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Abstract. Douglas-Rachford splitting is an algorithm that solves composite monotone inclusion
problems, in which composite convex optimization problems is a subclass. Recently, several authors
have shown local and global convergence rate results for Douglas-Rachford splitting under strong
monotonicity, Lipschitz continuity, and cocoercivity assumptions. Most of these focus on the convex
optimization setting. In the more general monotone inclusion setting, Lions and Mercier showed a
linear convergence rate bound when one of the two operators is strongly monotone and Lipschitz
continuous. This bound is not tight, meaning that no problem from the considered class converges
exactly with that rate. In this paper, we prove tight global linear convergence rates for that class
of problems. We also provide tight linear convergence rate bounds when one of the operators is
strongly monotone and cocoercive, and when one of the operators is strongly monotone and the
other is cocoercive. Also these bounds are in the general monotone inclusion setting and the first
such results in their respective settings.
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1. Introduction. Douglas-Rachford splitting [,] is an algorithm that solves
monotone inclusion problems of the form

0 ∈ Ax+Bx

where A and B are maximally monotone operators. A class of problems that falls
under this category is composite convex optimization problems of the form

minimize f(x) + g(x)(1.1)

where f and g are proper, closed, and convex functions. This holds since the sub-
differential of proper, closed, and convex functions are maximally monotone opera-
tors, and since Fermat’s rule says that the optimality condition for solving () is
0 ∈ ∂f(x)+∂g(x), under a suitable constraint qualification. The algorithm has shown
great potential in many applications such as signal processing [], image denoising [],
and statistical estimation [] (where the dual algorithm ADMM is discussed).

It has long been known that Douglas-Rachford splitting converges under quite
mild assumptions, see [,,]. However, the rate of convergence in the general
case has just recently been shown to be O(1/k), [,,]. For general maximal mono-
tone operator problems, where one of the operators is strongly monotone and Lipschitz
continuous, Lions and Mercier showed in [] that the Douglas-Rachford algorithm
enjoys a linear convergence rate. To the author’s knowledge, this was the sole linear
convergence rate results for a long period of time for these methods. Recently, how-
ever, many works have shown linear convergence rates for Douglas-Rachford splitting
and its dual version, ADMM, see, [,,,,,,,,,,,,,,,].
The works in [,,,,] concern local linear convergence under different as-
sumptions. The works in [,,] consider distributed formulations, while the
works in [,,,,,,,,,,] show global convergence rate bounds
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under various assumptions. Of these, the works in [,,] show tight linear conver-
gence rate bounds. The works in [,] show tight convergence rate results for problem
of finding a point in the intersection of two subspaces. In [] it is shown that the
linear convergence rate bounds in [] (which are generalizations of the bounds in [])
are tight for composite convex optimization problems where one function is strongly
convex and smooth. All these results, except the Lions and Mercier one, are stated in
the convex optimization setting. In this paper, we will provide tight linear convergence
rate bounds for monotone inclusion problems.

We consider three different sets of assumptions under which we provide linear
convergence rate bounds. In all cases, the properties of Lipschitz continuity or coco-
ercivity, and strong monotonicity, are attributed to the operators. In the first case,
we assume that one operator is strongly monotone and the other is cocoercive. In the
second case, we assume that one operator is both strongly monotone and Lipschitz
continuous. This is the setting considered by Lions and Mercier in [], where a non-
tight linear convergence rate bound is presented. In the third case, we assume that
one operator is both strongly monotone and cocoercive. We show in all these settings
that our bounds are tight, meaning that there exists problems from the respective
classes that converge exactly with the provided rate bound. In the second and third
cases, the rates are tight for all feasible algorithm parameters, while in the first case,
the rate is tight for many algorithm parameters.

2. Background. In this section, we introduce some notation and define some
operator and function properties.

2.1. Notation. We denote by R the set of real numbers and R := R ∪ {∞}
denotes the extended real line. Throughout this paper H denotes a separable real
Hilbert space. Its inner product is denoted by 〈·, ·〉, the induced norm by ‖ ·‖, and the
identity operator by Id. We denote by {φi}Ki=1 any orthonormal basis in H, where K
is the dimension of H (possibly ∞). The gradient to f : X → R is denoted by ∇f
and the subdifferential operator to f : X → R is denoted by ∂f and is defined as
∂f(x1) := {u | f(x2) ≥ f(x1)+〈u, x2−x1〉 for all x2 ∈ X}. The conjugate function of
f is denoted and defined by f∗(y) , supx {〈y, x〉 − f(x)}. The power set of a set X ,
i.e., the set of all subsets of X , is denoted by 2X . The graph of an (set-valued) operator
A : X → 2Y is defined and denoted by gphA = {(x, y) ∈ X×Y | y ∈ Ax}. The inverse
operator A−1 is defined through its graph by gphA−1 = {(y, x) ∈ Y × X | y ∈ Ax}.
The identity operator is denoted by Id and the resolvent of a monotone operator A
is defined and denoted by JA = (Id + A)−1. Finally, the class of closed, proper, and
convex functions f : H → R is denoted by Γ0(H).

2.2. Operator properties. Definition 1 (Strong monotonicity). Let σ > 0.
An operator A : H → 2H is σ-strongly monotone if

〈u− v, x− y〉 ≥ σ‖x− y‖2

holds for all (x, u) ∈ gph(A) and (y, v) ∈ gph(A).
The operator is merely monotone if σ = 0 in the above definition. In the following

three definitions, we state some properties for single-valued operators T : H → H.
We state the properties for operators with full domain, but they can also be stated
for operators with any nonempty domain D ⊆ H.

Definition 2 (Lipschitz continuity). Let β ≥ 0. A mapping T : H → H is
β-Lipschitz continuous if

‖Tx− Ty‖ ≤ β‖x− y‖



Tight Linear Convergence Rate Bounds for Douglas-Rachford Splitting 3

holds for all x, y ∈ H.

Definition 3 (Nonexpansiveness). A mapping T : H → H is nonexpansive if
it is 1-Lipschitz continuous.

Definition 4 (Contractiveness). A mapping T : H → H is δ-contractive if it
is δ-Lipschitz continuous with δ ∈ [0, 1).

Definition 5 (Averaged mappings). A mapping T : H → H is α-averaged
if there exists a nonexpansive mapping R : H → H and α ∈ (0, 1) such that T =
(1− α)Id + αR.

From [, Proposition 4.25], we know that an operator T : H → H is α-averaged
if and only if it satisfies

1−α
α ‖(Id− T )x− (Id− T )y‖2 + ‖Tx− Ty‖2 ≤ ‖x− y‖2(2.1)

for all x, y ∈ H.

Definition 6 (Cocoercivity). Let β > 0. A mapping T : H → H is 1
β -cocoercive

if

〈Tx− Ty, x− y〉 ≥ 1
β ‖Tx− Ty‖

2

holds for all x, y ∈ H.

3. Preliminaries. In this section, we state and show preliminary results that
are needed to prove the linear convergence rate bounds. We state some lemmas that
describe how cocoercivity, Lipschitz continuity, as well as averagedness relate to each
other. We also introduce negatively averaged operators, T , that are defined by that −T
is averaged. We show different properties of such operators, including that averaged
maps of negatively averaged operators are contractive. This result will be used to
show linear convergence in case one where, the strong monotonicity and Lipschitz
continuity properties are split between the operators.

3.1. Useful lemmas. Proofs to the following three lemmas are found in Ap-
pendix.

Lemma 1. Assume that β > 0 and let T : H → H. Then 1
2β -cocoercivity of

βId + T is equivalent to β-Lipschitz continuity of T .

Lemma 2. Assume that β ∈ (0, 1). Then 1
β -cocoercivity of R : H → H is

equivalent to β
2 -averagedness of T = R+ (1− β)Id.

Lemma 3. Let T : H → H be δ-contractive with δ ∈ [0, 1). Then R =
(1−α)Id+αT is contractive for all α ∈ (0, 2

1+δ ). The contraction factor is |1−α|+αδ.

For easier reference, we also record special cases of some results in [] that will
be used later. Specifically, we record, in order, special cases of [, Proposition 4.33],
[, Proposition 4.28], and [, Proposition 23.11].

Lemma 4. Let β ∈ (0, 1) and let T : H → H be 1
β -cocoercive. Then (Id− T ) is

β
2 -averaged.

Lemma 5. Let T : H → H be α-averaged with α ∈ (0, 12 ). Then (2T − Id) is
2α-averaged.

Lemma 6. Let A : H → 2H be maximally monotone and σ-strongly monotone
with σ > 0. Then JA = (Id +A)−1 is (1 + σ)-cocoercive.
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3.2. Negatively averaged operators. In this section we define negatively av-
eraged operators and show various properties for these.

Definition 7. An operator T : H → H is θ-negatively averaged with θ ∈ (0, 1)
if −T is θ-averaged.

This definition implies that an operator T is θ-negatively averaged if and only if
it satisfies

T = −((1− θ)Id + θR̄) = (θ − 1)Id + θR

where R̄ is nonexpansive and R := −R̄ is therefore also nonexpansive. Since −T is
averaged, it is also nonexpansive, and so is T .

Since negatively averaged operators are nonexpansive, they can be averaged.
Definition 8. An α-averaged θ-negatively averaged operator S : H → H is

defined as S = (1− α)Id + αT where T : H → H is θ-negatively averaged.
Next, we show that averaged negatively averaged operators are contractive.
Proposition 1. An α-averaged θ-negatively averaged operator S : H → H is

|1− 2α+ αθ|+ αθ-contractive.

Proof. Let T = (θ − 1)Id + θR (for some nonexpansive R) be the θ-negatively
averaged operator, which implies that S = (1− α)Id + αT . Then

‖Sx− Sy‖ = ‖((1− α)Id + αT )x− ((1− α)Id + αT )y‖
= ‖(1− 2α+ αθ)(x− y) + αθ(Rx−Ry))‖
≤ |1− 2α+ αθ|‖x− y‖+ αθ‖x− y‖
= (|1− 2α+ αθ|+ αθ)‖x− y‖

since R is nonexpansive. It is straightforward to verify that |1− 2θ+αθ|+αθ < 1 for
all combinations of α ∈ (0, 1) and θ ∈ (0, 1). Hence, S is contractive and the proof is
complete. �

Next, we optimize the contraction factor w.r.t. α.
Proposition 2. Assume that T : H → H is θ-negatively averaged. Then the α

that optimizes the contraction factor for the α-averaged θ-negatively averaged operator
S = (1 − α)Id + αT is α = 1

2−θ . The corresponding optimal contraction constant is
θ

2−θ .

Proof. Due to the absolute value, Proposition states that the contraction factor δ
of T can be written as

δ =

{
1− 2α+ αθ + αθ if α ≤ 1

2−θ
−(1− 2α+ αθ) + αθ if α ≥ 1

2−θ
=

{
1− 2(1− θ)α if α ≤ 1

2−θ
2α− 1 if α ≥ 1

2−θ

where the kink in the absolute value term is at α = 1
2−θ . Since θ ∈ (0, 1), we get

negative slope for α ≤ 1
2−θ and positive slope for α ≥ 1

2−θ . Therefore the optimal α

is in the kink at α = 1
2−θ , which satisfies α ∈ ( 1

2 , 1) since θ ∈ (0, 1). Inserting this

into the contraction factor expression gives θ
2−θ . This concludes the proof. �

Remark 1. The optimal contraction factor θ
2−θ is strictly increasing in θ on the

interval θ ∈ (0, 1). Therefore the contraction factor becomes smaller the smaller θ is.
We conclude this section by showing that the composition of an averaged and a

negatively averaged operator is negatively averaged. Before we state the result, we
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need a characterization of θ-negatively averaged operators T . This follows directly
from the definition of averaged operators in () since −T is θ-averaged:

1−θ
θ ‖(Id + T )x− (Id + T )y‖2 + ‖Tx− Ty‖2 ≤ ‖x− y‖2.(3.1)

Proposition 3. Assume that Tθ : H → H is θ-negatively averaged and
Tα : H → H is α-averaged. Then TθTα is κ

κ+1 -negatively averaged where κ =
θ

1−θ + α
1−α .

Proof. Let κθ = θ
1−θ and κα = α

1−α , then κ = κθ + κα. We have

‖(Id + TθTα)x− (Id + TθTα)y‖2

= ‖(x− y)− (Tαx− Tαy) + (Tαx− Tαy) + (TθTαx− TθTαy)‖2

= ‖(Id− Tα)x− (Id− Tα)y + (Id + Tθ)Tαx− (Id + Tθ)Tαy‖2

≤ κθ+κα
κα
‖(Id− Tα)x− (Id− Tα)y‖2

+ κθ+κα
κθ
‖(Id + Tθ)Tαx− (Id + Tθ)Tαy‖2

≤ (κθ + κα)(‖x− y‖2 − ‖Tαx− Tαy‖2)

+ (κθ + κα)(‖Tαx− Tαy‖2 − ‖TθTαx− TθTαy‖2)

= (κθ + κα)(‖x− y‖2 − ‖TθTαx− TθTαy‖2)

= κ(‖x− y‖2 − ‖TθTαx− TθTαy‖2)(3.2)

where the first inequality follows from convexity of ‖ · ‖2. More precisely, let t ∈ [0, 1],
then by convexity of ‖ · ‖2 we have

‖x+ y‖2 = ‖t 1tx+ (1− t) 1
1−ty‖

2 ≤ t‖ 1tx‖
2 + (1− t) 1

1−t‖y‖
2 = 1

t ‖x‖
2 + 1

1−t‖y‖
2.

Letting t = κα
κθ+κα

∈ [0, 1], which implies that 1 − t = κθ
κθ+κα

∈ [0, 1], gives the first

inequality in (). The second inequality in () follows from () and (). The
relation in () coincides with the definition of negative averagedness in (). Thus
TθTα is φ-negatively averaged with φ satisfying 1−φ

φ = 1
κ . This gives φ = κ

κ+1 and
the proof is complete. �

Remark 2. This result can readily be extended to show averagedness of T =
T1T2 · · ·TN where Ti are αi-(negatively) averaged for i = 1, . . . , N . We get that T is
κ

1+κ -negatively averaged with κ =
∑N
i=1

αi
1−αi if an odd number of the Ti:s are nega-

tively averaged, and that T is κ
1+κ -averaged if an even number of the Ti are negatively

averaged. Similar results have been and presented, e.g., in [, Proposition 4.32] which
is improved in []. Our result extends these results in that it allows also for negatively
averaged operators and reduces to the result in [] for averaged operators.

4. Douglas-Rachford splitting. Douglas-Rachford splitting can be applied to
solve monotone inclusion problems of the form

0 ∈ Ax+Bx(4.1)

where A,B : H → 2H are maximally monotone operators. The algorithm separates A
and B by only touching the corresponding resolvents, where the resolvent JA : H →
H is defined as

JA := (A+ Id)−1.
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The resolvent has full domain since A is assumed maximally monotone, see [] and
[, Proposition 23.7]. If A = ∂f where f is a proper, closed, and convex function,
then JA = proxf where the prox operator proxf is defined as

proxf (z) = argmin
x

{
f(x) + 1

2‖x− z‖
2
}
.(4.2)

That this holds follows directly from Fermat’s rule [, Theorem 16.2] applied to the
proximal operator definition.

The Douglas-Rachford algorithm is defined by the iteration

zk+1 = ((1− α)Id + αRARB)zk(4.3)

where α ∈ (0, 1) (we will see that also α ≥ 1 can sometimes be used) and RA : H → H
is the reflected resolvent, which is defined as

RA := 2JA − Id.

(Note that what is traditionally called Douglas-Rachford splitting is when α = 1/2
in (). The case with α = 1 in () is often referred to as Peaceman-Rachford
algorithm, see []. We will use the term Douglas-Rachford splitting for all feasible
choices of α.)

Since the reflected resolvent is nonexpansive in the general case [, Corollary 23.10],
and since composition of nonexpansive operators is nonexpansive, the Douglas-Rachford
algorithm is an averaged iteration of a nonexpansive mapping when α ∈ (0, 1). There-
fore Douglas-Rachford splitting is a special case of the Krasnosel’skĭı-Mann iteration
[,], which is known to converge to a fixed-point of the nonexpansive operator,
in this case, RARB , see [, Theorem 5.14]. Since an x ∈ H solves () if and only
if x = JAz where z = RARBz, see [, Proposition 25.1] this algorithm can be used
to solve monotone inclusion problems of the form (). Note that to solve (), is
equivalent to solving

0 ∈ γAx+ γBx

for any γ ∈ (0,∞). Then we can define Aγ = γA and () can also be solved by the
iteration

zk+1 = ((1− α)Id + αRAγRBγ )zk.(4.4)

Therefore, γ is an algorithm parameter that changes the progress of the algorithm.
The objective of this paper, is to provide tight linear convergence rate bounds for

the Douglas-Rachford algorithm under various assumptions. Using these bounds, we
will show how to select the algorithm parameters γ and α that optimize these bounds.
The first setting we consider is when A is strongly monotone and B is cocoercive.

5. A strongly monotone and B cocoercive. In this section, we show linear
convergence for Douglas-Rachford splitting in the case where A and B are maximally
monotone and A is strongly monotone and B is cocoercive. That is, we make the
following assumptions.

Assumption 1. Suppose that
(i) A : H → 2H is maximally monotone and σ-strongly monotone

(ii) B : H → H is maximally monotone and 1
β -cocoercive
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Before we can state the main linear convergence result, we need to characterize
the properties of the resolvent, the reflected resolvent, and the composition between
reflected resolvents. This is done in the following series of propositions, this first of
which is proven in Appendix.

Proposition 4. The resolvent JB of a 1
β -cocoercive operator B : H → H is

β
2(1+β) -averaged.

This implies that also the reflected resolvent is averaged.

Proposition 5. The reflected resolvent of a β-Lipschitz continuous operator
B : H → H is β

1+β -averaged.

Proof. This follows directly from the Proposition and Lemma. �

If the operator instead is strongly monotone, the reflected resolvent is negatively
averaged.

Proposition 6. The reflected resolvent of a σ-strongly monotone and maximal
monotone operator A : H → 2H is 1

1+σ -negatively averaged.

Proof. From Lemma, we have that the resolvent JA is (1 + σ)-cocoercive. Using
Lemma, this implies that Id − JA is 1

2(1+σ) -averaged. Then using Lemma, this

implies that 2(Id − JA) − Id = Id − 2JA = −RA is 1
1+σ -averaged, hence RA is 1

1+σ -
negatively averaged. This completes the proof. �

The composition of the reflected resolvents of a strongly monotone operator and
a cocoercive operator is negatively averaged.

Proposition 7. Suppose that Assumption holds. Then, the composition RARB

is
1
σ+β

1+
1
σ+β

-negatively averaged.

Proof. Since RA is 1
1+σ -negatively averaged and RB is β

1+β -averaged, see Proposi-

tions and, we can apply Proposition. We get that κ =
1

1+σ

1− 1
1+σ

+
β

1+β

1− β
1+β

= 1
σ +β

and that the averagedness parameter of the negatively averaged operator RARB is

given by κ
κ+1 =

1
σ+β

1
σ+β+1

. This concludes the proof. �

With these results, we can now show the following linear convergence rate bounds
for Douglas-Rachford splitting under Assumption. The theorem is proven in Ap-
pendix.

Theorem 1. Suppose that Assumption holds, that α ∈ (0, 1), that γ ∈ (0,∞),
and that the Douglas-Rachford algorithm () is applied to solve 0 ∈ γAx + γBx.
Then the algorithm converges at least with rate factor∣∣∣∣∣1− 2α+ α

1
γσ+γβ

1+
1
γσ+γβ

∣∣∣∣∣+ α
1
γσ+γβ

1+
1
γσ+γβ

.(5.1)

Optimizing this rate bound w.r.t. α and γ gives γ = 1√
βσ

and α =

√
β/σ+1/2

1+
√
β/σ

. The

corresponding optimal rate bound is

√
β/σ√
β/σ+1

.

5.1. Tightness. In this section, we present an example that shows tightness of
the linear convergence rate bounds in Theorem for many algorithm parameters. We
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consider a two dimensional Euclidean example, which is given by the following convex
optimization problem:

minimize f(x) + f∗(x)(5.2)

where

f(x) = β
2x

2
1,(5.3)

and x = (x1, x2), and β > 0. The gradient ∇f = βx1, so it is cocoercive with factor
1
β . According to [, Theorem 18.15] this is equivalent to that f∗ is 1

β -strongly convex

and therefore ∂f∗ is σ := 1
β -strongly monotone.

The following proposition shows that when solving () with f defined in ()
using Douglas-Rachford splitting, the upper linear convergence rate bound is exactly
attained. The result is proven in Appendix.

Proposition 8. Suppose that the Douglas-Rachford algorithm () is applied
to solve () with f in () . Further suppose that the parameters γ and α satisfy

γ ∈ (0,∞) and α ∈ [c, 1) where c = 1+γσ+γ2σβ
1+2γσ+γ2σβ and that z0 = (0, z02) with z02 6= 0.

Then the zk sequence in () converges exactly with rate () in Theorem.

So, for all γ parameters and some α parameters, the provided bound is tight.

Especially, the optimal parameter choices γ = 1√
βσ

and α =
1+2
√
β/σ

2(1+
√
β/σ)

give a tight

bound.

It is interesting to note, that although we have considered a more general class of
problems than convex optimization problems, a convex optimization problem is used
to attain the worst case rate.

5.2. Comparison to other bounds. In [], it was shown that Douglas-Rachford

splitting converges as

√
β/σ−1√
β/σ+1

when solving composite optimization problems of the

form 0 ∈ γ∇f + γ∂g, where ∇f is σ-strongly monotone and 1
β -cocoercive and the

algorithm parameters are chosen as α = 1 and γ = 1√
βσ

. In our setting, with ∂f being

σ-strongly monotone and ∂g being 1
β -cocoercive, we can instead pose the equivalent

problem 0 ∈ γ∂f̂(x) + γ∂ĝ(x) where f̂ = f − σ
2 ‖ · ‖

2 and ĝ = g + σ
2 ‖ · ‖

2. Then

∂f̂ is merely monotone and ĝ is σ-strongly monotone and 1
β+σ -cocoercive. For that

problem, [] shows a linear convergence rate of at least rate

√
(β+σ)/σ−1√
(β+σ)/σ+1

(when op-

timal parameters are used). This rate turns out to be better than the rate provided

in Theorem, i.e.

√
β/σ√
β/σ+1

, which assumes that the strong convexity and smoothness

properties are split between the two operators. This is shown by the following chain
of equivalences which departs from the fact that the square root is sub-additive, i.e.,
that

√
β + σ ≤

√
σ +
√
β for β, σ ≥ 0:√

β + σ −
√
σ ≤

√
β

⇔
√

(β + σ)/σ − 1 ≤
√
β/σ

⇔
√

(β+σ)/σ−1√
(β+σ)/σ+1

≤
√
β/σ√

(β+σ)/σ+1

(
≤
√
β/σ√
β/σ+1

)
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This implies that, from a worst case perspective, it is better to shift both properties
into one operator. This is also always possible, without increasing the computational
cost in the algorithm, since the prox-operator is just shifted slightly:

proxγf̂ (z) = argmin
x

{
f̂(x) + 1

2γ ‖x− z‖
2
}

= argmin
x

{
f(x)− σ

2 ‖x‖
2 + 1

2γ ‖x− z‖
2
}

= argmin
x

{
f(x) + 1−γσ

2γ ‖x−
1

1−γσ z‖
2
}

= prox γ
1−γσ f

( 1
1−γσ z).

A similar relation holds for proxγĝ with the sign in front of γσ flipped.

6. A strongly monotone and Lipschitz continuous. In this section, we
consider the case where one of the operators is σ-strongly monotone and β-Lipschitz
continuous. This is assumption is stated next.

Assumption 2. Suppose that
(i) The operators A : H → H and B : H → 2H are maximally monotone

(ii) A is σ-strongly monotone and β-Lipschitz continuous
First, we state a result that characterizes the resolvent of A. It is proven in

Appendix.
Proposition 9. Assume that A : H → H is a maximal monotone β-Lipschitz

continuous operator. Then the resolvent JA = (Id +A)−1 satisfies

2〈JAx− JAy, x− y〉 ≥ ‖x− y‖2 + (1− β2)‖JAx− JAy‖2.(6.1)

This resolvent property is used when proving the following contraction factor of the
reflected resolvent. The result is proven in Appendix.

Theorem 2. Suppose that A : H → H is a σ-strongly monotone and β-Lipschitz

continuous operator. Then the reflected resolvent RA = 2JA − Id is
√

1− 4σ
1+2σ+β2 -

contractive.
The parameter γ that optimizes the contraction factor for RγA is given by the

γ that minimizes h(γ) := 1 − 4γσ
1+γσ+(γβ)2 , since γA is γσ-strongly monotone and

γβ-Lipschitz continuous. Since ∇h(γ) = 4σ(β2γ2−1)
(β2γ2+2σγ+1)2 the extreme points are given

by γ = ± 1
β . Since γ > 0 and the gradient is positive for γ > 1

β and negative for

γ ∈ (0, 1
β ), γ = 1

β optimizes the contraction factor. The corresponding rate is√
1− 4γσ

1+2γσ+(γβ)2 =
√

1− 2σ/β
1+σ/β =

√
1−σ/β
1+σ/β =

√
β/σ−1
β/σ+1 .

This is summarized in the following proposition.
Proposition 10. The parameter γ that optimizes the contraction factor of RγA

is given by γ = 1
β . The corresponding contraction factor is

√
β/σ−1
β/σ+1 .

Now, we are ready to state the convergence rate results for Douglas-Rachford
splitting.

Theorem 3. Suppose that Assumption holds and that the Douglas-Rachford

algorithm () is applied to solve 0 ∈ γAx + γBx. Let δ =
√

1− 4γσ
1+2γσ+(γβ)2 , then

the algorithm converges at least with rate factor

|1− α|+ αδ(6.2)
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for all α ∈ (0, 2
1+δ ). Optimizing this bound w.r.t. α and γ gives α = 1 and γ = 1

β and

corresponding optimal rate bound
√

β/σ−1
β/σ+1 .

Proof. It follows immediately from Theorem, Lemma, and Proposition by
noting that α = 1 minimizes (). �

In the following section, we will see that there exists a problem from the considered
class that converges exactly with the provided rate.

6.1. Tightness. We consider a problem where A is a rotation operator, i.e., the
it is given by

A = d

[
cosψ − sinψ
sinψ cosψ

]
(6.3)

where 0 ≤ ψ < π
2 and d ∈ (0,∞). First, we show that A is strongly monotone and

Lipschitz continuous.
Proposition 11. The operator A in () is d cosψ-strongly monotone and d-

Lipschitz continuous.

Proof. We first show that A is d cosψ-strongly monotone. Since A is linear, we have

〈Av, v〉 = d〈(cosψv1 − sinψv2, sinψv1 + cosψv2), (v1, v2)〉 = d cosψ(v21 + v22) = d cosψ‖v‖2.

That is, A is d cosψ-strongly monotone. Since A is a scaled (with d) rotation operator,
its largest eigenvalue is d, and hence A is d-Lipschitz. This concludes the proof. �

We need an explicit form of the reflected resolvent of A to show that the rate is
tight. To state it, we define the following alternative arctan definition that is valid
when tan ξ = x

y and x ≥ 0:

arctan2

(
x
y

)
=


arctan(xy ) if x ≥ 0, y > 0

arctan(xy ) + π if x ≥ 0, y < 0
π
2 x ≥ 0, y = 0

(6.4)

This arctan is defined for nonnegative numerators x only, and outputs and angle in
the interval [0, π].

Next, we provide the expression for the reflected resolvent. To simplify its nota-
tion, we let σ denote the strong convexity modulus and β the Lipschitz constant of
A, i.e.,

σ = d cosψ, β = d.(6.5)

The following result is proven in Appendix.
Proposition 12. The reflected resolvent of γA, with A in () and γ ∈ (0,∞),

is

RγA =
√

1− 4γσ
1+2γσ+(γβ)2

[
cos ξ sin ξ
− sin ξ cos ξ

]

where σ and β are defined in () , and ξ satisfies ξ = arctan2

(
2γ
√
β2−σ2

1−(γβ)2

)
with

arctan2 defined in () .
That is, the reflected resolvent is first a rotation then a contraction with a fac-

tor. This factor is exactly the upper bound on the contraction factor in Theorem.
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Therefore, the A in () can be used to show tightness of the results in Theorem.
To do so, we need another operator B that cancels the rotation introduced by A. For

α ∈ (0, 1], we will need RγARγB =
√

1− 4γσ
1+2γσ+(γβ)2 I and for α > 1, we will need

RγARγB = −
√

1− 4γσ
1+2γσ+(γβ)2 I. This is clearly achieved if RγB is another rotation

operator. Using the following straightforward consequence of Minty’s theorem (see
[]) we conclude that any rotation operator (since they are nonexpansive) is the
reflected resolvent of a maximally monotone operator.

Proposition 13. An operator R : H → H is nonexpansive if and only if it is
the reflected resolvent of a maximally monotone operator.

Proof. It follows immediately from [, Corollary 23.8] and [, Proposition 4.2]. �

With this in mind, we can state the tightness claim.

Proposition 14. Let γ ∈ (0,∞), δ =
√

1− 4γσ
1+2γσ+(γβ)2 , and ξ be defined as in

Proposition. Suppose that A is as in () and B satisfies either of the following

(i) if α ∈ (0, 1]: B = B1 is maximally monotone with RγB1 =
[
cos ξ − sin ξ
sin ξ cos ξ

]
(ii) α ∈ (1, 2

1+δ ): B = B2 is maximally monotone with RγB2 =
[

cos (π−ξ) sin (π−ξ)
− sin (π−ξ) cos (π−ξ)

]
Then the zk sequence for solving 0 ∈ γAx + γBx using () converges exactly with
the rate |1− α|+ αδ.

Proof. Case (i): Using the reflected resolvent RγA in Proposition and that
α ∈ (0, 1], we conclude that

zk+1 = (1− α)zk + αRγARγBz
k

= (1− α)zk + αδ

[
cos ξ sin ξ
− sin ξ cos ξ

] [
cos ξ − sin ξ
sin ξ cos ξ

]
zk

= (1− α)zk + αδzk

= |1− α|zk + αδzk

Case (ii): Using the reflected resolvent RγA in Proposition and that α ≥ 1, we
conclude that

zk+1 = (1− α)zk + αRγARγBz
k

= (1− α)zk + αδ

[
cos ξ sin ξ
− sin ξ cos ξ

] [
cos (π − ξ) sin (π − ξ)
− sin (π − ξ) cos (π − ξ)

]
zk

= (1− α)zk − αδzk

= −(|1− α|zk + αδ)zk.

In both cases, the convergence rate is exactly |1 − α| + α
√

1− 4γσ
1+2γσ+(γβ)2 . This

completes the proof. �

Remark 3. It can be shown that the maximally monotone operator B1 that

gives RγB1 satisfies B1 = 1
γ(1+cos ξ)

[
0 − sin ξ

sin ξ 0

]
if ξ ∈ [0, π) and B1 = ∂ι0 (that

is, B1 is the subdifferential operator of the indicator function ι0 of the origin) if
ξ = π. Similarly, the maximally monotone operator B2 that gives RγB2

satisfies

B2 = 1
γ(1−cos ξ)

[
0 − sin ξ

sin ξ 0

]
if ξ ∈ (0, π] and B2 = 0 if ξ = 0.

So, we have shown that the rate provided in Theorem is tight for all feasible α
and γ.
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Fig. 1. Convergence rate comparison for general monotone inclusion problems where one op-
erator is strongly monotone and Lipschitz continuous. We compare Theorem to [], and an
improvement to [] which holds when α = 1.

6.2. Comparison to other bounds. In Figure, we have compared the linear
convergence rate result in Theorem to the convergence rate result in []. The
comparison is made with optimal γ-parameters for both bounds. The result in []
is provided in the standard Douglas-Rachford setting, i.e., with α = 1/2. By instead
letting α = 1, this rate can be improved, see [] (which shows an improved rate in the
composite convex optimization case, but the same rate can be shown to hold also for
monotone inclusion problems). Also this improved rate is added to the comparison
in Figure. We see that both rates that follow from [] are suboptimal and worse
than the rate bound in Theorem.

7. A strongly monotone and cocoercive. In this section, we consider the
case where A is strongly monotone and cocoercive. That is, we assume the following.

Assumption 3. Suppose that
(i) The operators A : H → H and B : H → 2H are maximally monotone

(ii) A is σ-strongly monotone and 1
β -cocoercive

The linear convergence result for Douglas-Rachford splitting will follow from the
contraction factor of the reflected resolvent of A. The contraction factor is provided
in the following theorem, which is proven in Appendix.

Theorem 4. Suppose that A : H → H is a σ-strongly monotone and 1
β -

cocoercive operator. Then its reflected resolvent RA = 2JA − Id is
√

1− 4σ
1+2σ+σβ -

contractive.
When considering the reflected resolvent of γA where γ ∈ (0,∞), this γ-parameter

can be chosen to optimize the contraction factor of RγA in Theorem. The operator
γA is γσ-strongly monotone and 1

γβ -cocoercive, so the optimal γ should minimize

h(γ) := 1− 4γσ
1+2γσ+γ2σβ . The gradient of h is ∇h(γ) = 4σ(βσγ2−1)

(βσγ2+2σγ+1)2 , so the extreme

points of h are given by γ = ± 1√
βσ

. Since γ > 0 and the gradient is negative for

γ ∈ (0, 1√
βσ

) and positive for γ > 1√
βσ

, the parameter γ = 1√
βσ

minimizes the

contraction factor. The corresponding contraction factor is√
1− 4γσ

1+2γσ+γ2σβ =

√
1− 2

√
σ/β

1+
√
σβ

=

√
1−
√
σ/β

1+
√
σ/β

=

√√
β/σ−1√
β/σ+1

.
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This is summarized in the following proposition.
Proposition 15. The parameter γ ∈ (0,∞) that optimizes the contraction factor

for RγA is γ = 1√
βσ

. The corresponding contraction factor is

√√
β/σ−1√
β/σ+1

.

Now we are ready to state the linear convergence rate result for the Douglas-
Rachford algorithm.

Theorem 5. Suppose that Assumption holds and that the Douglas-Rachford

algorithm () is applied to solve 0 ∈ γAx + γBx. Let δ =
√

1− 4γσ
1+2γσ+γ2σβ , then

the algorithm converges at least with rate factor

|1− α|+ αδ(7.1)

for all α ∈ (0, 2
1+δ ). Optimizing this bound w.r.t. α and γ gives α = 1 and γ = 1√

βσ

and corresponding optimal rate bound

√√
β/σ−1√
β/σ+1

.

Proof. It follows immediately from Theorem, Lemma, and Proposition by
noting that α = 1 minimizes (). �

7.1. Tightness. In this section, we provide a two-dimensional example that
shows that the provided bounds are tight. We let A be the resolvent of a scaled
rotation operator to achieve this. Let C be that scaled rotation operator, i.e.,

C = c

[
cosψ − sinψ
sinψ cosψ

]
(7.2)

with c ∈ (1,∞) and ψ ∈ [0, π2 ). We will let A satisfy A = dJC for some d ∈ (0,∞).
That is

A = d(C + I)−1 = d
(1+c cosψ)2+c2 sin2 ψ

[
c cosψ + 1 c sinψ
−c sinψ c cosψ + 1

]
.(7.3)

In the following proposition, we state the strong monotonicity and cocoercivity prop-
erties of A.

Proposition 16. The operator A in () is 1+c cosψ
d -cocoercive and d(1+c cosψ)

1+2c cosψ+c2 -
strongly monotone.

Proof. The matrix C in () is c cosψ-strongly monotone (see Proposition), so
JC is (1+c cosψ)-cocoercive (see [, Definition 4.4]) and the operator A = d(I+C)−1

is 1+c cosψ
d -cocoercive. Further, since C is monotone and c-Lipschitz continuous (see

Proposition), the following holds (see Proposition):

2〈JCx− JCy, x− y〉 ≥ ‖x− y‖2 + (1− c2)‖JCx− JCy‖2.(7.4)

Since JC is (1 + c cosψ)-cocoercive, we have

〈JCx− JCy, x− y〉 ≥ (1 + c cosψ)‖JCx− JCy‖2.(7.5)

We add () multiplied by − 1−c2
1+c cosψ (which is positive since c ∈ (1,∞)) to () to

get

(2− 1−c2
1+c cosψ )〈JCx− JCy, x− y〉 ≥ ‖x− y‖2.
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That is, JC is σ-strongly monotone with

1

2− 1−c2
1+c cosψ

=
1 + c cosψ

2 + 2c cosψ − 1 + c2
=

1 + c cosψ

1 + 2c cosψ + c2
,

so A is strongly monotone with parameter d 1+c cosψ
1+2c cosψ+c2 . This concludes the proof.

�

So the assumptions needed for the linear convergence rate result in Theorem
hold. To prove the tightness claim, we need an expression for the reflected resolvent
of A. This is easier expressed in the strong convexity modulus, which we define as σ
and the inverse cocoercivity constant, which we define as β, i.e.,:

σ = d(1+c cosψ)
1+2c cosψ+c2 , β = d

1+c cosψ .(7.6)

The following results is proven in Appendix.

Proposition 17. The reflected resolvent RγA of γA, where A is defined in ()
and γ ∈ (0,∞), is given by

RγA =

√
1− 4γσ

1 + 2γσ + γ2σβ

[
cos ξ − sin ξ
sin ξ cos ξ

]

where σ and β are defined in () , and ξ satisfies ξ = arctan2

(
2γ
√
σ(β−σ)

1−σβγ2

)
with

arctan2 defined in () .

Based on this reflected resolvent, we can show that the rate bound in Theorem
is indeed tight. The proof of the following result is the same as the proof to Proposi-
tion.

Proposition 18. Let γ ∈ (0,∞), δ =
√

1− 4γσ
1+2γσ+γ2σβ , and let ξ be as defined

in Proposition. Suppose that A is as in () and B satisfies either of the following

(i) if α ∈ (0, 1]: B = B1 is maximally monotone with RγB1
=
[

cos ξ sin ξ
− sin ξ cos ξ

]
(ii) α ∈ (1, 2

1+δ ): B = B2 is maximally monotone with RγB2
=
[
cos (π−ξ) − sin (π−ξ)
sin (π−ξ) cos (π−ξ)

]
Then the zk sequence for solving 0 ∈ γAx + γBx using () converges exactly with
the rate |1− α|+ αδ.

So, we have shown that the rate in Theorem is tight for all feasible algorithm
parameters α and γ.

7.2. Comparison to other bounds. We have shown tight convergence rate
estimates for Douglas-Rachford splitting when the monotone operator A is cocoercive
and strongly monotone (Theorem). In Section, we showed tight estimates when
A is Lipschitz and strongly monotone (Theorem). In [], tight convergence rate
estimates for the case when A and B are subdifferential operators of proper closed
and convex functions and A is strongly monotone and Lipschitz continuous (which in
this case is equivalent to cocoercive) are proven. The class of problems considered in
[] is a subclass of the problems considered in this section, which in turn is a subclass
of the problems considered in Section. The optimal rates for all these examples are
plotted in Figure. We see that by restricting the problem classes, we also get tighter
rate bounds. This is in contrast to the case in Section, where a convex optimization
problem achieved the worst case estimate.
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Fig. 2. Convergence rate comparison between Theorem, Theorem, and []. In all, one
operator has both regularity properties. It is strongly monotone in all examples and Lipschitz in
Theorem, cocoercive in Theorem (which is stronger that Lipschitz), and a cocoercive subdiffer-
ential operator in [] (which is the strongest property). We see that the worst-case rate is improved
when the class of problems is restricted.

8. Conclusions. We have shown linear convergence rate bounds for Douglas-
Rachford splitting for monotone inclusion problems with three different sets of as-
sumptions. One setting was the one used by Lions and Mercier [], for which we
provided a tighter bound. We also stated linear convergence rate bounds under two
other assumptions, for which no other linear rate bounds were previously available.
In addition, we have shown that all our rate bounds are tight for, in two cases all
feasible algorithm parameters, and in the remaining case many algorithm parameters.

Appendix. Proofs to Lemmas in Section.

A.1. Proof to Lemma. From the definition of cocoercivity, Definition, it
follows directly that βId+T is 1

2β -cocoercive if and only if 1
2β (βId+T ) is 1-cocoercive.

This, in turn is equivalent to that 2 1
2β (βId + T ) − Id = 1

βT is nonexpansive [,

Proposition 4.2 and Definition 4.4]. Finally, from the definition of Lipschitz continuity,
Definition, it follows directly that 1

βT is nonexpansive if and only if T is β-Lipschitz
continuous. This concludes the proof.

A.2. Proof to Lemma. Let T1 = R − β
2 Id. Then Lemma states that 1

β -

cocoercivity of T1 + β
2 Id = R is equivalent to β

2 -Lipschitz continuity of T1 = R− β
2 Id.

By definition of Lipschitz continuity, this is equivalent to that T1 = β
2T2 for some

nonexpansive operator T2. Therefore T = R + (1 − β)Id = T1 + (1 − β
2 )Id = β

2T2 +

(1− β
2 )Id. Since β ∈ (0, 1), this is equivalent to that T is β

2 -averaged. This concludes
the proof.

A.3. Proof to Lemma. Let x and y be any points in H. Then

‖Rx−Ry‖ = ‖(1− α)x+ αTx− (1− α)y − αTy‖
≤ |1− α|‖x− y‖+ |α|‖Tx− Ty‖
≤ |1− α|‖x− y‖+ |α|δ‖x− y‖
= (|1− α|+ |α|δ)‖x− y‖.
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So R is (|1 − α|‖x − y‖ + |α|δ)-Lipschitz continuous. The Lipschitz constant is less
than 1 if α ∈ (0, 2

1+δ ). For such α, R is contractive. Since α > 0, the contraction
factor is (|1− α|+ αδ). This concludes the proof.

Appendix. Proofs to results in Section.

B.1. Proof to Proposition. Since B is 1
β -cocoercive, it satisfies

〈Bu−Bv, u− v〉 ≥ 1
β ‖Bu−Bv‖

2.

Adding ‖u− v‖2 to both sides gives

〈(B + Id)u− (B + Id)v, u− v〉 ≥ ‖u− v‖2 + 1
β ‖(B + Id)u− (B + Id)v − (u− v)‖2.

Letting x ∈ (B+Id)u and y ∈ (B+Id)v implies that u = JBx and v = JBy. Therefore
we get the equivalent expression

〈x− y, JBx− JBy〉 ≥ ‖JBx− JBy‖2 + 1
β ‖x− y − (JBx− JBy)‖2.

Expansion of the square gives

β〈x− y, JBx− JBy〉 ≥ β‖JBx− JBy‖2 + ‖x− y‖2 − 2〈x− y, JBx− JBy〉+ ‖JBx− JBy‖2,

or equivalently

(β + 2)〈x− y, JBx− JBy〉 ≥ ‖x− y‖2 + (β + 1)‖JBx− JBy‖2

⇔ β+2
β+1 〈x− y, JBx− JBy〉 ≥

1
β+1‖x− y‖

2 + ‖JBx− JBy‖2

⇔ (2(1− β
2(1+β) ))〈x− y, JBx− JBy〉 ≥ (1− 2 β

2(β+1) )‖x− y‖
2 + ‖JBx− JBy‖2.

This is by [, Proposition 4.25] equivalent to that JB is β
2(β+1) -averaged. This con-

cludes the proof.

B.2. Proof to Theorem. Since RARB is
1
γσ+γβ

1
γσ+γβ+1

-negatively averaged, see

Proposition, the Douglas-Rachford iteration is defined by a α-averaged
1
γσ+γβ

1
γσ+γβ+1

-

negatively averaged operator. The rate in () follows directly from Proposition.
The optimal parameters follow from Proposition. It shows that the rate factor is

increasing in
1
γσ+γβ

1
γσ+γβ+1

, which in turn is increasing in 1
γσ + γβ. Therefore this should

be minimized to optimize the rate. The optimal γ = 1√
βσ

gives negative averagedness

factor
1
γσ+γβ

1
γσ+γβ+1

=
2
√
β/σ

1+2
√
β/σ

. Proposition further gives that the optimal averaged-

ness factor

α = 1

2−
2
√
β/σ

1+2
√
β/σ

=
1+2
√
β/σ

2+2
√
β/σ

=
1/2+
√
β/σ

1+
√
β/σ

and that the optimal bound on the contraction factor is

2
√
β/σ

2
√
β/σ+1

2−
2
√
β/σ

2
√
β/σ+1

=
2
√
β/σ

2+2
√
β/σ

=

√
β/σ

1+
√
β/σ

.

This concludes the proof.
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B.3. Proof to Proposition. The proximal and reflected proximal operators
of f are trivially given by

proxγf (y) = ( 1
1+γβ y1, y2), Rγf (y) = ( 1−γβ

1+γβ y1, y2).(B.1)

Linearity of the proximal operator and Moreau’s decomposition [, Theorem 14.3]
imply that the reflected resolvent of f∗ is given by

Rγf∗ = 2proxγf∗ − Id = 2(Id− γproxγ−1f ◦ (γ−1Id))− Id = −(2proxγ−1f − Id)

= −Rγ−1f .

This gives the following Douglas-Rachford iteration:

zk+1 = ((1− α)Id + αRγfRγf∗)zk

= (1− α)zk − αRγfRγ−1fz
k

= (1− α)zk − α
(

(1−γβ)(1−γ−1β)
(1+γβ)(1+γβ) zk1 , z

k
2

)
.

Since we start at a point z0 = (0, z02), we will get zk1 = 0 for all k ≥ 1, and the
Douglas-Rachford iteration becomes

zk+1 = (1− 2α) zk

with contraction factor given by |1− 2α|.
When α ∈ [c, 1), the absolute value term in () is nonpositive since

(1− 2α+ α
1
γσ+γβ

1+
1
γσ+γβ

) ≤ 0 ⇔ α ≥ 1

2−
1
γσ+γβ

1+
1
γσ+γβ

=
1+

1
γσ+γβ

2+
1
γσ+γβ

= c.

Therefore, for such α, the rate in () is |1 − 2α|. This coincides with the rate for
the provided example for any γ > 0, and the proof is completed.

Appendix. Proofs to results in Section.

C.1. Proof to Proposition. β-Lipschitz continuity of A implies that βId+A
is 1

2β -cocoercive, see Lemma. That is

〈(βId +A)u− (βId +A)v, u− v〉 ≥ 1
2β ‖(βId +A)u− (βId +A)v‖2.

Using βId = Id + (β − 1)Id, this is equivalent to that

〈(Id +A)u− (Id +A)v, u− v〉 ≥ 1
2β ‖(Id +A)u− (Id +A)v + (β − 1)(u− v)‖2

+ (1− β)‖u− v‖2.

Using that x ∈ (Id +A)u if and only if u = (Id +A)−1x and y ∈ (Id +A)v if and only
if v = (Id +A)−1y (that hold by definition of the inverse), this is equivalent to

〈x− y, (Id +A)−1x−(Id +A)−1y〉
≥ 1

2β ‖x− y + (β − 1)((Id +A)−1x− (Id +A)−1y)‖2

+ (1− β)‖(Id +A)−1x− (Id +A)−1y‖2.
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Identifying the resolvent gives:

〈JAx− JAy, x− y〉 ≥ 1
2β ‖x− y + (β − 1)(JAx− JAy)‖2 + (1− β)‖JAx− JAy‖2

= 1
2β

(
‖x− y‖2 + 2(β − 1)〈JAx− JAy, x− y〉+ (β − 1)2‖JAx− JAy‖2

)
+ (1− β)‖JAx− JAy‖2

where we have expanded the square. Rearranging gives

(1 + 1−β
β )〈JAx− JAy, x− y〉 ≥ 1

2β

(
‖x− y‖2 + (β − 1)2‖JAx− JAy‖2

)
+ (1− β)‖JAx− JAy‖2

= 1
2β ‖x− y‖

2 + (β−1)2+2β(1−β)
2β ‖JAx− JAy‖2

= 1
2β ‖x− y‖

2 + 1−β2

2β ‖JAx− JAy‖
2.

The result follows by multiplying by 2β since 1 + 1−β
β = 1

β . This concludes the proof.

C.2. Proof to Theorem. We divide the proof into two cases, β ≥ 1 and
β ≤ 1.

Case β ≥ 1. From [, Proposition 23.11], we get that JA is (1 + σ)-cocoercive,
i.e., that

〈JAx− JAy, x− y〉 ≥ (1 + σ)‖JAx− JAy‖2.(C.1)

Adding (β2 − 1)(≥ 0) of () to (1 + σ) of (), we get

(2(1 + σ) + (β2 − 1))〈JAx−JAy, x− y〉 ≥ (1 + σ)‖x− y‖2

or equivalently

〈JAx−JAy, x− y〉 ≥ 1+σ
1+2σ+β2 ‖x− y‖2(C.2)

since the ‖JAx− JAy‖ terms cancel. We get

‖RAx−RAy‖2 = ‖2JAx− 2JAy − (x− y)‖2

= 4‖JAx− JAy‖2 − 4〈JAx− JAy, x− y〉+ ‖x− y‖2

≤ 4( 1
1+σ − 1)〈JAx− JAy, x− y〉+ ‖x− y‖2

= − 4σ
1+σ 〈JAx− JAy, x− y〉+ ‖x− y‖2

≤ − 4σ
1+σ

1+σ
1+2σ+β2 ‖x− y‖2 + ‖x− y‖2

= (1− 4σ
1+2σ+β2 )‖x− y‖2(C.3)

where () and () are used in the inequalities. Thus, the said result holds for
β ≥ 1.

Case β ≤ 1. To prove the result for β ≤ 1, we define the set R of pairs of points
(x, y) ∈ H ×H as follows:

R =
{

(x, y) | 〈JAx− JAy, x− y〉 ≥ 1+σ
1+2σ+β2 ‖x− y‖2

}
.(C.4)
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We also define the closure of the remaining pairs of points Rc = (H×H)\R, i.e.,

Rc =
{

(x, y) | 〈JAx− JAy, x− y〉 ≤ 1+σ
1+2σ+β2 ‖x− y‖2

}
.(C.5)

Obviously, H×H ⊆ R+Rc which implies that the contraction factor of the resolvent
is the worst-case contraction factor for R and Rc. We first show the contraction factor
for R. Since () is the definition of the set R in (), the contraction factor for
(x, y) ∈ R is shown exactly as in (). For ( x, y) ∈ Rc, we have

‖RAx−RAy‖2 = ‖2JAx− 2JAy − (x− y)‖2

= 4‖JAx− JAy‖2 − 4〈JAx− JAy, x− y〉+ ‖x− y‖2

≤ 4
1−β2

(
2〈JAx− JAy, x− y〉 − ‖x− y‖2

)
− 4〈JAx− JAy, x− y〉+ ‖x− y‖2

= 4( 2
1−β2 − 1)〈JAx− JAy, x− y〉+ (1− 4

1−β2 )‖x− y‖2

≤ (1− 4
1−β2 + 4 1+β2

1−β2
1+σ

1+2σ+β2 )‖x− y‖2

= (1− 4(1+2σ+β2)−4(1+β2)(1+σ)
(1−β2)(1+2σ+β2) )‖x− y‖2

= (1− 4+8σ+4β2−(4+4β2+4σ+4σβ2)
(1−β2)(1+2σ+β2) )‖x− y‖2

= (1− 4σ(1−β2)
(1−β2)(1+2σ+β2) )‖x− y‖

2

= (1− 4σ
1+2σ+β2 )‖x− y‖2

where () is used in the first inequality and the definition of Rc in () in the

second. That is, the worst case contraction factor is
√

1− 4σ
1+2σ+β2 also for β ≤ 1.

It remains to show that the contraction factor is in the interval [0, 1). We show

that the square of the contraction factor is in [0, 1). We have 1− 4σ
1+2σ+β2 = 1−2σ+β2

1+2σ+β2 <

1. Further, since σ ≤ β, we have 1 − 2σ + β2 ≥ 1 − 2σ + σ2 = (1 − σ)2 ≥ 0. So the
numerator is nonnegative and the denominator is positive, which gives a nonnegative
contraction factor. This concludes the proof.

C.3. Proof to Proposition. First, we compute the resolvent JγA. It satis-
fies

JγA = (I + γA)−1 =

[
1 + γd cosψ −γd sinψ
γd sinψ 1 + γd cosψ

]−1
=

1

1 + 2γd cosψ + (γd)2

[
1 + γd cosψ γd sinψ
−γd sinψ 1 + γd cosψ

]
=

1

1 + 2γσ + (γβ)2

[
1 + γσ γβ sinψ
−γβ sinψ 1 + γσ

]
The reflected resolvent is

RγA = 2JγA − I =
2

1 + 2γσ + (γβ)2

[
1 + γσ − 1+2γσ+(γβ)2

2 γβ sinψ

−γβ sinψ 1 + γσ − 1+2γσ+(γβ)2

2

]

=
2

1 + 2γσ + (γβ)2

[
1
2 (1− (γβ)2) γβ sinψ
−γβ sinψ 1

2 (1− (γβ)2)

]
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where we have used

(1 + γσ)2 + (γβ)2 sin2 ψ = (1 + γβ cosψ)2 + (γβ)2 sin2 ψ = 1 + 2γσ + (γβ)2.

Since γβ sinψ is nonnegative, this implies

γβ sinψ =
√

1− 2γσ + (γβ)2 − (1 + γσ)2 = γ
√
β2 − σ2.

Therefore, the reflected resolvent is

RγA =
2

1 + 2γσ + (γβ)2

[
1
2 (1− (γβ)2) γ

√
β2 − σ2

−γ
√
β2 − σ2 1

2 (1− (γβ)2)

]
Now, let’s introduce polar coordinates of the elements as follows

δ(cos ξ, sin ξ) =
(

1
2 (1− (γβ)2), γ

√
β2 − σ2

)
.

This gives reflected resolvent

RγA =
2δ

1 + 2γσ + (γβ)2

[
cosψ sinψ
− sinψ cosψ

]
(C.6)

The angle ξ in the polar coordinate satisfies

tan ξ =
2γ
√
β2−σ2

1−(γβ)2

and since the numerator is nonnegative, ξ = arctan2

(
2γ
√
β2−σ2

1−(γβ)2

)
where arctan2 is

defined in (). For the radius δ in the polar coordinate, we get

δ2 = δ2(cos2 ψ + sin2 ψ)

= 1
4 (1− (γβ)2)2 + γ2(β2 − σ2)

= 1
4 (1− 2(γβ)2 + (γβ)4) + γ2(β2 − σ2)

= 1
4 (1− 2γσ + (γβ)2)(1 + 2γσ + (γβ)2)

and (since δ > 0)

2δ =
√

(1− 2γσ + (γβ)2)(1 + 2γσ + (γβ)2)(C.7)

It remains to compute the factor in (). Using (), we get

2δ

1 + 2γσ + (γβ)2
=

√
(1− 2γσ + (γβ)2)(1 + 2γσ + (γβ)2)

1 + 2γσ + (γβ)2

=

√
1− 2γσ + (γβ)2

1 + 2γσ + (γβ)2

=

√
1− 4γσ

1 + 2γσ + (γβ)2

This completes the proof.

Appendix. Proofs to results in Section.
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D.1. Proof to Theorem. We know from Lemma and Definition that JA
is (1 + σ)-cocoercive, i.e., that it satisfies

〈JAx− JAy, x− y〉 ≥ (1 + σ)‖JAx− JAy‖2(D.1)

and from Proposition that it is β
2(1+β) -averaged, i.e., that it satisfies (see [, Propo-

sition 4.25(iv)])

2(1− β
2(1+β) )〈JAx− JAy, x− y〉 ≥ (1− β

1+β )‖x− y‖2 + ‖JAx− JAy‖2(D.2)

for any x, y ∈ H. Let α = β
2(1+β) and δ = 1

1+σ and define the set R of pairs of points

(x, y) ∈ H ×H as follows:

R =
{

(x, y) | 〈JAx− JAy, x− y〉 ≥
(
δ
2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2)

)
‖x− y‖2

}
.(D.3)

We also define the closure of set of remaining pairs of points Rc = (H×H)\R, i.e.,

Rc =
{

(x, y) | 〈JAx− JAy, x− y〉 ≤ ( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) )‖x− y‖2
}
.(D.4)

Obviously, the contraction factor for RA is the worst-case contraction factor for pairs
of points in R and Rc.

Contraction factor on R. First, we provide a contraction factor for pairs of
points in R. Since RA = 2JA − Id, we have

‖RAx−RAy‖2 = 4‖JAx− JAy‖2 − 4〈JAx− JAy, x− y〉+ ‖x− y‖2

≤ (4δ − 4)〈JAx− JAy, x− y〉+ ‖x− y‖2

≤ (4(δ − 1)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) ) + 1)‖x− y‖2

where δ = 1
1+σ ∈ (0, 1) and α = β

2(1+β) and the inequalities follow from () and the

definition of R in ().

Contraction factor on Rc. Next, we provide a contraction factor for pairs of
points in Rc. Since RA = 2JA − Id, we have

‖RAx−RAy‖2 = 4‖JAx− JAy‖2 − 4〈JAx− JAy, x− y〉+ ‖x− y‖2

≤ (4(2(1− α)− 1)〈JAx− JAy, x− y〉+ (1− 4(1− 2α)))‖x− y‖2

≤ (4(1− 2α)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) ) + (1− 4 + 8α))‖x− y‖2

since α ∈ (0, 12 ) and where the inequalities follow from () and the definition of Rc
in ().

Contraction factor of RA. Here, we show that the contraction factors on R
and Rc are identical, and we simplify the expression to get a final contraction factor
for the reflected resolvent RA. That the contraction factors are identical is shown by
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computing the difference between them:

4(1− 2α)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) ) + (1− 4 + 8α)

− (4(δ − 1)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) ) + 1)

= 4(1− 2α)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) )− 4 + 8α4δ

− (4(δ − 1)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) ))

= 4(2− 2α− δ)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) )− 4 + 8α

= (2(2− 2α− δ)δ + 4((1− α− δ/2)2 − α2 + (δ/2)2)− 8 + 4α

= (2(2− 2α− δ)δ + 4((1− 2α− δ + αδ + α2 + (δ/2)2)− α2 + (δ/2)2)− 4 + 8α

= 4δ − 4αδ − 2δ2 + 4− 8α− 4δ + 4αδ + 2δ2 − 4 + 8α = 0.

Next, we simplify this contraction factor by inserting δ = 1
1+σ and α = β

2(1+β) . We
get

4(δ − 1)( δ2 + (1−α−δ/2)2−α2+(δ/2)2

2(1−α−δ/2) ) + 1

= 4( 1
1+σ − 1)( 1

2(1+σ) +
(1− β

2(1+β)−
1

2(1+σ) ))
2−( β

2(1+β) )
2+(

1
2(1+σ) )

2

2(1− β
2(1+β)−

1
2(1+σ) )

) + 1

= 4( 1
1+σ − 1)( 1

2(1+σ) +
1− β

1+β−
1

1+σ+
β

2(1+σ)(1+β)+(
β

2(1+β) )
2+(

1
2(1+σ) )

2−( β
2(1+β) )

2+(
1

2(1+σ) )
2

2(1− β
2(1+β)−

1
2(1+σ) )

) + 1

= 4( 1
1+σ − 1)( 1

2(1+σ) +
1− β

1+β−
1

1+σ+
β

2(1+σ)(1+β)+
1

2(1+σ)2

2(1− β
2(1+β)−

1
2(1+σ) )

) + 1

= 4( 1
1+σ − 1)(

2(1− β
2(1+β)−

1
2(1+σ) )+2(1+σ)(1− β

1+β−
1

1+σ+
β

2(1+σ)(1+β)+
1

2(1+σ)2 )

4(1+σ)(1− β
2(1+β)−

1
2(1+σ) )

) + 1

= 4( 1
1+σ − 1)(

2(1− β
2(1+β)−

1
2(1+σ) )+2((1+σ)−

β(1+σ)
1+β −1+ β

2(1+β)+
1

2(1+σ) )

4(1+σ)(1− β
2(1+β)−

1
2(1+σ) )

) + 1

= 4( 1
1+σ − 1)(

2+2σ−
2β(σ+1)

1+β

4(1+σ)(1− β
2(1+β)−

1
2(1+σ) )

) + 1

= 4( 1
1+σ − 1)( 2β+2+2βσ+2σ−2β(σ+1)

4(1+σ)(1+β)(1− β
2(1+β)−

1
2(1+σ) )

) + 1

= 4( 1
1+σ − 1)( 2+2σ

2(2(1+σ)(1+β)−β(1+σ)−(1+β)) ) + 1

= 4( 1
1+σ − 1)( 2+2σ

2(2+2σ+2β+2βσ−β−βσ−1−β) ) + 1

= 4( 1
1+σ − 1)( 2(1+σ)

2(1+2σ+βσ) ) + 1

= 4( −σ1+σ )( 2+2σ
2(1+2σ+βσ) ) + 1

= 1− 4σ
1+2σ+βσ .

This concludes the proof.
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D.2. Proof to Proposition. We start with computing the resolvent and
reflected resolvent of γA. The resolvent of γA is given by

JγA = (I + γA)−1

=

[
γd(1+c cosψ)

(1+c cosψ)2+c2 sin2 ψ
+ 1 γdc sinψ

(1+c cosψ)2+c2 sin2 ψ

− γdc sinψ
(1+c cosψ)2+c2 sin2 ψ

γd(1+c cosψ)
(1+c cosψ)2+c2 sin2 ψ

+ 1

]−1

=

[
γd(1+c cosψ)
1+2c cosψ+c2 + 1 γdc sinψ

1+2c cosψ+c2

− γdc sinψ
1+2c cosψ+c2

γd(1+c cosψ)
1+2c cosψ+c2 + 1

]−1

=

[
γσ + 1 γc sinψσ

1+c cosψ

−γdc sinψσ1+c cosψ γσ + 1

]−1

=

[
γσ + 1 γc sinψσβ/d

−γc sinψσβ/d γσ + 1

]−1
= 1

(γσ+1)2+(γcσβ sinψ/d)2

[
γσ + 1 −γcσβ sinψ/d

γcσβ sinψ/d γσ + 1

]
where σ and β are defined in (). The reflected resolvent RγA is given by

RγA = 2JγA − I

= 2
(γσ+1)2+(γcσβ sinψ/d)2

[
γσ + 1− (γσ+1)2+(γcσβ sinψ/d)2

2 −γcσβ sinψ/d

γcσβ sinψ/d γσ + 1− (γσ+1)2+(γcσβ sinψ/d)2

2

]
.

To simplify this expression, we note that

β/σ = d(1+2c cosψ+c2)
d(1+c cosφ)(1+c cosψ) = (1+2c cosψ+c2±c2 cos2 ψ)

(1+2c cosφ+c2 cos2 ψ) =

= 1 + c2(1−cos2 ψ)
(1+c cosψ)2 = 1 + c2 sin2 ψ

(1+c cosψ)2 = 1 + β2c2 sin2 ψ
d2 .

This implies that

(γσ + 1)2 + (γcσβ sinψ/d)2 = 1 + 2γσ + (γσ)2(1 + c2β2 sin2 ψ/d2) = 1 + 2γσ + σβγ2.

(D.5)

Using this equality, we can simplify the reflected resolvent expression as follows

RγA = 2
1+2γσ+σβγ2

[
1
2 (1− βσγ2) −γ

√
σ(β − σ)

γ
√
σ(β − σ) 1

2 (1− βσγ2)

]
,

since γcσβ sinψ/d > 0. Now, let’s write the matrix elements using polar coordinates
as follows:

δ(cos ξ, sin ξ) =
(

1
2 (1− σβγ2), γ

√
σ(β − σ)

)
.

This gives the reflected resolvent:

RγA = 2δ
1+2γσ+σβγ2

[
cos ξ − sin ξ
sin ξ cos ξ

]
.(D.6)
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The angle ξ in the polar coordinates satisfies

tan ξ =
2γ
√
σ(β−σ)

1−σβγ2 .

The numerator is always nonnegative, so ξ is given by ξ = arctan2

(
2γ
√
σ(β−σ)

1−σβγ2

)
with

arctan2 defined in (). The radius δ in the polar coordinates satisfies

δ2 = δ2(cos2 ξ + sin2 ξ)

= ( 1−σβγ2

2 )2 + γ2σ(β − σ)

= 1
4 −

σβγ2

2 + (σβγ2)2

4 + σβγ2 − (γσ)2

= 1
4 + σβγ2

2 + (σβγ2)2

4 − (γσ)2

= 1
4 (1− 2γσ + γ2σβ)(1 + 2γσ + γ2σβ)

and (since δ > 0)

2δ =
√

(1− 2γσ + γ2σβ)(1 + 2γσ + γ2σβ).(D.7)

It remains to compute the factor in (). Using (), we conclude

2δ

1 + 2γσ + σβγ2
=

√
(1− 2γσ + γ2σβ)(1 + 2γσ + γ2σβ)

1 + 2γσ + γ2σβ

=

√
1− 2γσ + γ2σβ

1 + 2γσ + γ2σβ

=

√
1− 4γσ

1 + 2γσ + γ2σβ
.

This completes the proof.
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