0. Thus, 2R > |a| must be true.

Furthermore, to obtain (4.16), assume that |c|/(1−|a|/2R) > γ. Then, it
follows from (4.33) that there exist a positive constant ǫ′M and a truncation
time τ satisfying

ǫ1

1− |a|
2R

> ǫ′M >
γǫ1
|c| ,

‖x|[0,τ ]‖ℓ∞ > ǫ′M .
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It follows from z1(t) = cx(t) that ‖z1|[0,τ ]‖ℓ∞ > |c|ǫ′M > γǫ1, a contradiction.
Hence, (4.16) holds.

The latter part is proved in the same manner as Theorem 10 with n = 1,
E = 1, K0 = −a, FR = 1/2R, J̄ = |a|, and H = 1. We have ℏ = 1 in this
case. Note also that K0 = −a implies γ0 = |c| and κ0 = |c||a|, and that
−a ∈ Kγ

0 , i.e., |c| < γ follows from (4.18).
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Chapter 5

Stability Analysis of Networked
Control Systems Subject to
Packet Dropouts and
Finite-level Quantization

This chapter examines the stability of a networked control system subject
to the combined effect of packet dropouts and finite-level quantization. This
provides a second example that shows the usefulness of the framework that
has been developed in Chapter 3.

For the stabilization of a networked control system with packet dropouts
and quantization, Matveev and Savkin have obtained a negative result in
a stochastic setting. They have shown that an unstable linear plant sub-
ject to arbitrarily and uniformly small external disturbances can never be
almost surely stabilized over a rate-limited communication channel under the
assumption that packet dropouts occur with a certain positive probability.

In contrast, in this chapter we consider the stability analysis of the net-
worked control systems in a different manner. Specifically, we employ a
deterministic setting in which the number of consecutive packet dropouts
is bounded, and study the small ℓ∞ signal ℓ∞ stability of networked con-
trol systems. The packet dropouts property of the channel is expressed by
the maximum number of consecutive dropouts, instead of the probability of
packet dropouts. By employing the framework proposed in Chapter 3, we de-
rive a sufficient condition on quantization for the small ℓ∞ signal ℓ∞ stability
of the networked control system. This chapter demonstrates the usefulness
of the proposed framework for the stability analysis of quantized feedback
systems.

The remainder of this chapter is organized as follows. Section 5.1 de-
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En Channel Buff P✲ ✲ ✲ ✲ ✲
❄ x(t)µ(t) u(t)

w(t)

Figure 5.1: Networked control system with quantized control values and
packet dropouts

scribes the system and the problem formulation. Section 5.2 discusses the
decomposition of the networked control system into a feedback interconnec-
tion of appropriate subsystems for stability analysis. Section 5.3 discusses
the stability analysis. Section 5.4 presents numerical examples. Section 5.5
concludes this chapter.

5.1 Problem formulation

We consider a networked control system with an unreliable communication
channel affected by packet dropouts, as shown in Figure 5.1. To alleviate
the effect of packet dropouts, the networked control system incorporates a
buffering mechanism in the feedback loop (see, e.g., [25, 24] for the buffering
mechanism). However, unlike the setting studied in [25, 24], here, we explic-
itly take quantization effects. More precisely, the encoder-controller sends
out quantized values of current and finite step future control signals at each
time instant.

The system is described in detail below.
Plant P : The plant P is a discrete-time LTI system whose state-space
representation is given by

x(t+ 1) = Ax(t) +Bu(t) + w(t). (5.1)

The signals x(t) ∈ R
n, u(t) ∈ R, and w(t) ∈ R

n are the plant state, actuator
input, and process disturbance, respectively. The initial state x(0) is assumed
to be zero.
Channel: The communication channel is affected by packet dropouts. The
packet dropout is characterized in terms of the discrete variable s(t) defined
by

s(t)=

{

1 if a packet dropout does not occur at time t,
0 if a packet dropout occurs at time t.

(5.2)

Whenever packet dropouts do not occur, the channel transmits the current
control packet to the buffer Buff without errors or delays.
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In the sequel, we denote the time instants when the transmission is suc-
cessfully completed (i.e., a packet is not dropped) with {t0, t1, t2, · · · }, and
we assume t0 = 0. We thus have

s(t) = 1 ⇔ ( t = ti for some i ∈ Z+ ). (5.3)

Controller-Encoder En: Throughout this work, we will assume that no
acknowledgments of receipt are available. Thus, the controller-encoder En

does not know whether previous data packets were successfully received.
To compensate for possible future packet dropouts, at every time t ∈ N,

the controller-encoder transmits a control packet, say, µ(t) ∈ R
N , to the

buffer. The value N ∈ N is given; it represents the packet size as well as the
buffer length. The control packet is composed of quantized potential control
inputs for the current time instant and N − 1 future time instants:

µ(t) =











q(û(t; t))
q(û(t+ 1; t))

...
q(û(t+N − 1; t))











, (5.4)

û(t+ i; t) = Kx̂(t+ i; t), i ∈ {0, · · · , N − 1}, (5.5)

where û(t + i; t) ∈ R and x̂(t + i; t) ∈ R
n are the i-step predictions of the

(unquantized) control input and the plant state based on the current state
x(t), respectively, and where K ∈ R

1×n is a static state-feedback gain.
In (5.4), the function q denotes the uniform static quantizer which is

defined by (2.19) in Subsection 2.3.2. The constant d is the step size, and
M := 2m+ 1 is the number of quantization levels.1

The state predictions x̂(t + i; t) (i = 1, 2, · · · , N − 1) are calculated re-
cursively based on the current state x(t) and the plant dynamics as follows:

x̂(t+ i; t) =

{

x(t), if i = 0,
Ax̂(t+ i− 1; t) + Bq(û(t+ i− 1; t)), if i = 1, · · · , N − 1.

(5.6)

Buffer Buff: The buffer Buff provides the actuator values based on the
received channel symbols. The state of the buffer is updated every time it
successfully receives the packet µ. To be more precise, the dynamics of Buff
is described by

b(t) = s(t)µ(t) + (1− s(t))Sb(t− 1), b(−1) = 0, (5.7)

1Owing to quantization, each control packet µ(t) can take only one of MN different
values, and, can thus be expressed via N log

2
M bits.
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where b(t) ∈ R
N denotes the state of Buff, and

S :=















0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0
0 · · · · · · 0 1
0 · · · · · · · · · 0















∈ R
N×N (5.8)

is a shift matrix. Then, the plant input u(t) is given by

u(t) =
[

1 0 · · · 0
]

b(t); (5.9)

see Figure 5.1.

Remark 2. The buffering technique adopted here was used, e.g., in [24] to
study the input-to-state stability [31] of a related networked control system,
where the control packets are designed without quantization by adapting the
model predictive control framework. In this chapter, we complement [24] by
studying a networked control system subject to packet dropouts as well as
finite-level quantization of control signals.

We make the following assumptions:

Assumption 5. The number of consecutive packet dropouts is bounded by
the buffer length N , i.e., we have

1 ≤ ti+1 − ti ≤ N, ∀i ∈ Z+. (5.10)

Assumption 6. The matrix AK := A+ BK is Schur stable.

If Assumption 5 is satisfied, then the buffer length N is equal to the
maximal number of consecutive packet dropouts. Assumption 6 implies that
the controller gain K in (5.5) stabilizes the plant model (5.1) in the absence
of dropouts or quantization constraints.

We recall that in the presence of finite-level quantization, the finite gain
ℓp stability of the closed-loop system cannot be established (see [16] and
Subsection 2.3.1); in this chapter, we are interested in the small ℓ∞ signal
ℓ∞ stability of the closed-map from w to x: 2

2Note that condition (5.11) differs from the small ℓ∞ signal ℓ∞ stability of the feedback
system shown in Figure 2.1.
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G

q̃

✛ ✛
✛

✲

u v

x w

Figure 5.2: Linear fractional representation of the networked control system

Under Assumptions 5 and 6, we wish to derive a sufficient condi-
tion for the existence of positive constants ǫ and γ such that

[[

‖w|[0,τ ]‖ℓ∞ ≤ ǫ ⇒ ‖x|[0,τ ]‖ℓ∞ ≤ γǫ
]]

, ∀w ∈ ℓ∞, ∀τ ∈ Z+

(5.11)

for any sequence of packet dropouts satisfying Assumption 5.
Furthermore, if the stability condition is satisfied, we wish to
characterize the relationship (trade-off) between the attenuation
level γ and the parameters M , d, and N .

We hereafter decompose the networked control system into a feedback
interconnection of subsystems that are both small ℓ∞ signal ℓ∞ stable. The
framework proposed in Chapter 3 is employed to to obtain a sufficient condi-
tion for achieving (5.11) for the networked control system shown in Figure 5.1.

5.2 Linear fractional transformation model

The networked control system shown in Figure 5.1 is nonlinear and time-
varying due to quantization, packet dropouts, and buffering. To study the
stability of the networked control system, we first extract the nonlinearity
(denoted by q̃) associated with the quantization error to re-formulate the
feedback system shown in Figure 5.1 as the linear fractional transformation
shown in Figure 5.2, where the “nominal” subsystem G is linear and time-
varying.

It follows from (5.3), (5.4), (5.7), (5.8), and (5.9) that the plant inputs at
the time instants

Z+ = ∪i∈Z+{ti, ti + 1, . . . , ti+1 − 1}

are given by

u(t) = q(û(t; ti)), t ∈ {ti, ti + 1, . . . , ti+1 − 1}. (5.12)
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Thus, the plant model (5.1) can be rewritten as

x(t+ 1) = Ax(t) +Bq(û(t; ti)) + w(t), t ∈ {ti, ti + 1, . . . , ti+1 − 1}. (5.13)

If we denote the quantization error at each time instant t ∈ Z+ via

v(t) := q(û(t; ti))− û(t; ti), t ∈ {ti, ti + 1, . . . , ti+1 − 1}, (5.14)

then it follows from (5.6) and (5.14) that

x̂(t+ 1; ti) = Ax̂(t; ti) + B
(

û(t; ti) + v(t)
)

= AK x̂(t; ti) + Bv(t), t ∈ {ti, ti + 1, . . . , ti+1 − 2}. (5.15)

Moreover, (5.6) and (5.13) give

x(t) = x̂(t; ti) +

t−ti
∑

l=1

Al−1w(t− l), t ∈ {ti, ti + 1, . . . , ti+1 − 1}, (5.16)

and thus,

x̂(ti+1; ti+1) = x(ti+1)

= x̂(ti+1; ti) +

ti+1−ti
∑

l=1

Al−1w(ti+1 − l)

= AK x̂(ti+1 − 1; ti) +Bv(ti+1 − 1; ti)

+

ti+1−ti
∑

l=1

Al−1w(ti+1 − l), i ∈ Z+. (5.17)

It follows from (5.5), (5.15), (5.16), and (5.17) that the networked control
system shown in Figure 5.1 can be described in terms of the linear fractional
transformation of a linear subsystem G and the static nonlinear function q̃,
as shown in Figure 5.2.

The nonlinearity q̃ is a static map defined by

q̃(û) = q(û)− û, (5.18)

and thus, it represents the quantization error, as shown in Figure 5.3. It can
be easily verified from (2.19) that q̃ satisfies

[[

‖û|[0,τ ]‖ℓ∞ ≤ Md

2
⇒ ‖q̃(û)|[0,τ ]‖ℓ∞ ≤ d

2

]]

, ∀û ∈ ℓe, ∀τ ∈ Z+. (5.19)
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In other words, q̃ has small ℓ∞ signal ℓ∞ stability with attenuation level 1/M
and input bound Md/2.

To characterize the subsystem G shown in Figure 5.2, it is convenient to
introduce a state vector ξ(t) and control signal û(t) via

ξ(t) := x̂(t; ti), û(t) := û(t; ti), t ∈ {ti, ti + 1, . . . , ti+1 − 1}, i ∈ Z+

(5.20)

This allows us to describe G in the state-space form via

G :







ξ(t+ 1) = AKξ(t) + Bv(t) + F1w(t),
û(t) =Kξ(t),
x(t) = ξ(t) + F2w(t),

(5.21)

where F1 and F2 are linear time-varying maps defined by

F1 : w 7→











0, if t ∈ {ti, ti + 1, . . . , ti+1 − 2},
ti+1−ti
∑

l=1

Al−1w(ti+1 − l), if t = ti+1 − 1,
(5.22)

F2 : w 7→











0, if t = ti,
t−ti
∑

l=1

Al−1w(t− l), if t ∈ {ti + 1, ti + 2, . . . , ti+1 − 1}. (5.23)

Interestingly, the map G: (v, w) 7→ (u, x) can be decomposed as

G =

[

G00 G01 ◦ F1

G10 G11 ◦ F1 + F2

]

, (5.24)

where G00, G01, G10, and G11 are LTI maps with impulse responses

g00(t) =

{

0, if t = 0,
KAt−1

K B, if t ∈ N,
g01(t) =

{

0, if t = 0,
KAt−1

K , if t ∈ N,

g10(t) =

{

0, if t = 0,
At−1

K B, if t ∈ N,
g11(t) =

{

0, if t = 0,
At−1

K , if t ∈ N,

respectively. It is easily seen from these equations that the effect of packet
dropouts is confined in the time-varying maps F1 and F2.

5.3 Stability analysis

With the previous section as a background, we will study the small ℓ∞ signal
ℓp stability of the closed-map from w to x.
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Figure 5.3: Nonlinearity associated with quantization error

5.3.1 Preliminaries

A key property of the linear fractional transformation model presented in
Section 5.2 is that if Assumption 6 holds, then the LTI maps G00, G01, G10,
and G11 are stable and have finite ℓ∞ gains. Furthermore, it is easy to see
that F1 and F2 also have finite ℓ∞ gains:

Lemma 3. Suppose that Assumption 5 holds. Then, the maps F1 and F2

defined in (5.22) and (5.23) are unbiased finite gain ℓ∞ stable, and

‖F1‖ℓ∞-ind ≤ κ, ‖F2‖ℓ∞-ind ≤ κ (5.25)

hold for

κ :=
N−1
∑

l=0

‖Al‖1 < ∞. (5.26)

Proof. See Appendix 5.A.

The linear fractional transformation model provides important informa-
tion for the stability analysis of the networked control system shown in Fig-
ure 5.1. By virtue of the buffering technique, the adverse effect of packet
dropouts is isolated from the feedback loop. Indeed, the maximal length N
of consecutive packet dropouts is contained only in the stable feedforward
maps F1 and F2. This implies that packet dropouts play no role in the
deteriorating stability of the networked control system.

5.3.2 Main results

Lemma 4 stated below shows that because all 4 components of G are finite
gain ℓ∞ stable, the stability analysis of the overall networked control system
reduces to investigating the stability of the feedback interconnection between
G00 and q̃ shown in Figure 5.4. To state the result, we denote the ℓ∞ gains
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G00

q̃✲ ❞

✻

✛ ❄❞✛

✲r2

û v′ r1

vu′

+

+

Figure 5.4: Feedback interconnection of G00 and q̃

of the components of G via

γ00 := ‖G00‖ℓ∞-ind, γ01 := ‖G01‖ℓ∞-ind,
γ10 := ‖G10‖ℓ∞-ind, γ11 := ‖G11‖ℓ∞-ind. (5.27)

Lemma 4. Assume that the feedback interconnection of G00 and q̃ shown in
Figure 5.4 is small ℓ∞ signal ℓ∞ stable, i.e., there exist positive constants ǫr,
δu, and δv such that

[[ ∥

∥

∥

∥

∥

[

r1
r2

]∣

∣

∣

∣

[0,τ ]

∥

∥

∥

∥

∥

ℓ∞

≤ ǫr ⇒ (‖û|[0,τ ]‖ℓ∞ ≤ δu and ‖v|[0,τ ]‖ℓ∞ ≤ δv)

]]

,

∀r1, r2 ∈ ℓe, ∀τ ∈ Z+. (5.28)

Then, the feedback system shown in Figure 5.2 satisfies

[[

‖w|[0,τ ]‖ℓ∞ ≤ ǫ ⇒ ‖x|[0,τ ]‖ℓ∞ ≤ γǫ
]]

, ∀w ∈ ℓe, ∀τ ∈ Z+. (5.29)

for any sequences of packet dropouts satisfying Assumption 5, where

ǫ =
ǫr

γ01κ
, γ =

γ01κ ((γ11 + 1)ǫrκ+ γ10δv)

ǫr
, (5.30)

and κ is defined in (5.26).

Proof. See Appendix 5.B.

Having established Lemma 4, we will next present the main result of this
chapter, namely, a sufficient condition for the small ℓ∞ signal ℓ∞ stability of
the closed-loop map from w to x, as shown shown in Figure 5.2. This also
quantifies the disturbance attenuation level in terms of the parameters of the
quantizer and the buffer length.

Theorem 11. Suppose that Assumptions 5 and 6 hold. If

γ00 < M, (5.31)
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then the networked control system in Figure 5.1 satisfies
[[

‖w|[0,τ ]‖ℓ∞ ≤ ǫ ⇒ ‖x|[0,τ ]‖ℓ∞ ≤ γǫ
]]

∀w ∈ ℓ∞e , ∀τ ∈ Z+ (5.32)

for any sequence of packet dropouts satisfying Assumption 5, where

ǫ =
(M − γ00)d

2γ01(γ00 + 1)κ
, (5.33)

γ =
γ01κ (γ10(γ00 + 1) + (γ11 + 1)(M − γ00)κ)

M − γ00
. (5.34)

Proof. See Appendix 5.C.

Theorem 11 establishes that the small ℓ∞ signal ℓ∞ stability of the closed-
loop map from w to x in the presence of bounded packet dropouts and
finite-level quantization can be guaranteed if a sufficiently large number of
quantization levels M is available. While condition (5.31) does not depend
on the step size d, this quantizer parameter does affect the input bound ǫ in
(5.33). Because the input bound ǫ is monotonically increasing with respect
to d, compensating for a large disturbance w(t) requires a large step size d.
This observation is rather intuitive, because with large d, the control signal
is allowed to take large values, as shown in (2.19), in this uniform quantizer.
Note also that the upper bound on ‖x‖ℓ∞ depends on d through the input
bound ǫ in (5.29).

The stability condition (5.31) also indicates that the stability of the
closed-loop map from w to x is independent of the maximum number of
consecutive packet dropouts N , provided sufficient control inputs are con-
tained in each control packet (see Assumption 5). However, the disturbance
attenuation level of the closed-loop map from w to x is strongly affected by
N . In fact, it can be seen from (5.26) and (5.34) that for open-loop unstable
plants, the attenuation level γ exponentially increases with respect to N .
This suggests that the magnitude of the state x may become extremely large
if the network introduces too many consecutive packet dropouts. The lat-
ter observation is hardly surprising, because, during periods of consecutive
dropouts, the plant is unavoidably left in an open loop.

5.4 Numerical examples

5.4.1 Example 1 (scalar plant)

Consider a scalar plant described by

x(t+ 1) = ax(t) + u(t) + w(t), a > 1.
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We choose the stabilizing (deadbeat) feedback gain K = −a, providing AK =
A+ BK = 0. In this case, the ℓ∞ gains in (5.27) are given by

γ00 = a, γ01 = a, γ10 = 1, γ11 = 1,

and the sufficient stability condition (5.31) becomes

M > a. (5.35)

It then follows from (5.26), (5.33), and (5.34) that the parameters κ, ǫ, and
γ are given by

κ =
N−1
∑

l=0

al =
aN − 1

a− 1
, (5.36)

ǫ =
(M − a)d

2(a+ 1)κ
=

(M − a)d

2(a+ 1)

a− 1

aN − 1
, (5.37)

γ =
aκ((a+ 1) + 2(M − a)κ)

M − a
=

a(a+ 1)

M − a

aN − 1

a− 1
+ 2a

(

aN − 1

a− 1

)2

. (5.38)

Interestingly, it turns out that for scalar plant models, stability condition
(5.35) is tight. In fact, it is known that M ≥ a is a necessary condition
to stabilize the scalar system over a rate-limited channel when there are no
packet dropouts (N = 1); see, e.g., [32].

As a special case, suppose that a = 2.99. Then, the stability condition
(5.35) becomes M > 2.99, which corresponds to a quantizer with at least
three levels. For this fixed a, the associated trade-off between the attenuation
level γ in (5.38) and the maximal number of consecutive packet dropouts N
for a quantizer with M = 11 quantization levels is shown in Figure 5.5.
As can be seen from this figure and (5.38), for a fixed M , γ exponentially
increases in N .

Figure 5.6 shows the relationship between γ and M for fixed N = 2. It
can be seen from this figure that when M is close to γ00 = a = 2.99, the
attenuation level γ becomes very large. On the other hand, the attenuation
level monotonically decreases with respect to M , and we have limM→∞ γ =
2a(a2 − 1)2/(a− 1)2 = 95.20 as a lower bound of γ in (5.38).

We next performed a numerical simulation for a critical case where3

w(t) = ǫ, ∀t ∈ {0, 1, . . . 300}
ti+1 − ti = N = 2, ∀i ∈ {0, 1, . . . 150}.

3Namely, the disturbance takes the extreme value at each time instant, and the network
periodically drops packets every other time instant.
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Figure 5.5: Effect of the maximal number of consecutive dropouts N on the
attenuation level γ
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Figure 5.6: Trade-off between the attenuation level γ and the number of
quantization levels M

In this simulation, we choose M = 3, d = 2, and N = 2. Then, it follows
from (5.36) that κ = 3.99. Theorem 3 then guarantees that the closed-loop
map from w to x is small ℓ∞ signal ℓ∞ stable, and that (5.32) holds with

ǫ = 2.1008× 10−4, γ = 4.8553× 103.

The simulation result of x(t) for t ∈ {0, 1, . . . 300} is shown in Figure 5.7,
confirming (5.32), namely, that ‖x(t)‖∞ is less than δ := γǫ = 1.02 for all
t ∈ {0, 1, . . . 300}.

5.4.2 Example 2 (third-order plant)

To verify the effectiveness of the buffering scheme considered in this chapter,
we next carry out simulations for the following three control schemes:

(a) Buffering scheme:
The buffering scheme considered in the previous sections is applied to
compensate for packet dropouts.
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Figure 5.7: Plant state trajectory in the presence of dropouts and distur-
bances

(b) Zero input scheme (s(t) = 0 ⇒ u(t) = 0):
If a packet is dropped, the actuator applies zero input to the plant.

(c) Previous input scheme (s(t) = 0 ⇒ u(t) = u(t− 1)):
If a packet is dropped, the actuator applies the previous input to the
plant.

Consider the third-order plant given by

x(t+ 1) =





0.1 2.3 1.4
0 2 1.5
0 0.9 1.6



 x(t) +





1.1
0.9
1



 u(t) + w(t),

and the communication channel with N = 3. We choose the nominally
stabilizing feedback gain as

K =
[

0.0013 −1.6591 −1.5782
]

.

For this networked control system, we have κ = 42.63 and

γ00 = 3.7545, γ01 = 4.3528, γ10 = 6.4171, γ11 = 7.4988.

We choose M = 5 so that the stability condition (5.31) is satisfied. We
carried out the simulations with random disturbances satisfying ‖w(t)‖∞ ≤
ǫ = 5.8918 × 10−4 and periodic packet dropout sequences consisting of two
consecutive dropouts and one success.

The simulation results are shown in Figure 5.8. It is clearly seen from
this figure that the buffering scheme (a) succeeds in keeping ‖x(t)‖∞ much
smaller as compared to the zero input schemes (b) and (c). Furthermore,
Figure 5.8 shows that the previous input scheme (c) does not stabilize this
plant with this particular choice of K and M because the plant state is
unbounded.
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Figure 5.8: Simulation results for the control schemes (a), (b), and (c)

Note also that in the proposed scheme, it is sufficient to choose the feed-
back gain K such that the matrix A + BK is stable. This stands in stark
contrast to the zero input scheme, where in the presence of packet dropouts,
a necessary condition for the stability of the networked control system is that
all finite products

(A+ BK)Ai, i ∈ {1, · · · , N − 1}

are stable. The class of admissible feedback gains is therefore quite restricted
in the zero input case. On the other hand, in the proposed scheme, the
constraint on the feedback gain is much milder. This is useful when designing
the networked control system.

5.5 Summary

This chapter discusses the small ℓ∞ signal ℓ∞ stability of a networked control
system subject to disturbances, packet dropouts, and finite-level quantiza-
tion. We have employed a deterministic setting and the small ℓ∞ signal ℓ∞

stability analysis framework for the stability analysis. Within this frame-
work, we have shown that by incorporating a buffering mechanism at the
receiving end of the channel, the adverse effect of packet dropouts on closed
loop stability can be canceled as long as the number of consecutive dropouts
is smaller than the buffer length. A sufficient condition for stability, which is
stated in terms of the number of quantization levels, has been derived. We
have also elucidated the effect of the quantizer step size and the maximal
number of consecutive packet dropouts on the disturbance attenuation level.
Through the stability analysis of this networked control system, this chapter
has shown the usefulness of the framework developed in this thesis.
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Appendix 5.A Proof of Lemma 3

We give the proof of only ‖F1‖ℓ∞-ind ≤ κ, because ‖F2‖ℓ∞-ind ≤ κ can be
proved in the same manner.

Define f1 = F1w for w ∈ ℓe. There always exists i ∈ Z+ such that
t ∈ {ti, ti + 1, · · · , ti+1 − 1}, and F1w is given by (5.22). Clearly, ‖f1(t)‖∞ =
0 ≤ κ‖w‖ℓ∞ holds for t ∈ {ti, · · · , ti+1 − 2}. In the case of t = ti+1 − 1, we
obtain

‖f1(t)‖∞ ≤
ti+1−ti
∑

l=1

‖Al−1w(ti+1 − l)‖∞ ≤
ti+1−ti
∑

l=1

‖Al−1‖1‖w(ti+1 − l)‖∞

≤
ti+1−ti
∑

l=1

‖Al−1‖1‖w‖ℓ∞ ≤
N
∑

l=1

‖Al−1‖1‖w‖ℓ∞ = κ‖w‖ℓ∞ .

In the last inequality, we have used Assumption 5.

Appendix 5.B Proof of Lemma 4

From (5.24), the input-output relationships shown in Figure 5.2 are described
by

v = q̃(û), (5.39)

û = G00v + (G01 ◦ F1)w, (5.40)

x = G10v + (G11 ◦ F1 + F2)w. (5.41)

On the other hand, Lemma 3 gives

‖G01 ◦ F1‖ℓ∞-ind ≤ ‖G01‖ℓ∞-ind‖F1‖ℓ∞-ind ≤ γ01κ, (5.42)

‖G11 ◦ F1 + F2‖ℓ∞-ind ≤ ‖G11‖ℓ∞-ind‖F1‖ℓ∞-ind + ‖F2‖ℓ∞-ind ≤ γ11κ+ κ.
(5.43)

It is easily seen by taking r1 := 0, r2 := (G01 ◦ F1)w, v
′ := v in Figure 5.4

that the small ℓ∞ signal ℓ∞ stability of the feedback interconnection (G00, q̃)
implies that

‖(G01 ◦ F1w)|[0,τ ]‖ℓ∞ ≤ ǫr ⇒ (‖û|[0,τ ]‖ℓ∞ ≤ δu and ‖v|[0,τ ]‖ℓ∞ ≤ δv),

∀τ ∈ Z+ (5.44)

holds for the feedback system of (5.39) - (5.41) shown in Figure 5.2.
Now, we assume that ‖w|[0,τ ]‖ℓ∞ ≤ ǫ, where ǫ is defined by (5.30). To

complete the proof, we only need to establish the boundedness of ‖x|[0,τ ]‖ℓ∞ .
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It follows from (5.42) that

‖(G01 ◦ F1w)|[0,τ ]‖ℓ∞ ≤ ‖G01 ◦ F1‖ℓ∞-ind‖w|[0,τ ]‖ℓ∞ ≤ γ01κǫ = ǫr. (5.45)

We then have ‖v|[0,τ ]‖ℓ∞ ≤ δv from (5.44) and (5.45). Therefore, we conclude
from (5.41) and (5.43) that

‖x|[0,τ ]‖ℓ∞ ≤ ‖G00‖ℓ∞-ind‖v|[0,τ ]‖ℓ∞ + ‖G11 ◦ F1 + F2‖ℓ∞-ind‖w|[0,τ ]‖ℓ∞
≤ γ00δv + (γ11 + 1)κǫ

= γǫ < +∞, (5.46)

where γ := γ00δv/ǫ+ (γ11 + 1)κ.

Appendix 5.C Proof of Theorem 11

Suppose that (5.31) holds. Because G00 is strictly causal, it is easily verified
that γ00 = ‖G00‖ℓ∞-ind implies

‖(G00v)|[0,τ ]‖ℓ∞ ≤ γ00‖v|[0,τ−1]‖ℓ∞ , ∀v ∈ ℓe, ∀τ ∈ Z+ (5.47)

(see Theorem 5). It then follows from (5.47), (5.31), (5.19), and Theorem 4
that the feedback interconnection of G00 and q̃ shown in Figure 5.4 is small
ℓ∞ signal ℓ∞ stable. In particular, we have

[[

‖r|[0,τ ]‖ℓ∞ ≤ ǫr ⇒ (‖u|[0,τ ]‖ℓ∞ ≤ δu and ‖v|[0,τ ]‖ℓ∞ ≤ δv)
]]

,

∀r ∈ ℓe, ∀τ ∈ Z+

where the constants

ǫr =
(M − γ00)d

2(1 + γ00)
, δu =

(M + 1)γ00d

2(1 + γ00)
, δv =

d

2
(5.48)

are obtained by substituting γ2 := γ00, γ1 := 1/M , and ǫ1 := Md/2 into
(3.11).

Consequently, we conclude from Lemma 4 that the networked control
system shown in Figure 5.1, or equivalently, in Figure 5.2, satisfies (5.32),
where ǫ and γ in (5.33) and (5.34) are obtained by substituting (5.48) into
(5.30).
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Chapter 6

Conclusion

In this thesis, we have

• provided the motivation for developing a new framework for the stabil-
ity analysis of quantized feedback systems,

• developed a new framework based on a new stability notion,

• demonstrated its usefulness through examples of quantized feedback
systems.

As a concluding chapter, we now summarize the contributions of this thesis.

In Chapter 2, we have revealed the difficulties involved in applying the
traditional small gain theorem to the stability analysis of quantized feed-
back systems. Specifically, by utilizing two examples of quantized feedback
systems, we have provided the motivation for introducing a new stability
notion and a new framework for stability analysis that are applicable to
quantized feedback systems. Stability analyses of an uncertain networked
control system with a rate-limited communication channel and a feedback
system involving a uniform quantizer have been discussed.

In Chapter 3, a new framework for the stability analysis of quantized
feedback systems has been developed. We have introduced a new notion
of stability, small ℓp signal ℓp stability, that is achievable in a wide class of
quantized feedback systems. Then, we have prepared mathematical tools to
establish the stability of a feedback system in the sense of the new stability.
In particular, the small level theorem has been derived as a key theorem for
stability analysis. It provides a sufficient condition for a feedback system to
be small ℓp signal ℓp stable. A new class of uncertainty, level bounded uncer-
tainty, has also been introduced. This uncertainty effectively approximates
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some classes of nonlinearities that include quantization errors. Robust stabil-
ity against the level bounded uncertainty and the traditional gain bounded
uncertainty have been investigated.

Chapter 4 provides the first example that shows the usefulness of the
proposed framework for the stability analysis of quantized feedback systems.
We have studied the robust stabilization of an uncertain networked control
system over a rate-limited communication channel. By using the proposed
framework, we have elucidated the combined effect of quantization at the
communication channel and the model uncertainty in the plant dynamics, on
the robust stabilizability of the entire networked control system. A design
method for a stabilizing encoder-controller pair has also been presented.

Finally, Chapter 5 provides the second example that demonstrates the
usefulness of the proposed framework. In this chapter, we have examined
the stability of a networked control system subject to the combined effect
of finite-level quantization and packet dropouts. A uniform quantizer has
been employed as the quantizer in this example. In this example, we have
shown that the class of level bounded uncertainty effectively approximates
the nonlinearity associated with the quantization error. We have elucidated
the effect of quantization and packet dropouts on the stability of the overall
networked control system.
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[22] D. Nešić and D. Liberzon, A small-gain approach to stability analysis of
hybrid systems, in Proceedings of the 44th IEEE Conference on Decision
and Control, and the European Control Conference, (2005) 5409-5414.

[23] G.N. Nair, F. Fagnani, S. Zampieri and R.J. Evans, Feedback control
under data rate constraints: An overview, Proceedings of the IEEE,
95(1) (2007) 108-137.
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