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Abstract

Many popular first order algorithms for convex optimization, such as
forward-backward splitting, Douglas-Rachford splitting, and the alternat-
ing direction method of multipliers (ADMM), can be formulated as av-
eraged iteration of a nonexpansive mapping. In this paper we propose
a line search for averaged iteration that preserves the theoretical con-
vergence guarantee, while often accelerating practical convergence. We
discuss several general cases in which the additional computational cost
of the line search is modest compared to the savings obtained.

1 Introduction

First-order algorithms such as forward-backward splitting, Douglas-Rachford
splitting, and the alternating direction methods of multipliers (ADMM) are of-
ten used for large-scale convex optimization. While the theory tells us that these
methods converge, practical convergence can be very slow for some problem
instances. One effective method to reduce the number of iterations is to pre-
condition the problem data. This approach has been extensively studied in the
literature and has proven very successful in practice; see, e.g., [4, 7, 22, 16, 18, 19]
for a limited selection of such approaches.

Another general approach to improving practical efficiency is to carry out a
line search, i.e., to first compute a tentative next iterate and then to select the
next iterate on the ray from the current iterate passing through the tentative
iterate. Typical line searches are based on some readily computed quantity such
as the function value or norm of the gradient or residual. A well designed line
search preserves the theoretical convergence of the base method, while acceler-
ating the practical convergence. Line search is widely used in gradient descent
or Newton methods; see [6, 24]. These line search methods cannot be applied
to all first-order methods mentioned above, however, since in general there is no
readily computed quantity that is decreasing. (The convergence proofs for these
methods typically rely on quantities related to the distance to an optimal point,
which cannot be evaluated while the algorithm is running.) In this paper we
propose a general line search scheme that is applicable to most first-order con-
vex optimization methods, including those mentioned above whose convergence
proofs are not based on the decrease of an observable quantity.



We exploit the fact that many first-order optimization algorithms can be
viewed as averaged iterations of some nonexpansive operator, i.e., they can be
written in the form

xk+1 = (1− ᾱ)xk + ᾱSxk = xk + ᾱ(Sxk − xk), (1)

where ᾱ ∈ (0, 1) and S : Rn → Rn is nonexpansive, i.e., it satisfies ‖Su−Sv‖2 ≤
‖u − v‖2 for all u, v. The superscript k denotes iteration number. The middle
expression shows that the next point is a weighted average of the current point
xk and Sxk. The expression on the righthand side of (1) shows that the iteration
can be interpreted as a taking a step of length ᾱ in the direction of the fixed-
point residual rk = Sxk − xk. Assuming a fixed-point exists, the iteration (1)
converges to the set of fixed-points.

In this paper we will show how steps sometimes much larger than ᾱ can be
taken, which typically accelerates practical convergence. This iteration has the
form

xk+1 = xk + αk(Sxk − xk), (2)

where αk > 0 is chosen according to line search rules described below. We refer
to αk as the step length in the kth iteration, and ᾱ as the nominal step length.
The choice αk = ᾱ recovers the basic averaged iteration (1). We refer to the
selection of αk as a line search, since we are selecting the next iterate as a point
on the line or ray passing through xk in the direction of the residual.

The merit function used to accept a step length αk in the line search is
the norm of the fixed-point residual ‖r‖2 = ‖Sx − x‖2. To evaluate this merit
function for a candidate point, we must compute Sx, which corresponds to
the dominant cost of taking a full iteration of the nominal algorithm. In the
general case, then, the line search is computationally expensive, and there is
a trade-off between the cost of the line search (which depends on the number
of candidate points examined), and the savings in iterations due to the line
search. But we have identified many common and interesting problem and
algorithm combinations for which the fixed-point residual can be computed at
low additional cost along the candidate ray. In these situations, performing one
iteration with line search is roughly as expensive as performing one standard
iteration of the nominal algorithm, so the additional cost of the line search is
minimal. This happens when the nonexpansive operator S can be written as
S = S2S1 where S1 : Rn → Rn is affine and S2 : Rn → Rn is relatively cheap
to evaluate.

The paper is organized as follows. In Section 2, we state the line search
method and prove its convergence. In Section 3, we show that the line search
can be carried out efficiently when S = S2S1 and S2 is cheap to evaluate and
S1 is affine. In Section 4, we show how to implement the line search for some
popular algorithms. Finally, in Section 6 we provide numerical examples that
show the efficiency of the proposed line search.



2 The line search method

2.1 Line search test

The line search method first computes the nominal next iterate x̄k according to
the basic averaged iteration (1), and then (possibly) selects a different value of
αk. The algorithm has the following form.

rk := Sxk − xk (3)

x̄k := xk + ᾱrk (4)

r̄k := Sx̄k − x̄k (5)

xk+1 := xk + αkr
k (6)

In the first step we compute the current residual, in the second step we compute
the nominal next iterate, and in the third step we compute the nominal next
residual. In the last step, we form the actual next iterate.

In (6) the step length αk must satisfy the following. Either αk = ᾱ, i.e., we
take the nominal step, or αk ∈ (ᾱ, αmax] is such that

‖rk+1‖2 = ‖Sxk+1 − xk+1‖2 ≤ (1− ε)‖r̄k‖2, (7)

where ε ∈ (0, 1) and αmax ≥ ᾱ are fixed algorithm parameters. Thus we either
take the nominal step, or one that reduces the norm of the fixed point residual
compared to the nominal step.

We will discuss the details of the computation and give some specific methods
to choose αk later; but for now we observe that to verify the line search test
(7), we must evaluate rk+1, which is the first step (3) of the next iteration.
In a similar way, if we take the nominal step, i.e., choose αk = ᾱ, then step
(5) is the first step of the next iteration. In either case, there is no additional
computational cost.

2.2 Convergence analysis

We analyze the proposed line search method and provide residual and iterate
convergence results. All results are proven in Appendix A.

Theorem 1 Suppose that S : Rn → Rn is nonexpansive and let ᾱ ∈ (0, 1).
Then the iteration (3)-(6) satisfies ‖rk‖2 → c as k →∞.

So, the norm of the residual converges. Next, we show that the residual con-
verges to zero if a fixed-point to S exists, i.e., if fixS = {x ∈ Rn | x = Sx} 6= ∅.

Theorem 2 Suppose that S : Rn → Rn is nonexpansive, that fixS 6= ∅, and
that ᾱ ∈ (0, 1). Then the iteration (3)-(6) satisfies rk → 0 and xk+1 → xk as
k →∞.

If a fixed-point to S exists, the fixed-point residual will converge to zero. Next,
we establish what happens when no fixed-point to S exists.



Theorem 3 Suppose that S : Rn → Rn is nonexpansive, that fixS = ∅, that
inf ‖Sx − x‖ = c > 0, and that ᾱ ∈ (0, 1). Then the iteration (3)-(6) satisfies
rk → d and xk+1 − xk → ᾱd with ‖d‖ = c as k →∞.

This result relies heavily on [3, Proposition 4.5] (which is a specification of more
general results in [8, Corollary 1.5] and [1, Corollary 2.3]). It says that, in the
limit, the residual converges to a vector with smallest fixed-point residual. So
the iterates converge to a line. This can, e.g., be used to devise infeasibility
detection methods for these methods.

Next, we establish a rate bound for a difference of residuals.

Theorem 4 Suppose that S : Rn → Rn is nonexpansive and ᾱ ∈ (0, 1). Then
the iteration (3)-(6) satisfies

n∑
k=0

‖r̄k − rk‖22 ≤
ᾱ

1− ᾱ
‖r0‖22. (8)

Let knbest ∈ {0, . . . , n} be the iterate k (up to n) for which ‖r̄k−rk‖2 is smallest.
Then

‖r̄k
n
best−rk

n
best‖22 ≤

ᾱ

(n+ 1)(1− ᾱ)
‖r0‖22. (9)

If S is a δ-contraction with δ ∈ [0, 1), i.e., ‖Sx−Sy‖ ≤ δ‖x−y‖ for all x, y ∈ Rn,
stronger convergence results can be obtained.

Theorem 5 Assume that S : Rn → Rn is δ-contractive with δ ∈ [0, 1) and
ᾱ ∈ (0, 1). Then the iteration (3)-(6) satisfies

‖rk+1‖2 ≤ (1− ᾱ+ ᾱδ)‖rk‖2

for all iterations k.

So, the fixed-point residual converges linearly to zero (which it can since con-
tractive operators always have a unique fixed-point).

Remark 1 All results in this section are stated in the Euclidean setting with the
standard 2-norm. But they also hold in general finite-dimensional real Hilbert
space settings.

3 Computational cost

The fixed-point residual must be evaluated to carry out the line search test (7).
In the general case this requires us to evaluate the operator S, which has the
same cost as a full iteration of the algorithm. Therefore, in the general case it
may be too expensive to evaluate many (or even just more than one) candidate
step lengths αk compared to the savings in iterations due to the line search.



In this section we consider a special case in which the line search can be
carried out more efficiently, i.e., many candidate points along the ray can be
evaluated with low additional cost. Suppose that S = S2S1, where S2 : Rn →
Rn is cheap to evaluate compared to S1, and S1 : Rn → Rn is affine. The
algorithm (3)-(6) in this case becomes:

rk := S2S1x
k − xk (10)

x̄k := xk + ᾱrk (11)

r̄k := S2S1x̄
k − x̄k (12)

xk+1 := xk + αkr
k (13)

In between (12) and (13), we perform the line search test (7),

‖rk+1‖2 = ‖S2S1x
k+1 − xk+1‖2 ≤ (1− ε)‖r̄k‖2, (14)

for multiple candidate values of αk.
We now analyze the complexity, assuming that the cost of evaluating S2,

and vector-vector operations, are negligible (or at least, dominated by the cost
of evaluating S1). In one iteration with line search we need to compute S1x

k in
(10), S1x̄

k in (12), and S1(xk + αkr
k) for each candidate αk in (14). Since S1

is affine, i.e., of the form

S1(x) = Fx+ h (15)

with F ∈ Rn×n and h ∈ Rn, we have for any α,

S1(xk + αrk) = Fxk + h+ αFrk.

So once we evaluate F2x
k and F2r

k, we can evaluate S1(xk + αrk) for any
number of values of α, at the cost of only vector operations. In particular, we
can evaluate S1x̄

k in step (12), and S1x
k+1 for multiple values of αk in the line

search test (14), with no further evaluations of S1. We can express the first
three steps of the algorithm as

rk := S2(Fxk + h)− xk (16)

x̄k := xk + ᾱrk (17)

r̄k := S2

(
Fxk + h+ ᾱFrk

)
− x̄k (18)

which involves two evaluations of F (and two evaluations of S2), and some vector
operations. The next step is the line search, in which we evaluate the residual
r using

rk+1 = S2

(
Fxk + h+ αkFr

k
)
− (xk + αkr

k) (19)

for p candidate values of αk. Each of these involves a few vector operations,
and one evaluation of S2, since we use the cached values of Frk and Fxk. One



iteration costs 2 + p evaluations of S2, 2 evaluations of F , and order p vector
operations.

Finally, as observed above, we will have already evaluated the step (10) for
the next iteration, so one evaluation of F (and S2) does not count (or rather,
counts towards the next iteration). Thus the computational cost of one iteration
with p candidate values of αk is one evaluation of S1 (hence F ) and p + 1
evaluations of S2. If the cost of evaluating S1 dominates the cost of evaluating
S2 (and vector operations), the computational cost of the iteration with line
search is the same as the basic iteration without line search.

A variation. For some algorithms such as forward-backward splitting the
averaged iteration (1) is more conveniently written as

xk+1 := T2T1x
k (20)

where T2 : Rn → Rn and T1 : Rn → Rn. So, in this case (1−ᾱ)xk+ᾱS2S1x
k =

T2T1x
k. (The nominal ᾱ is hidden in the composition between T2 and T1.)

Instead of using S2S1x− x as residuals in (10)-(13), we can use ᾱ(S2S1x−
x) = T2T1x− x. An equivalent algorithm then becomes

rk := T2T1x
k − xk (21)

x̄k := xk + rk (22)

r̄k := T2T1x̄
k − x̄k (23)

xk+1 := xk + αkr
k (24)

where αk ∈ [1, αmax].
Now, let T1 be affine, i.e., of the form

T1x = Fx+ h. (25)

Then the steps (16)-(18) (with the xk+1 update) becomes

rk := T2(Fxk + h)− xk (26)

x̄k := xk + rk (27)

r̄k := T2

(
Fxk + h+ Frk

)
− x̄k (28)

xk+1 := xk + αkr
k (29)

The residual for the line search that is evaluated between (28) and (29) is com-
puted as

rk+1 = T2

(
Fxk + h+ αkFr

k
)
− (xk + αkr

k) (30)

for multiple candidate values of αk.



Evaluating affine operators. To evaluate the affine operator S1 : Rn → Rn
typically involves a matrix multiplication or a matrix inversion, where the matrix
is the same in all iterations.

There are two main methods for repeated matrix inversion. The first is
to factorize the matrix to be inverted once before the algorithm starts. Then
forward and backward solves are used in every iteration. The cost of the forward
and backward solves depends on the sparsity of the factors, but is typically more
than O(n) up to O(n2). The second option is to use an iterative method (with
warm start). This requires a number of multiplications with the matrix to invert
and is hence more expensive than O(n).

Assuming that the cost of evaluating S2 : Rn → Rn is O(n), the cost of
evaluating S1 dominates the one of evaluating S2 in this setting.

4 Optimization algorithms

Many popular optimization algorithms can be implemented with the proposed
line search method. In this section, we show how S, S2 and S1 (or T2 and T1)
look for some of these. Before this, we introduce some operators.

The proximal operator associated with a proper closed and convex f : Rn →
R ∪ {∞} is defined as

proxγf (z) := argmin
x
{f(x) + 1

2γ ‖x− z‖
2
2} (31)

where γ > 0. The reflected proximal operator is defined as

Rγf := 2proxγf − I. (32)

If f is the indicator function of a nonempty closed and convex set C, i.e.,

f(x) = ιC(x) :=

{
0 if x ∈ C
∞ else

(33)

then the proximal operator in (31) is a projection:

proxγf (z) = ΠC(z) := argmin
x∈C

‖x− z‖2 (34)

and the reflected proximal operator in (32) is RγιC = RιC = 2ΠC − I.

4.1 Forward-backward splitting

The forward-backward splitting method (see, e.g., [10]) solves composite opti-
mization problems of the form

minimize f(x) + g(x), (35)

where f : Rn → R is convex and differentiable with an L-Lipschitz continuous
gradient ∇f and g : Rn → R ∪ {∞} is proper closed and convex.



The forward-backward algorithm for this problem is

xk+1 := proxγg(x
k − γ∇f(xk)), (36)

where γ ∈ (0, 2
L ) is the step size and proxγg is defined in (31).

If γ ∈ (0, 2
L ), it can be shown (by combining [2, Proposition 4.33], [2, Propo-

sition 23.7, Remark 4.24)(iii)], and [11, Proposition 2.4] or [17, Proposition 3])
that

proxγg(I − γ∇f) = (1− ᾱ)I + ᾱS

with ᾱ = 2
4−γL , where

S = (1− 1
ᾱ )I + 1

ᾱproxγg(I − γ∇f)

is nonexpansive. So, the forward-backward splitting algorithm (36) is an aver-
aged iteration of a nonexpansive mapping with ᾱ = 2

4−γL . So, if γ ∈ (0, 2
L ), we

can do line search in forward-backward splitting.
We identify T2 = proxγg and T1 = (I−γ∇f) in (20). With these definitions,

forward-backward splitting with line search is implemented as (21)-(24).

T1 affine. The operator T1 = (I − γ∇f) is affine if f : Rn → R is convex
quadratic, i.e., if

f(x) = 1
2x

TPx+ qTx

with P ∈ Rn×n positive semi-definite and q ∈ Rn. The operator T1 becomes

T1 = (I − γP )x− γq.

Comparing to (25), we identify F = I − γP and h = −γq. With these F and h,
forward-backward splitting with line search can be implemented as in (26)-(29).

So a full iteration with line search needs only one multiplication with F =
(I − γP ). If in addition T2 = proxγg is cheap to evaluate, one full line search
iteration can be evaluated roughly at the same cost as a basic iteration of the
algorithm.

4.2 Douglas-Rachford splitting

The Douglas-Rachford splitting method [23] solves problems of the form

minimize f(x) + g(x),

where f : Rn → R ∪ {∞} and g : Rn → R ∪ {∞} are proper closed and
convex.

The algorithm is given by the following iteration

xk := proxγf (zk) (37)

yk := proxγg(2x
k − zk) (38)

zk+1 := zk + 2α(yk − xk) (39)



where γ is a positive scalar and α ∈ (0, 1).
Using the reflected proximal operator defined in (32) the Douglas-Rachford

algorithm can be written as

zk+1 := ((1− α)I + αRγgRγf )zk. (40)

The reflected proximal operators Rγg and Rγf are nonexpansive [2, Corol-
lary 23.10], and so is their composition RγgRγf .

The algorithm (40) is exactly on the form used in Section 3 where S2 = Rγg,
S1 = Rγf , S = RγgRγf , and ᾱ = α. With these definitions, Douglas-Rachford
with line search can be implemented as (10)-(13).

Note that Rγfz
k = 2xk − zk in (37)-(39), RγgRγf = 2yk − 2xk + zk and the

residual rk = RγgRγfz
k − zk = 2(yk − xk).

S1 affine. If S1 = Rγf is affine and S2 = Rγg is cheap to evaluate, the line
search can be done almost for free, see Section 3.

The operator S1 = Rγf = 2proxγf − I is affine if proxγf is affine, which it is
if f is of the form

f(x) =

{
1
2x

TPx+ qTx if Ax = b

∞ else

with P ∈ Rn×n positive semi-definite, q ∈ Rn, A ∈ Rm×n, and b ∈ Rm. (Any of
the quadratic or linear functions, or the affine constraint can be removed, and
the operator S1 is still affine.) The proximal and reflected proximal operators
of f become

proxγf (z) =
[
I 0

] [P + γ−1I AT

A 0

]−1 [
γ−1z − q

b

]
Rγf (z) = 2proxγf (z)− z = 2

[
I 0

] [P + γ−1I AT

A 0

]−1 [
γ−1z − q

b

]
− z

=: Fz + h

where F ∈ Rn×n and h ∈ Rn.
In this situation, the first three steps of the line search algorithm are (16)-

(18) with S2 = Rγg and the residual is (19). As shown in Section 3, we only
need one evaluation of F per full iteration.

Note that in practice, the matrix F is typically not stored explicitly. One

alternative is to factorize
[
P+γ−1I AT

A 0

]
before the algorithm starts. This fac-

torization is cached and used in all consecutive iterations to compute Frk (and
Fz0). Another option is to use an iterative method (with warm-start) to solve
the corresponding linear system of equations.



4.3 ADMM

The alternating direction method of multipliers [20, 15, 5] solves problems of
the form

minimize f(x) + g(z)
subject to Ax+Bz = c,

(41)

where f : Rn → R ∪ {∞} and g : Rm → R ∪ {∞} are proper closed convex,
and A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.

A standard form of ADMM (with scaled dual variable u and relaxation
α ∈ (0, 1)) is:

xk+1 = argmin
x
{f(x) + ρ

2‖Ax+Bzk − c+ uk‖22} (42)

xk+1
A = 2αAxk+1 − (1− 2α)(Bzk − c) (43)

zk+1 = argmin
z
{g(z) + ρ

2‖x
k+1
A +Bz − c+ uk‖22} (44)

uk+1 = uk + (xk+1
A +Bzk+1 − c) (45)

where α = 1
2 gives standard ADMM without relaxation. This form of ADMM

does not have a variable for which the algorithm is an averaged iteration of a
nonexpansive mapping.

In Appendix B it is shown that ADMM is Douglas-Rachford splitting applied
to a specific problem formulation. (This is a well known fact, see, e.g., [14, 13].)
Therefore, ADMM is α-averaged and can be written on the form

vk+1 = (1− α)vk + αR1R2v
k (46)

where R1 : Rp → Rp and R2 : Rp → Rp are reflected proximal operators.
These reflected proximal operators are given by (see (74) and (76) in Appendix B
where ρ = 1

γ ):

R1(v) = 2A argmin
x
{f(x) + ρ

2‖Ax− v − c‖
2
2} − 2c− v, (47)

R2(v) = −2B argmin
z
{g(z) + ρ

2‖Bz + v‖22} − v. (48)

The algorithm (46) (and therefore ADMM in (42)-(45)) can then be imple-
mented as (see Appendix B):

zk := argmin
z
{g(z) + ρ

2‖Bz + vk‖22} (49)

xk := argmin
x
{f(x) + ρ

2‖Ax+ 2Bzk + vk − c‖22} (50)

vk+1 := vk + 2α(Axk +Bzk − c) (51)

The iteration (46) is on the form discussed in Section 3 with S2 = R1,
S1 = R2, S = R1R2, and ᾱ = α. With these definitions, ADMM with line
search can be implemented as (10)-(13).

Note that R2v
k = −2Bzk−vk in (49)-(51), R1R2v

k = 2Axk−2c+2Bzk+vk,
and the residual rk = 2(Axk +Bzk − c) in (51).



R2 affine. If R2 is affine and R1 is cheap to evaluate, then line search can be
performed efficiently, see Section 3.

The operator R2 is affine if g is of the form

g(z) =

{
1
2z
TPz + qT z if Lz = b

∞ else

with P ∈ Rm×m positive semi-definite, q ∈ Rm, A ∈ Rs×m, and b ∈ Rs. The
operator R2 in (48) becomes

R2(v) =
[
−2B 0

] [P + ρBTB LT

L 0

]−1 [−(q + ρBT v)
b

]
− v

=: Fv + h

where F ∈ Rp×p and h ∈ Rp.
With these definitions of F and h, the first three steps of ADMM with line

search is (16)-(18) with S2 = R1 and the residual is (19). Therefore, only one
application of R2 (and F ) is needed per full line search iteration, see Section 3.

Also here, the matrix F is typically not stored explicitly. Instead, either a

cached factorization of
[
P+ρBTB LT

L 0

]
or an iterative method (with warm-start)

is used to compute Frk (and Fv0).

4.4 Consensus

The consensus algorithm [5, Section 7] solves problems of the form

minimize f(x) =

N∑
i=1

fi(x) (52)

where f : Rn → R ∪ {∞} and all fi : Rn → R ∪ {∞} are proper closed and
convex. An equivalent formulation is

minimize fi(xi) + ιC(x1, . . . , xN ) (53)

where the consensus constraint set C is

C = {(x1, . . . , xN ) ∈ Rn × · · · × Rn | x1 = · · · = xN}

and ιC is an indicator function defined in (33). That is, every xi ∈ Rn in (53)
is a local version of the global x ∈ Rn in (52).

We use the following formulation of the consensus algorithm:

xki := proxγfi(2z
k
av − zki ) (54)

zk+1
i := zki + (xki − zkav) (55)

where zav = 1
N

∑N
i=1 zi is the average of the zi’s.



This consensus algorithm is obtained by applying Douglas-Rachford splitting
with α = 1

2 to (53). (To use ADMM as in [5] would give an equivalent algorithm,
see [13], but without a variable for which the algorithm is an averaged iteration.)
Therefore, it is 1

2 -averaged and can be written on the form

zk+1 := 1
2 (zk +RγfRιCzk) = 1

2

(
zk +Rγf (2zkav − zk)

)
where z = (z1, . . . , zN ). Using local variables, it can instead be written as

zk+1
i := 1

2

(
zki +Rγfi(2z

k
av − zki )

)
for all i = {1, . . . , N}.

The local updates of the algorithm with line search become:

rki := Rγfi(2zav − zki )− zki (56)

z̄ki := zki + 1
2r
k
i (57)

r̄ki := Rγf (2z̄kav − z̄ki )− z̄ki (58)

zk+1
i := zki + αkr

k
i (59)

where either αk = 1
2 , or αk ∈ ( 1

2 , αmax] is chosen in accordance with (7), i.e.,
such that

‖rk+1‖2 ≤ (1− ε)‖r̄k‖2.

where rk = (rk1 , . . . , r
k
N ).

Note that the local residual rki in (56) is given by 2(xki − zkav) in (55) (and
similarly for r̄ki in (58)).

The operator RιC is always affine. Therefore, a full iteration with line search
can be performed with only one evaluation of RιC , see Section 3. However, RιC
is often cheaper to evaluate than Rγf . So, to evaluate a candidate point in the
line search involves the costly operator Rγf and may be almost as costly as a
full iteration of the algorithm.

4.5 Alternating projection methods

We consider the problem of finding a point in the intersection of two nonempty
closed and convex sets C and D. That is, we want to find any x ∈ C ∩D. This
can equivalently be written as solving the optimization problem

minimize ιC(x) + ιD(x) (60)

where ιC : Rn → R ∪ {∞} and ιD : Rn → R ∪ {∞} are indicator functions
(defined in (33)) for C and D respectively .

There are numerous algorithms for finding such x. We focus on alternating
projections and Douglas-Rachford splitting.



Alternating projections. The alternating projections [27] is given by

xk+1 = ΠCΠDx
k. (61)

Since ΠC and ΠD are 1
2 -averaged [2, Proposition 23.7], the composition is

2
3 -averaged [11, Proposition 2.4] or [17, Proposition 3]. Therefore, alternating
projections is an averaged iteration with ᾱ = 2

3 and of the form xk+1 = T2T1x
k

where T2 = ΠC and T1 = ΠD.
Since alternating projections is an instance of (20), we can implement alter-

nating projections with line search as (21)-(24) (with T2 = ΠC and T1 = ΠD).

Douglas-Rachford. The problem (60) can also be solved using Douglas-
Rachford splitting. The algorithm becomes

zk+1 = (1− α)zk + αRιCRιDz
k

where α ∈ (0, 1). That is, we have a composition of two reflections.
This algorithm is treated in Section 4.2 where we identified RιC = S2 and

RιD = S1.

Remark 2 Note that the γ parameter used in standard Douglas-Rachford is not
present here (since the projection is independent of this). Therefore, the only
parameter to be tuned is α, i.e., the one we perform line search over.

D affine. When D is affine, i.e., D = {x | Ax = b}, then

ΠD(x) =
[
I 0

] [I AT

A 0

]−1 [
x
b

]
,

RιD (x) = 2ΠD(x)− x =
[
2I 0

] [I AT

A 0

]−1 [
x
b

]
− x.

Both these operators are affine.
Assume that ΠC (and hence RιC = 2ΠC − I) is cheap to evaluate. Then

the line search can be implemented in alternating projections and in Douglas-
Rachford splitting with almost no additional cost compared to a their basic
iterations (see Section 3).

Alternating projections with line search is implemented as (26)-(29) with
T2 = PC and Fx + h = ΠD. The residual used for the line search is (30). The
three first steps of Douglas-Rachford with line search is (16)-(18) with S2 = RιC
and Fx+ h = RιD . The residual used for the line search is (19).

4.6 Other algorithms

There are numerous other optimization algorithms that are averaged iterations
of some nonexpansive mapping. For instance, forward-backward splitting for
solving monotone inclusion problems and for solving Fenchel dual problems,



as well as projected and standard gradient methods fit the framework. The
line search can also be used in Douglas-Rachford splitting for solving monotone
inclusion problems. Also, preconditioned ADMM methods [9] can be interpreted
as an averaged iteration of some nonexpansive mapping [21]. The recently
proposed three operator splitting method in [12] is another example. Finally, the
proximal point algorithm [25] for finding the zero of one maximally monotone
operator is an averaged iteration. Actually, an algorithm is an averaged iteration
of a nonexpansive mapping if and only if it is an instance of the proximal point
method. Many of the methods mentioned above are discussed in [26].

5 Line search variations

There are numerous ways to create variations of the line search method. In this
section, we list some that can improve practical convergence.

Line search activation. We do not need to perform line search in every
iteration. Line search can be used in a subset of the iterations only. If a cheap
test can indicate if a line search is beneficial, this can be used as activation rule
for the line search.

Let vk = xk − xk−1 be the difference between consecutive iterates. We
have observed that if vk+1 and vk are almost aligned, large step lengths αk are
typically accepted. If they are not aligned, we are typically restricted to smaller
αk. So, an activation rule could be that the cosine between the vectors vk+1

and vk is large, i.e., that

(vk+1)T vk

‖vk+1‖2‖vk‖2
> 1− ε̂ (62)

for some small ε̂ > 0.
This is particularly useful for methods where the affine operator S1 is not

dominating (as in consensus). Even for methods where S1 is dominating, this
can be useful. In some cases we get fewer iterations when this activation rule is
used, than if not.

Other candidate points. We are not restricted to perform the line search
along the residual direction rk. We can accept any candidate point x̂k+1 as the
next iterate if its fixed-point residual is smaller than for the nominal point.

We introduce the residual function

r(x) = Sx− x. (63)

Then we can replace the test in (7) with

‖r(x̂k+1)‖2 ≤ (1− ε)‖r(x̄k)‖2. (64)



The full algorithm becomes

rk := Sxk − xk

x̄k := xk + ᾱrk

r̄k := Sx̄k − x̄k

xk+1 :=

{
x̂k+1 if (64) holds

xk + ᾱrk else

It is straightforward to verify that all convergence results for the residuals rk in
Section 2.2 still hold in this more general setting.

One special case is to perform line search along another direction dk. Then
the candidate point is x̂k+1 = xk + αkd

k. To evaluate the test in (64), we need
to compute S2S1(xk +αkd

k). One evaluation is in the general case as expensive
as one iteration of the method. However, if dk = rk and S1 is affine, we saw
in Section 3 that no additional S1 applications are needed to perform the line
search. If the direction dk instead is a linear combination of previous residuals,
i.e., dk =

∑k
i=0 θir

i where θi ∈ R, also no additional applications of S1 are
needed due to it being affine.

Another line search condition. Here, we present another line search test
that does not compare progress with a nominal step, but with the last iterate
that was decided by a line search. The progress is not measured with the residual
function r in (63), but with a different function s.

To state the line search test, we let ik be the index of the last iterate (up to
the current iterate k) that was decided by a line search, i.e., that was not the
result of a nominal step. Then any candidate point x̂k+1 can be accepted as the
next iterate if the following conditions hold

‖s(x̂k+1)‖2 ≤ (1− ε)‖s(xik)‖2 and ‖r(x̂k+1)‖2 ≤ C‖s(x̂k+1)‖2,

where C is a positive scalar, ε is a small positive scalar, and r is the residual
function in (63). If these conditions are not satisfied, the algorithm instead
takes a nominal step xk+1 = xk + ᾱrk.

The convergence results in this setting become weaker. The rate results in
Theorem 4 and 5 cannot be guaranteed. The results concerning the residual
sequence rk in Theorem 1, Theorem 2, and Theorem 3 can, however, be shown
to hold. Let k0, k1, k2, . . . be the iteration indices whose iterates have been
decided by accepting a candidate line search point. Then

‖s(xkp)‖2 ≤ (1− ε)‖s(xkp−1)‖2 ≤ (1− ε)p‖s(xk0)‖2,

which implies for iteration indices k ∈ [kp+1, kp] that

‖r(xk)‖2 ≤ ‖r(xkp)‖2 ≤ C‖s(xkp)‖2 ≤ (1− ε)p‖s(xk0)‖2,

since {‖r(xk)‖2} is a nonincreasing sequence in the basic method. If the tests
are satisfied an infinite number of times, then p → ∞ and ‖r(xk)‖2 → 0 as



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·104

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

DR w/o ls
DR w/ ls

iteration

‖S
x
−
x
‖ 2

Figure 1: Fixed-point residual vs iteration for Douglas-Rachford with and with-
out line search.

k → ∞. If the tests are satisfied a finite number of times (which they are if,
e.g., infx ‖Sx − x‖2 > 0), the algorithm reduces to the basic iteration after a
finite number of steps. Using these insights, the proofs to the results concerning
the residual rk in Theorem 1, Theorem 2, and Theorem 3 can easily be modified
to show that the results hold also in this setting.

To improve performance, one might want to add a condition that accepts
a candidate point if there is an improvement compared to the previous iterate,
i.e., if the following condition is satisfied

‖s(x̂k+1)‖2 ≤ (1− ε)‖s(xk)‖2.

This condition is, however, not needed to guarantee convergence of the method.

6 Numerical examples

6.1 Nonnegative least squares

To evaluate the efficiency of the line search, we solve a nonnegative least squares
problem using the Douglas-Rachford algorithm. The problem is of the form

minimize ‖Ax− b‖22
subject to x ≥ 0

where A ∈ R1000×1000 is dense and b ∈ R1000.
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Figure 2: Step length αk vs iteration in the line search method.

The entries in the data matrix A are drawn from a normal distribution with
zero mean and unit variance. Then, each row of A is scaled with a uniformly
distributed random number between 0.1 and 1.1 to worsen the conditioning of
the problem. The entries in b are drawn from a normal distribution with zero
mean and unit variance.

To fit the Douglas-Rachford framework, we let f(x) = ‖Ax−b‖22 and g(x) =
ι(x ≥ 0). The operator proxγf is affine and the operator proxγg is (very)
cheap to evaluate compared to proxγf . Therefore, this problem is on the form
discussed in Section 3. So an iteration with line search is just slightly more
expensive than performing a basic iteration of the algorithm.

In the line search test (14), we let ε = 0.03 (which may or may not be a good
choice in other examples) and αk is decided using back-tracking from αmax = 50
with a factor 1/1.4 for each candidate α. The back-tracking is stopped either
when the test is satisfied, or when the candidate α ≤ ᾱ, in which case αk = ᾱ.
This gives a worst case of 14 line search test points.

The computational cost for proxγf is roughly 2n2 after an initial matrix
factorization. The cost for proxγg is, on the other hand, roughly n. To evaluate
the line search test, no additional proxγf computations are needed. But about
10 vector additions or multiplications with scalars and one proxγg is needed for
every candidate point (the same as in the standard algorithm). So, evaluating
one candidate point costs approximately 10n. A worst case of 14 candidate
points costs 140n for a full line search. Comparing this to the cost for one basic
iteration, 2n2 + 10n, gives, when n = 1000, that one iteration with line search
costs, in the worst case, 1.07 times a basic iteration.

Figure 1 shows the fixed-point residual vs iteration number for Douglas-
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Figure 3: The left figure shows one iteration of alternating projections. The
residual in this figure is r1 = x2− x1. In the right figure, an alternating projec-
tions step with line search is performed. The residual direction is shown in red.
We evaluate six candidate points x1

i , i ∈ {1, . . . , 6}, along this line. (The points
themselves, ΠDx

1
i and ΠCΠDx

1
i are marked with crosses in the figure.) The

norm of each residual r1
i = ΠCΠDx

1
i −x1

i is printed in the figure. The 4th point
x1

4 has smallest residual norm. This corresponds to αk = 19.75. Another option
is to choose the farthest candidate point with residual norm smaller than ‖r1

1‖.
This holds for the fifth point with αk = 26. Both these choices are convergent.
In this case we get closer to the intersection point by choosing the farthest point.

Rachford with and without line search (the Douglas-Rachford parameters are
chosen to be ᾱ = 1

2 and γ = 3). For this example, the number of iterations is
reduced by roughly a factor four. The improvement in execution time is roughly
the same because of the modest 7% increase in computational cost due to the
line search.

Figure 2 shows what values αk that are chosen in the line search. An αk = ᾱ
corresponds to a standard Douglas-Rachford iteration. In 175 out of the 2800
iterations, an αk > ᾱ was selected. Among these 158 had αk > 5.

6.2 An alternating projections example

To visualize the line search, we solve a two dimensional feasibility problem using
alternating projections.

We want to find a point in the intersection between two sets C = {x ∈
R2 | ‖x‖ ≤ 1} and D = {x ∈ R2 | x = (x1, x2), x1 = 1}. So C is the unit circle,
and D is a vertical line that touches the boundary of C at (1, 0). The unique
intersection point is x? = (1, 0).

In Figure 3 we show one iteration of the standard alternating projections
algorithm and one iteration with line search. In Figure 4 we show 50 steps of
alternating projections.
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Figure 4: This figure shows 50 iterations of alternating projections. Comparing
to Figure 3 reveals that roughly 50 steps of alternating projections give the same
progression as one step with line search (when the farthest acceptable point is
chosen) in this example.

We see that the progression in 50 steps of alternating projections is roughly
the same as the progression of one step with line search (when the farthest
acceptable candidate point is chosen). The line search scheme does, on the
other hand, compute six candidate points to advance this far. (Or really five,
since the first is the basic next step.) So, we gain roughly a factor 10 in this
step.

This is just a simple example where both projections are very cheap. If the
cost of projecting onto the subspace is dominating the other cost of the other
projection. Then the cost of performing one iteration with line search is roughly
the same as the cost of one basic iteration. In such cases, we can gain a lot by
performing line search.
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A Proofs to results in Section 2

A.1 Proof to Theorem 1

First, we show that ‖rk‖2 = ‖xk − Sxk‖2 → c as k → ∞. We show this by
considering the cases αk = 1 and αk > 1 separately.

First, we consider the case αk = 1. For convenience, we introduce the
operator T = (1− ᾱ)I + ᾱS. Then the update for x̄k in (4) can be written as

x̄k = xk + ᾱ(Sxk − xk) = (1− ᾱ)xk + ᾱSxk = Txk.

Noting that ‖x− Tx‖2 = ‖x− (1− ᾱ)x− ᾱSx‖2 = ᾱ‖x− Sx‖2 implies

‖rk+1‖2 = ‖r̄k‖2 = ‖x̄k − Sx̄k‖2 = 1
ᾱ‖x̄

k − T x̄k‖2 = 1
ᾱ‖Tx

k − TTxk‖2.

Therefore, since T is nonexpansive:

‖rk+1‖2 ≤ 1
ᾱ‖x

k − Txk‖2 = ‖xk − Sxk‖2 = ‖rk‖2. (65)

Next, we consider the case where αk > 1. Since ‖r̄k‖2 ≤ ‖rk‖2, we get from
the line search test (7) that

‖rk+1‖2 ≤ (1− ε)‖r̄k‖2 ≤ (1− ε)‖rk‖2. (66)

So {‖rk‖2}∞k=1 is a decreasing sequence which is bounded below (by 0). Hence
it converges. This completes the proof.

A.2 Proof to Theorem 2

Combining (65) and (66), we get

‖rk+1‖2 ≤ (1− ε)k0‖r0‖2 (67)

where k0 is the number of times that αk satisfies αk > 1. If k0 → ∞ as
k → ∞, then ‖rk+1‖2 → 0 as k → ∞. On the other hand, if k0 stays finite as
k → ∞, there exists a finite kmax after which the line search is not activated
again. Then for k ≥ kmax, the algorithm reduces to xk+1 = Txk, which satisfies
‖rk‖2 = ‖xk − Sxk‖2 = 1

ᾱ‖x
k − Txk‖2 → 0 as k → ∞, see [2, Theorem 5.14].

This concludes the proof.

A.3 Proof to Theorem 3

Combining (65) and (66), we get

‖rk+1‖2 ≤ (1− ε)k0‖r0‖2 (68)

where k0 is the number of times that αk satisfies αk > 1. If k0 →∞ as k →∞,
then ‖rk+1‖2 → 0 as k →∞. This is a contradiction to that inf ‖Sx− x‖2 > 0.



Hence k0 must be finite and there exists a kmax after which the algorithm reduces
to the basic averaged iteration.

Let T = (1 − ᾱ)I + ᾱS, xkmax = x̃0 and ∆k = k − kmax. Then a straight-
forward generalization of [3, Proposition 4.5] to allow for averaged operators
(instead of only firmly nonexpansive or 1

2 -averaged) gives that

‖ᾱrk − v‖ = ‖xk − xk+1 − v‖ = ‖T∆kx̃0 − T∆k+1x̃0 − v‖ → 0

for a specific v. Therefore rk → 1
ᾱv =: d as k → ∞. Further, xk+1 − xk =

ᾱrk → ᾱd as k →∞.
The v is the infimal displacement vector (see [3, Fact 2.2]) that satisfies

v ∈ ran(I − T ) (i.e., v is in the closure of the range of I − T ) and ‖v‖2 =
infx ‖x− Tx‖2. Therefore ‖d‖2 = 1

ᾱ‖v‖2 = 1
ᾱ infx ‖x− Tx‖2 = infx ‖x− Sx‖2.

This concludes the proof.

A.4 Proof to Theorem 4

We need the following lemma for this proof.

Lemma 1 Suppose that S : Rn → Rn nonexpansive and that ᾱ ∈ (0, 1). Then
every iteration of (3)-(6) satisfies

ᾱ(1− ᾱ)‖r̄k−rk‖22 ≤ ‖xk − x̄k‖22 − ‖xk+1 − x̄k+1‖22. (69)

Proof. Let T = (1 − ᾱ)I + ᾱS. Then T is ᾱ-averaged, and it satisfies [2,
Proposition 4.25(iii)]

1−ᾱ
ᾱ ‖(I − T )x̄k − (I − T )xk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22.

Now, since (I−T )x = (I−(1−ᾱ)I−ᾱS)x = ᾱ(I−S)x, we have (I−T )xk = ᾱrk

and (I − T )x̄k = ᾱr̄k. Therefore

ᾱ(1− ᾱ)‖r̄k − rk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22.

The algorithm chooses either αk = ᾱ or αk > ᾱ. If αk = ᾱ, we have Txk =
x̄k = xk+1 and T x̄k = Txk+1 = x̄k+1. Therefore

ᾱ(1− ᾱ)‖r̄k − rk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22
= ‖xk − x̄k‖22 − ‖xk+1 − x̄k+1‖22.

If instead αk > ᾱ, we get

ᾱ(1− ᾱ)‖r̄k − rk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22
= ‖xk − x̄k‖22 − ‖x̄k − T x̄k‖22
≤ ‖xk − x̄k‖22 − 1

(1−ε)2 ‖x
k+1 − Txk+1‖22

≤ ‖xk − x̄k‖22 − ‖xk+1 − Txk+1‖22
= ‖xk − x̄k‖22 − ‖xk+1 − x̄k+1‖22



where the second inequality holds due to the line search test in (7) and the third
inequality holds since ε ∈ (0, 1). Therefore (69) holds for all k and the proof is
complete. �

Now we are ready to prove the result. A telescope summation of (69) gives

ᾱ(1− ᾱ)

n∑
k=0

‖r̄k − rk‖22 ≤ ‖x0 − x̄0‖22 = ᾱ2‖r0‖22.

This proves (8). To prove (9), we note that knbest ∈ {0, . . . , n} is the iteration k
(up till n) with smallest ‖r̄k − rk‖2. Therefore

(n+ 1)‖r̄k
n
best − rk

n
best‖22 ≤

n∑
k=0

‖r̄k − rk‖22 ≤
ᾱ

1− ᾱ
‖r0‖22.

This concludes the proof.

A.5 Proof to Theorem 5

First, we introduce T = (1 − ᾱ)I + ᾱS which is ᾱ-averaged, and satisfies ‖x −
Sx‖2 = 1

ᾱ‖x−Tx‖2. Let’s consider the case when αk = ᾱ. Then x̄k = Txk and

‖rk+1‖2 = ‖r̄k‖2 = ‖x̄k − Sx̄k‖2 = 1
ᾱ‖x̄

k − T x̄k‖2 = 1
ᾱ‖Tx

k − TTxk‖2
= 1

ᾱ‖(1− ᾱ)(xk − Txk) + ᾱ(Sxk − STxk)‖2.

The triangle inequality gives that

‖rk+1‖2 ≤ 1
ᾱ ((1− ᾱ)‖xk − Txk‖2 + ᾱ‖Sxk − STxk‖2)

≤ 1
ᾱ ((1− ᾱ)‖xk − Txk‖2 + ᾱδ‖xk − Txk‖2)

= 1
ᾱ (1− ᾱ+ ᾱδ)‖xk − Txk‖2

= (1− ᾱ+ ᾱδ)‖xk − Sxk‖2
= (1− ᾱ+ ᾱδ)‖rk‖2.

Next, we consider the case when αk > ᾱ. Since ‖r̄k‖2 ≤ (1− ᾱ+ ᾱδ)‖rk‖2 the
line search test (7) implies that

‖rk+1‖2 ≤ (1− ε)‖r̄k‖2 ≤ (1− ε)(1− ᾱ+ ᾱδ)‖rk‖2 ≤ (1− ᾱ+ ᾱδ)‖rk‖2.

That is, the algorithm is linearly convergent with factor (at most) (1− ᾱ+ ᾱδ)
in both situations. This concludes the proof.

B ADMM derivation

In this section, we show the equivalence between the standard ADMM formu-
lation (42)-(45) and the ADMM version used for line search (49)-(51). We also



show that the version used for line search, (49)-(51), is an α-averaged iteration
of a nonexpansive mapping.

We do this by showing that the ADMM iterations can be derived by applying
Douglas-Rachford splitting to a specific problem formulation. This derivation is
not new [14, 13], but we include it here for completeness and to explicitly arrive
that the ADMM variation (49)-(51) that we need for the line search.

ADMM solves problems of the form

minimize f(x) + g(z)
subject to Ax+Bz = c

(70)

where f : Rn → R ∪ {∞} and g : Rm → R ∪ {∞} are proper closed convex,
A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.

Using image functions (that are also called infimal postcompositions) defined
as

(L . ψ)(y) = inf{ψ(x) | Lx = y}

where L ∈ Rn×m is a linear operator and ψ : Rn → R ∪ {∞} is a proper
function, it is straightforward to verify that (70) is equivalent to

minimize (−A . f)(−u− c) + (−B . g)(u).

Let p1(u) = (−A . f)(−u − c) and p2(u) = (−B . g)(u) to get the equivalent
problem

minimize p1(u) + p2(u). (71)

To arrive at the standard ADMM iterations, we apply Douglas-Rachford split-
ting to (71). The algorithm becomes

vk+1 = (1− α)vk + αRγp1Rγp2v
k (72)

where the reflected proximal operators Rγp1 and Rγp2 are given by Rγp1 =
2proxγp1 − I and Rγp2 = 2proxγp2 − I. Under the assumption that the infimum
over x is attained in the following prox evaluation, we have

proxγp1(v) = argmin
u
{inf
x
{f(x) | −Ax = −u− c}+ 1

2γ ‖u− v‖
2
2}

= A argmin
x
{f(x) + 1

2γ ‖Ax− v − c‖
2
2} − c. (73)

The reflected proximal operator becomes

Rγp1(v) = 2A argmin
x
{f(x) + 1

2γ ‖Ax− v − c‖
2
2} − 2c− v. (74)

Again, assuming that the following infimum is attained, we get

proxγp2(v) = argmin
u
{inf
z
{g(z) | −Bz = u}+ 1

2γ ‖u− v‖
2
2}

= −B argmin
z
{g(z) + 1

2γ ‖Bz + v‖22} (75)



and reflected proximal operator

Rγp2(v) = −2B argmin
z
{g(z) + 1

2γ ‖Bz + v‖22} − v. (76)

Using the prox expressions (73) and (75), and defining ρ = 1
γ , we find that the

Douglas-Rachford algorithm (37)-(39) applied to (71) becomes

zk = argmin
z
{g(z) + ρ

2‖Bz + vk‖22} (77)

xk = argmin
x
{f(x) + ρ

2‖Ax+ 2Bzk + vk − c‖22} (78)

vk+1 = vk + 2α(Axk +Bzk − c) (79)

This is exactly the iteration (49)-(51) which is used in the line search. This
algorithm is equivalent to ADMM, but keeps the vk variables in which the algo-
rithm can be interpreted as an averaged iteration of a nonexpansive mapping,
see (72).

To derive the ADMM iterations (42)-(45), we next substitute vk+1 = uk +
2α(Axk − c) − (1 − 2α)Bzk. Let xkA = 2αAxk − (1 − 2α)(Bzk − c) to get
vk+1 = uk + xkA − c and

zk = argmin
z
{g(z) + ρ

2‖x
k−1
A +Bz − c+ uk−1‖22}

xk = argmin
x
{f(x) + ρ

2‖Ax+ 2Bzk + uk−1 + xk−1
A − 2c‖22}

uk = uk−1 + (xk−1
A +Bzk − c)

since vk+1 = uk + xkA − c inserted in (79) implies

uk = uk−1 + xk−1
A − xkA + 2α(Axk +Bzk − c)

= uk−1 + xk−1
A − (2αAxk − (1− 2α)(Bzk − c)) + 2α(Axk +Bzk − c)

= uk−1 + (xk−1
A +Bzk − c)

(This implies that vk = uk − Bzk.) Next, insert the third equation into the
second to get

zk = argmin
z
{g(z) + ρ

2‖x
k−1
A +Bz − c+ uk−1‖22}

xk = argmin
x
{f(x) + ρ

2‖Ax+Bzk − c+ uk‖22}

uk = uk−1 + (xk−1
A +Bzk − c)

Now, change order of the xk update and the uk update and move the xk update
to the first line and insert xk−1

A to get

xk−1 = argmin
x
{f(x) + ρ

2‖Ax+Bzk−1 − c+ uk−1‖22}

xk−1
A = 2αAxk−1 − (1− 2α)(Bzk−1 − c)
zk = argmin

z
{g(z) + ρ

2‖x
k−1
A +Bz − c+ uk−1‖22}

uk = uk−1 + (xk−1
A +Bzk − c)



Now, let xk → xk+1 and xkA → xk+1
A to get

xk = argmin
x
{f(x) + ρ

2‖Ax+Bzk−1 − c+ uk−1‖22}

xkA = 2αAxk − (1− 2α)(Bzk−1 − c)
zk = argmin

z
{g(z) + ρ

2‖x
k
A +Bz − c+ uk−1‖22}

uk = uk−1 + (xkA +Bzk − c)

Letting k → k + 1 gives ADMM on the standard form (42)-(45).

Remark 3 ADMM can also be derived by applying Douglas-Rachford to the
Fenchel dual of (70), see [14]. The Fenchel dual is

minimize f∗(−ATµ) + cTµ+ g∗(−BTµ).

Letting d1(µ) := f∗(−ATµ) + cTµ and d2(µ) := g∗(−BTµ), this is equivalent to

minimize d1(µ) + d2(µ).

It holds that p∗1 = d1 and p∗2 = d2, see [2, Corollary 15.28]. It is also known that
Douglas-Rachford when applied to minimize p1 + p2 is equivalent to applying
Douglas-Rachford to minimize p∗1 +p∗2 (which is d1 +d2), see [13]. Therefore we
can also apply Douglas-Rachford to this dual formulation to get ADMM. This
derivation is longer and therefore not used here.


