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Abstract

Recently, several convergence rate results for Douglas-Rachford split-
ting and the alternating direction method of multipliers (ADMM) have
been presented in the literature. In this paper, we show global linear con-
vergence rate bounds for Douglas-Rachford splitting and ADMM under
strong convexity and smoothness assumptions. We further show that the
rate bounds are tight for the class of problems under consideration for all
feasible algorithm parameters. For problems that satisfy the assumptions,
we show how to select step-size and metric for the algorithm that optimize
the derived convergence rate bounds. For problems with a similar struc-
ture that do not satisfy the assumptions, we present heuristic step-size
and metric selection methods.

1 Introduction

Optimization problems of the form

minimize f(x) + g(x) (1)

where x is the variable and f and g are proper closed and convex, arise in numer-
ous applications ranging from compressed sensing [9] and statistical estimation
[29] to model predictive control [45] and medical imaging [37].

There exist a variety of operator splitting methods for solving problems of
the form (1), see [12, 39]. In this paper, we focus on Douglas-Rachford splitting
[17, 41]. Douglas-Rachford splitting is given by the iteration

zk+1 = ((1− α)Id + αRγfRγg)z
k, (2)
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where α in general is constrained to satisfy α ∈ (0, 1). Here Id is the identity
operator, Rγf is the reflected proximal operator Rγf = 2proxγf−Id, and proxγf
is the proximal operator defined by

proxγf (z) := argmin
x
{γf(x) + 1

2‖x− z‖
2}. (3)

The variable zk in (2) converges to a fixed-point of RγfRγg and the sequence
xk = proxγgz

k converges to a solution of (1) (if it exists), see [1, Proposi-
tion 25.6].

When (2) is applied to the Fenchel dual problem of (1), this algorithm is
equivalent to ADMM, see [28, 21, 6] for ADMM and [20, 18] for the connection to
Douglas-Rachford splitting. These methods have long been known to converge
for any α ∈ (0, 1) and γ > 0 under mild assumptions, [21, 36, 18]. However,
the rate of convergence in the general case has just recently been shown to be
O(1/k), [30, 15, 13].

For a restricted class of monotone inclusion problems, Lions and Mercier
showed in [36] that the Douglas-Rachford algorithm (with α = 0.5) enjoys a
linear convergence rate. To the authors’ knowledge, this was the sole linear
convergence rate results for a long period of time for these methods. Recently,
however, many works have shown linear convergence rates for Douglas-Rachford
splitting and ADMM in different settings [31, 42, 15, 14, 16, 22, 40, 32, 34, 5,
47, 2, 44, 38].

The works in [31, 15, 5, 42] concern local linear convergence under different
assumptions. The works in [34, 47] consider distributed formulations and [32]
considers multi-block ADMM, while the works in [14, 16, 22, 40, 36, 2, 44, 38]
show global linear convergence. Of these, the work in [2] shows linear con-
vergence for Douglas-Rachford splitting when solving a subspace intersection
problem and the work in [44] (which appeared online during the submission
procedure of this paper) shows linear convergence for equality constrained prob-
lems with upper and lower bounds on the variables. The other works that show
global linear convergence, [14, 16, 22, 40, 36, 38], show this for Douglas-Rachford
splitting or ADMM under strong convexity and smoothness assumptions.

In this paper, we provide explicit linear convergence rate bounds for the
case where f in (1) is strongly convex and smooth and we show how to select
algorithm parameters to optimize the bounds. We also show that the bounds
are tight for the class of problems under consideration for all feasible algorithm
parameters γ and α. Our results generalize and/or improve corresponding re-
sults in [14, 16, 22, 40, 36, 38]. A detailed comparison to the rate bounds in
these works is found in Section 5.

We also show that a relaxation factor α ≥ 1 can be used in the algorithm. We
provide explicit lower and upper bounds on α where the upper bound depends
on the smoothness and strong convexity parameters of the problem. We further
show that the bounds are tight, meaning that if an α is chosen that is outside
the allowed interval, there exists a problem from the considered class that the
algorithm does not solve.



The provided convergence rate bounds for Douglas-Rachford splitting and
ADMM depend on the smoothness and strong convexity parameters of the prob-
lem to be solved. These parameters depend on the space on which the problem
is defined. This space can therefore be chosen by optimizing the convergence
rate bound. In this paper, we show how to do this in Euclidean settings. We
select a space by choosing a (metric) matrix M that defines an inner-product
〈x, y〉M = xTMy and its induced norm ‖x‖M =

√
〈x, x〉

M
. This matrix M

is chosen to optimize the convergence rate bound (typically subject to M be-
ing diagonal). Letting the problem and algorithm be defined on this space can
considerably improve theoretical and practical convergence.

The metric selection can be interpreted as a preconditioning with the objec-
tive to reduce the number of iterations. A similar preconditioning is presented
in [22] for ADMM applied to solve quadratic programs with linear inequality
constraints. Our results generalize these in several directions, see Section 5 for
a detailed comparison.

Real-world problems rarely have the properties needed to ensure linear con-
vergence of Douglas-Rachford splitting or ADMM. Therefore, we provide heuris-
tic metric and parameter selection methods for such problems. The heuristics
cover many problems that arise, e.g., in model predictive control [45], statisti-
cal estimation [29, 48], compressed sensing [9], and medical imaging [37]. We
provide two numerical examples that show the efficiency of the theoretically
justified and heuristic parameter and metric selection methods.

This paper extends and generalizes the conference papers [25, 24].

1.1 Notation

We denote by R the set of real numbers, Rn the set of real column-vectors of
length n, and Rm×n the set of real matrices with m rows and n columns. Further
R := R∪{∞} denotes the extended real line. Throughout this paper H, H1, H2,
and K denote real Hilbert spaces. Their inner products are denoted by 〈·, ·〉, the
induced norm by ‖ · ‖, and the identity operator by Id. We specifically consider
finite-dimensional Hilbert-spaces HH with inner product 〈x, y〉 = xTHy and

induced norm ‖x‖ =
√
xTHx. We denote these by 〈·, ·〉H and ‖ · ‖H . We

also denote the Euclidean inner-product by 〈x, y〉2 = xT y and the induced
norm by ‖ · ‖2. The conjugate function is denoted and defined by f∗(y) ,
supx {〈y, x〉 − f(x)} and the adjoint operator to a linear operator A : H → K
is defined as the unique operator A∗ : K → H that satisfies 〈Ax, y〉 = 〈x,A∗y〉.
The range and kernel of A are denoted by ranA and kerA respectively. The
orthogonal complement of a subspace X is denoted by X⊥. The power set of
a set X , i.e., the set of all subsets of X , is denoted by 2X . The graph of an
(set-valued) operator A : X → 2Y is defined and denoted by gphA = {(x, y) ∈
X × Y | y ∈ Ax}. The inverse operator A−1 is defined through its graph by
gphA−1 = {(y, x) ∈ Y × X | y ∈ Ax}. The set of fixed-points to an operator
T : H → H is denoted and defined as fixT = {x ∈ H | Tx = x}. Finally, the
class of closed, proper, and convex functions f : H → R is denoted by Γ0(H).



2 Background

In this section, we introduce some standard definitions that can be found, e.g.
in [1, 46].

Definition 1 (Strong monotonicity) An operator A : H → 2H is σ-
strongly monotone with σ > 0 if

〈u− v, x− y〉 ≥ σ‖x− y‖2

for all (x, u) ∈ gph(A) and (y, v) ∈ gph(A).

The definition of monotonicity is obtained by setting σ = 0 in the above
definition.

In the following definitions, we suppose that D ⊆ H is a nonempty subset of
H.

Definition 2 (Lipschitz mappings) A mapping T : D → H is β-Lipschitz
continuous with β ≥ 0 if

‖Tx− Ty‖ ≤ β‖x− y‖

holds for all x, y ∈ D. If β = 1 then T is nonexpansive and if β ∈ [0, 1) then T
is β-contractive.

Definition 3 (Averaged mappings) A mapping T : D → H is α-averaged
if there exists a nonexpansive mapping S : D → H and α ∈ (0, 1) such that
T = (1− α)Id + αS.

Definition 4 (Cocoercivity) A mapping T : D → H is β-cocoercive with
β > 0 if βT is 1

2 -averaged.

This definition implies that cocoercive mappings T can be expressed as

T = 1
2β (Id + S) (4)

for some nonexpansive operator S.

Definition 5 (Strong convexity) A function f ∈ Γ0(H) is σ-strongly convex
with σ > 0 if f − σ

2 ‖ · ‖
2 is convex.

A strongly convex function has a minimum curvature that is at least σ. If
f is differentiable, strong convexity can equivalently be defined as that

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ σ
2 ‖x− y‖

2 (5)

holds for all x, y ∈ H. Functions with a maximal curvature are called smooth.
Next, we present a smoothness definition for convex functions.



Definition 6 (Smoothness for convex functions) A function f ∈ Γ0(H)
is β-smooth with β ≥ 0 if it is differentiable and β

2 ‖ · ‖
2 − f is convex, or

equivalently that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ β
2 ‖x− y‖

2 (6)

holds for all x, y ∈ H.

Remark 1 It can be seen from (5) and (6) that for a function that is σ-strongly
convex and β-smooth, we always have β ≥ σ.

3 Douglas-Rachford splitting

The Douglas-Rachford algorithm can be applied to solve composite convex op-
timization problems of the form

minimize f(x) + g(x) (7)

where f, g ∈ Γ0(H). The solutions to (7) are characterized by the following
optimality conditions, [1, Proposition 25.1]

z = RγgRγfz, x = proxγf (z) (8)

where γ > 0, the prox operator proxγf is defined in (3), and the reflected
proximal operator Rγf = 2proxγf−Id. In other words, a solution to (7) is found
by applying the proximal operator on z, where z is a fixed-point to RγgRγf .

One approach to find a fixed-point to RγgRγf is to iterate the composition

zk+1 = RγgRγfz
k.

This algorithm is sometimes referred to as Peaceman-Rachford splitting, [41].
However, since Rγf and Rγg are in general nonexpansive, so is their composition,
and convergence of this algorithm cannot be guaranteed in the general case.

The Douglas-Rachford splitting algorithm is obtained by iterating the aver-
aged map of the nonexpansive Peaceman-Rachford operator RγgRγf . That is,
it is given by the iteration

zk+1 = ((1− α)Id + αRγgRγf )zk (9)

where α ∈ (0, 1) to guarantee convergence in the general case, see [19]. (We
will, however, see that when additional regularity assumptions are introduced,
α = 1, i.e. Peaceman-Rachford splitting, and even some α > 1 can be used and
convergence can still be guaranteed.)

The Douglas-Rachford algorithm (9) can more explicitly be written as

xk = proxγf (zk) (10)

yk = proxγg(2x
k − zk) (11)

zk+1 = zk + 2α(yk − xk) (12)

Note that sometimes, the algorithm obtained by letting α = 1
2 is called Douglas-

Rachford splitting [18]. Here we use the name Douglas-Rachford splitting for
all feasible values of α.



3.1 Linear convergence

Under some regularity assumptions, the convergence of the Douglas-Rachford
algorithm is linear. We will analyze its convergence under the following set of
assumptions:

Assumption 1 Suppose that:

(i) f and g are proper, closed, and convex.

(ii) f is σ-strongly convex and β-smooth.

To show linear convergence rates of the Douglas-Rachford algorithm under these
regularity assumptions on f , we need to characterize some properties of the
proximal and reflected proximal operators to f . Specifically, we will show that
the reflected proximal operator of f is contractive (as opposed to nonexpansive
in the general case). We will also provide a tight contraction factor.

The key to arriving at this contraction factor is the following, to the authors’
knowledge, novel (but straightforward) interpretation of the proximal operator.

Proposition 1 Assume that f ∈ Γ0(H) and that γ ∈ (0,∞) and define fγ as

fγ := γf + 1
2‖ · ‖

2. (13)

Then proxγf (y) = ∇f∗γ (y).

Proof. Since the proximal operator is the resolvent of γ∂f , see [1, Exam-
ple 23.3], we have proxγf (y) = (Id + γ∂f)−1y = (∂fγ)−1y. Since f ∈ Γ0(H)
and γ ∈ (0,∞) also fγ ∈ Γ0(H). Therefore [1, Corollary 16.24] implies that
proxγf (y) = (∂fγ)−1y = ∇f∗γ (y), where differentiability of f∗γ follows from [1,
Theorem 18.15], since fγ is 1-strongly convex, and since f = (f∗)∗ for proper,
closed, and convex functions, see [1, Theorem 13.32]. This concludes the proof.
�

This interpretation of the proximal operator is used to prove the following
proposition. The proof is found in Appendix B.

Proposition 2 Assume that f ∈ Γ0(H) is σ-strongly convex and β-smooth and
that γ ∈ (0,∞). Then proxγf − 1

1+γβ Id is 1
1

1+γσ−
1

1+γβ

-cocoercive if β > σ and

0-Lipschitz if β = σ.

This result is used to show the following contraction properties of the re-
flected proximal operator. A proof to this result, which is one of the main
results of the paper, is found in Appendix C.

Theorem 1 Suppose that f ∈ Γ0(H) is σ-strongly convex and β-smooth and

that γ ∈ (0,∞). Then Rγf is max
(
γβ−1
γβ+1 ,

1−γσ
γσ+1

)
-contractive.



For future reference, we let this contraction factor be denoted by δ, i.e.,

δ := max
(
γβ−1
γβ+1 ,

1−γσ
γσ+1

)
. (14)

Theorem 1 lays the foundation for the linear convergence rate result in the
following theorem, which is proven in Appendix D.

Theorem 2 Suppose that Assumption 1 holds, that γ ∈ (0,∞), that α ∈
(0, 2

1+δ ) with δ in (14). Then the Douglas Rachford algorithm (9) converges
linearly towards a fixed-point z̄ ∈ fix(RγgRγf ) at least with rate |1 − α| + αδ,
i.e.,:

‖zk+1 − z̄‖ ≤ (|1− α|+ αδ) ‖zk − z̄‖.

Remark 2 Note that α > 1 can be used in the Douglas-Rachford algorithm
when solving problems that satisfy Assumption 1. (This also holds for general
relaxed iteration of a contractive mapping.) That α-values greater than 1 can
be used is reported in [38] for ADMM (i.e., for dual Douglas-Rachford). They
solve a small SDP to assess whether ADMM converges with a specific rate, for
specific problem parameters β and σ, and specific algorithm parameters α and
γ. This SDP gives an affirmative answer for some problems and some α > 1.
As opposed to here, no explicit bounds on α are provided.

Also the xk iterates in (10) converge linearly. The following corollary is
proven in Appendix E.

Corollary 1 Let x? be the (unique) solution to (7). Then the xk iterates in
(10) satisfy

‖xk+1 − x?‖ ≤ (|1− α|+ δα)k+1 1
1+γσ‖z

0 − z̄‖. (15)

Remark 3 Note that Corollary 1 and Theorem 2 still hold if the order of Rγg
and Rγf is swapped in the Douglas-Rachford algorithm (9).

We can choose the algorithm parameters γ and α to optimize the bound on
the convergence rate in Theorem 2. This is done in the following proposition.

Proposition 3 Suppose that Assumption 1 holds. Then the optimal parameters
for the Douglas-Rachford algorithm in (9) are α = 1 and γ = 1√

σβ
. Further,

the optimal rate is

√
β/σ−1√
β/σ+1

.

Proof. Since δ ∈ [0, 1), the rate in Theorem 2, |1 − α| + αδ, is a decreasing
function of α for α ≤ 1 and increasing for α ≥ 1. Therefore the rate factor
is optimized by α = 1. The γ parameter should be chosen to minimize the



max-expression max
(
γβ−1
γβ+1 ,

1−γσ
1+γσ

)
defining δ in (14). This is done by setting

the arguments equal, which gives γ = 1/
√
βσ. Inserting these values into the

rate factor expression gives

√
β/σ−1√
β/σ+1

. �

Remark 4 Note that α = 1 is optimal in Proposition 3. So the Peaceman-
Rachford algorithm gives the best bound on the convergence rate under Assump-
tion 1, even though it is not guaranteed to converge in the general case. The
reason is that Rγf becomes contractive under Assumption 1 (as opposed to non-
expansive in the general case).

3.2 Tightness of bounds

In this section, we show that the linear convergence rate bounds in Theorem 2
are tight. We consider a two dimensional example of the form (7) in a standard
Euclidean space to show tightness. Let x = (x1, x2), then the functions used
are

f(x) = 1
2 (βx21 + σx22), (16)

g1(x) = 0, (17)

g2(x) = ιx=0(x), (18)

where β ≥ σ > 0 and ιx=0 is the indicator function for x = 0, i.e., ιx=0(x) = 0
iff x = 0, otherwise ∞.

The function f is β-smooth since β
2 ‖x‖

2
2 − f(x) = β−σ

2 x22 is convex. It is

σ-strongly convex since f(x) − σ
2 ‖x‖

2
2 = β−σ

2 x21 is convex. So the function f
satisfies Assumption 1(ii).

The proximal operator to f is

proxγf (y) = argmin
x
{γf(x) + 1

2‖x− y‖
2
2}

= argmin
x
{ 12
(
(βγ + 1)x21 + (σγ + 1)x22

)
+ x1y1 + x2y2}

= ( 1
1+γβ y1,

1
1+γσy2) (19)

where y = (y1, y2). The reflected proximal operator is

Rγf (y) = 2proxγf (y)− y
= 2( 1

1+γβ y1,
1

1+γσy2)− (y1, y2)

= ( 1−γβ
1+γβ y1,

1−γσ
1+γσ y2). (20)

The proximal and reflected proximal operators to g1 in (17) are proxγg1 =
Rγg1 = Id. The proximal and reflected proximal operators to g2 in (18) are
proxγg2(x) = 0 and Rγg2 = 2proxγg2 − Id = −Id.

Next, these results are used to show tightness of the convergence rate bounds
in Theorem 2. The tightness result is proven in Appendix F.



Theorem 3 The convergence rate bound in Theorem 2 for the Douglas-Rachford
splitting algorithm (9) is tight for the class of problems that satisfy Assumption 1
for all algorithm parameters specified in Theorem 2, namely α ∈ (0, 2

1+δ ) with

δ in (14) and γ ∈ (0,∞). If instead α 6∈ (0, 2
1+δ ), there exist a problem that

satisfies Assumption 1 that the Douglas-Rachford algorithm does not solve.

Remark 5 This result on tightness can be generalized to any real Hilbert space.
This is obtained by considering the same g1 and g2 as in (17) and (18) but with

f(x) =

|H|∑
i=1

λi

2 〈x, φi〉
2.

Here {φi}|H|i=1 is an orthonormal basis for H, |H| is the dimension of the space
H (possibly infinite), and λi = σ > 0 or λi = β ≥ σ for all i, where at least one
λi = σ and one λi = β.

4 ADMM

In this section, we apply the results from the previous section to the Fenchel
dual problem. Since ADMM applied to the primal problem is equivalent to the
Douglas-Rachford algorithm applied to the dual problem, the results obtained
in this section hold for ADMM.

We consider solving problems of the form

minimize f(x) + g(y)
subject to Ax+ By = c

(21)

where f ∈ Γ0(H1), g ∈ Γ0(H2), A : H1 → K and B : H2 → K are bounded
linear operators and c ∈ K. In addition, we assume:

Assumption 2

(i) f ∈ Γ0(H1) is β-smooth and σ-strongly convex.

(ii) A : H1 → K is surjective.

The assumption that A is a surjective bounded linear operator reduces to that
A is a real matrix with full row rank in the Euclidean case.

Problems of the form (21) cannot be directly efficiently solved using Douglas-
Rachford splitting. Therefore, we instead solve the (negative) Fenchel dual
problem, which is

minimize d1(µ) + d2(µ) (22)

where d1, d2 ∈ Γ0(K) are

d1(µ) := f∗(−A∗µ) + 〈c, µ〉, d2(µ) = g∗(−B∗µ). (23)



The Douglas-Rachford algorithm when solving the dual problem becomes

zk+1 = ((1− α)Id + αRγd1Rγd2)zk. (24)

This formulation will be used when analyzing ADMM since for α = 1
2 it is

equivalent to ADMM and for α ∈ (0, 12 ] and α ∈ [ 12 , 1) it is equivalent to under-
and over-relaxed ADMM, see [20, 18, 19]. Note that we only use (24) as an
analysis algorithm for ADMM. The algorithm should still be implemented as
the standard ADMM algorithm (with over- or under-relaxation). Here we state
ADMM with scaled dual variables u, see [6]:

xk+1 = argmin
x
{f(x) + γ

2 ‖Ax+Byk − c+ uk‖22} (25)

xk+1
A = 2αAxk+1 − (1− 2α)(Byk − c) (26)

yk+1 = argmin
y
{g(y) + γ

2 ‖x
k+1
A +By − c+ uk‖22} (27)

uk+1 = uk + (xk+1
A +Byk+1 − c) (28)

where zk in (24) satisfies zk = γ(uk − Byk), see [19, Theorem 8] and [27,
Appendix B].

4.1 Linear convergence

To show linear convergence rate results in this dual setting, we need to quantify
the strong convexity and smoothness parameters for d1 in (23). This is done in
the following proposition.

Proposition 4 Suppose that Assumption 2 holds. Then d1 ∈ Γ0(K) in (23) is
‖A∗‖2
σ -smooth and θ2

β -strongly convex, where θ > 0 always exists and satisfies

‖A∗µ‖ ≥ θ‖µ‖ for all µ ∈ K.

Proof. We define d(µ) := f∗(−A∗µ), so d1(µ) = d(µ) + 〈c, µ〉. We first note
that the linear term 〈c, µ〉 does not affect the strong convexity or smoothness

parameters. So, we proceed by showing d is ‖A
∗‖2
σ -smooth and θ2

β -strongly
convex.

Since f is σ-strongly convex, [1, Theorem 18.15] gives that f∗ is 1
σ -smooth

and that ∇f∗ is 1
σ -Lipschitz continuous. Therefore, ∇d satisfies

‖∇d(µ)−∇d(ν)‖ = ‖A∇f∗(−A∗µ)−A∇f∗(−A∗ν)‖

≤ ‖A‖σ ‖A
∗(µ− ν)‖

≤ ‖A
∗‖2
σ ‖µ− ν‖

since ‖A‖ = ‖A∗‖. This is equivalent to that d is ‖A
∗‖2
σ -smooth, see [1, Theo-

rem 18.15].



Next, we show the strong convexity result for d. Since f is β-smooth, f∗

is 1
β -strongly convex, and ∇f∗ is 1

β -strongly monotone, see [1, Theorem 18.15].
Therefore, ∇d satisfies

〈∇d(µ)−∇d(ν), µ− ν〉 = 〈−A(∇f∗(−A∗µ)−∇f∗(−A∗ν)), µ− ν〉
= 〈∇f∗(−A∗µ)−∇f∗(−A∗ν),−A∗µ+A∗ν)〉
≥ 1

β ‖A
∗(µ− ν)‖2

≥ θ2

β ‖µ− ν‖
2.

This, by [1, Theorem 18.15], is equivalent to d being θ2

β -strongly convex. That

θ > 0 follows from [1, Fact 2.18 and Fact 2.19]. Specifically, [1, Fact 2.18] says
that kerA∗ = (ranA)⊥ = ∅, since A is surjective. Since ranA = K (again by
surjectivity), it is closed. Then [1, Fact 2.19] states that there exists θ > 0 such
that ‖A∗µ‖ ≥ θ‖µ‖ for all µ ∈ (kerA∗)⊥ = (∅)⊥ = K.

�

Combining this result with Theorem 1 implies that Rγd1 is δ̂-contractive
with

δ̂ := max
(
γβ̂−1
1+γβ̂

, 1−γσ̂1+γσ̂

)
(29)

where β̂ = ‖A∗‖2
σ and σ̂ = θ2

β . This gives the following immediate corollary to
Theorem 2 and Proposition 3.

Corollary 2 Suppose that Assumption 2 holds, that γ ∈ (0,∞), and that α ∈
(0, 2

1+δ̂
) with δ̂ in (29). Then algorithm (24) (or equivalently ADMM applied to

solve (21)) converges at least with rate |1− α|+ αδ̂, i.e.,

‖zk+1 − z̄‖ ≤
(
|1− α|+ αδ̂

)
‖zk − z̄‖

where z̄ ∈ fix(Rγd1Rγd2).
Further, the algorithm parameters γ and α that optimize the rate bound are

α = 1 and γ = 1√
β̂σ̂

=
√
βσ

‖A∗‖θ . The optimized linear convergence rate bound

factor is
√
κ̂−1√
κ̂+1

, where κ̂ = β̂
σ̂ = ‖A∗‖2β

θ2σ .

Remark 6 Similarly to in the primal setting in Corollary 1, R-linear conver-
gence for the xk update in (25) can be shown. The proof is more elaborate than
the corresponding proof for primal Douglas-Rachford. This result is therefore
omitted due to space considerations.

4.2 Tightness of bounds

Also in this dual setting, the convergence rate estimates are tight. Consider
again the functions (16), (17), and (18). Further let c = 0, B = −I, and
A :=

[
θ 0
0 ζ

]
with ζ ≥ θ > 0.



Since f∗(ν) = 1
2 ( 1
β ν

2
1 + 1

σν
2
2) for f in (16), we get

d1(µ) = f∗(−ATµ) = 1
2 ( θ

2

β µ
2
1 + ζ2

σ µ
2
2).

Since d1 is on the same form as f in Section 3.2, d1 is σ̂ := θ2

β -strongly convex

and β̂ := ζ2

σ -smooth, or equivalently β̂ := ‖AT ‖2
σ -smooth since ζ = ‖A‖ = ‖AT ‖.

Further d2(µ) = g∗(−BTµ) = g∗(µ) where either g = g1 with g1 in (17) or
g = g2 with g2 in (18). The functions g1 and g2 in (17) and (18) are each other’s
conjugates, i.e., g∗1 = g2 and g∗2 = g1. Therefore, the dual problem

minimize d1(µ) + d2(µ)

(with d2 = g1 or d2 = g2) is the same as the problem considered in Section 3.2

but with the smoothness parameter β in Section 3.2 replaced by β̂ = ‖A∗‖2
σ and

the strong convexity modulus σ in Section 3.2 replaced by σ̂ = θ2

β . Therefore,
we can state the following immediate corollary to Theorem 3.

Corollary 3 The convergence rate bound in Corollary 2 for ADMM applied
to the primal or, equivalently, the Douglas-Rachford algorithm applied to the
dual (24), is tight for the class of problems that satisfy Assumption 2 for all

algorithm parameters specified in Corollary 2, namely for α ∈ (0, 2
1+δ̂

) with δ̂ in

(29) and γ ∈ (0,∞). If instead α 6∈ (0, 2
1+δ̂

), there exist a problem that satisfies

Assumption 2 that the algorithm does not solve.

Remark 7 As in the primal Douglas-Rachford case, tightness can be shown in
general real Hilbert spaces. This is obtained with the same f , g1, and g2 as in
Remark 5 and with B = −Id, c = 0, and

Ax =

|H|∑
i=1

νi〈x, φi〉φi

where νi = θ > 0 if λi = β in Remark 5 and νi = ζ ≥ θ if λi = σ in Remark 5.

5 Related work

Recently, many works have appeared that show linear convergence rate bounds
for Douglas-Rachford splitting and ADMM under different sets of assumptions.
In this section, we will discuss and compare some of these linear convergence
rate bounds that hold with the assumptions stated in this paper. For simplicity,
we will compare the various optimal rates, i.e., rates obtained by using optimal
algorithm parameters.

Specifically, we will compare our results in Proposition 3 and Corollary 2
to the previously known linear convergence rate results in [14, 16, 22, 40, 36]
and the linear convergence rate [38] that appeared online during the submission
procedure of this paper.
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Figure 1: Comparison between linear convergence rate bounds for Douglas-
Rachford splitting/ADMM provided in [14, 16, 22, 40, 38] and in Corollary 2.

Some of these results consider the Douglas-Rachford algorithm while others
consider ADMM. A Douglas-Rachford rate result becomes an ADMM rate re-
sult by replacing the strong convexity and smoothness parameters σ and β with

the dual problem counterparts σ̂ = θ2

β and β̂ = ‖A∗‖2
σ , see Proposition 4. All

rate bounds in this comparison that directly analyze ADMM also depend on
the dual problem strong convexity and smoothness parameters σ̂ and β̂. There-
fore, the comparison can be carried out in dual problem parameters σ̂ and β̂.
Obviously, since our bounds are tight, none of the other bounds can be better.
This comparison is merely to show that we improve and/or generalize previous
results.

In [36, Proposition 4, Remark 10], the linear convergence rate for Douglas-
Rachford splitting with α = 1

2 when solving monotone inclusion problems with

one operator being σ̂-strongly monotone and β̂-Lipschitz continuous is shown

to be
√

1− σ̂
2β̂

. Note that the setting considered in [36] is more general than

the setting in this paper. Recently, this bound was improved in [23] where tight
estimates are provided.

In [14, Theorem 6], dual Douglas-Rachford splitting with α = 1 is shown to

converge linearly at least with rate
√

1− σ̂
β̂

. For α = 1
2 they recover the bound

in [36]. In Figure 1, the former (better) of these rate bounds is plotted. We see
that it is more conservative than the one in Corollary 2.

The optimal convergence rate bound in [16, Corollary 3.6] is

√
1/(1 + 1/

√
β̂/σ̂)

and is analyzed directly in the ADMM setting. Figure 1 reveals that our rate
bound is tighter.

In [40], the authors show that if the γ parameter is small enough and if f is
a quadratic function, then Douglas-Rachford splitting is equivalent to a gradi-
ent method applied to a smooth convex function named the Douglas-Rachford



envelope. Convergence rate estimates then follow from the gradient method
rate estimates. Also, accelerated variants of Douglas-Rachford splitting are
proposed, based on fast gradient methods. In Figure 1, we compare to the rate
bound of the fast Douglas-Rachford splitting in [40, Theorem 6] when applied to
the dual. This rate bound is better than the rate bound for standard Douglas-
Rachford splitting in [40, Theorem 4]. We note that Corollary 2 gives better
rate bounds.

The convergence rate bound provided in [22] coincides with the bound pro-
vided in Corollary 2. The rate bound in [22] holds for ADMM applied to Eu-
clidean quadratic problems with linear inequality constraints. We generalize
these results, using a different machinery, to arbitrary real Hilbert spaces (also
infinite dimensional), to both Douglas-Rachford splitting and ADMM, to gen-
eral smooth and strongly convex functions f , and, perhaps most importantly,
to any proper, closed, and convex function g.

Finally, we compare our rate bound to the rate bound in [38]. Figure 1
shows that our bound is tighter. As opposed to all the other rate bounds in this
comparison, the rate bound in [38] is not explicit. Rather, a sweep over different
rate bound factors is needed. For each guess, a small semi-definite program is
solved to assess whether the algorithm is guaranteed to converge with that rate.
The quantization level of this sweep is the cause of the steps in the rate curve
in Figure 1.

6 Metric selection

In this section, we consider problems of the form (21) in an Euclidean setting.
We assume f ∈ Γ0(HM ), g ∈ Γ0(HK̂), A : HM → HK , B : HK̂ → HK ,
c ∈ HK and that:

Assumption 3

(i) f ∈ Γ0(HM ) is 1-strongly convex if defined on HH (i.e., M = H) and
1-smooth if defined on HL (i.e., M = L).

(ii) The bounded linear operator A : HM → HK is surjective.

We solve (21) by applying Douglas-Rachford splitting on the dual problem (22)
(or equivalently by applying ADMM directly on the primal (21)). This algorithm
behaves differently depending on which space HK the problem is defined and the
algorithm is run. We will show how to select a space HK on which the algorithm
rate bound is optimized. To aid in this selection, we show in the following
proposition how the strong convexity modulus and smoothness constant of d1 ∈
Γ0(HK) depend on the space on which it is defined.

Proposition 5 Suppose that Assumption 3 holds, that A ∈ Rm×n satisfies
Ax = Ax for all x, and that K = ETE. Then d1 ∈ HK in (23) is ‖EAH−1ATET ‖2-
smooth and λmin(EAL−1ATET )-strongly convex, where λmin(EAL−1ATET ) >
0.



Proof. First, we note that d1(µ) = d(µ) + 〈c, µ〉 where d(µ) = f∗(−A∗µ)
and that a linear function does not change the strong convexity of smoothness
parameter of a problem. Therefore, we show the result for d.

First, we relate A∗ : HK → HM to A, M , and K. We have

〈Ax, µ〉K = 〈Ax,Kµ〉2 = 〈x,ATKµ〉2 = 〈x,M−1ATKµ〉M
= 〈M−1ATKµ, x〉M = 〈A∗µ, x〉M .

Thus, A∗µ = M−1ATKµ for all µ ∈ HK .
Next, we show that the space HM on which f and f∗ are defined does not

influence the shape of d. We denote by fH , fL, and fe the function f defined on
HH , HL and Rn respectively and by A∗H : HK → HH , A∗L : HK → HL, and
AT : Rm → Rn the operator A∗ defined on the different spaces. Further, let
dH := f∗H ◦ −A∗H , dL := f∗L ◦ −A∗L, and de := f∗e ◦ −AT . With these definitions
both dL and dH are defined on HK , while de is defined on Rm. Next we show
that dL and dH are identical for any µ:

dH(µ) = f∗H(−A∗Hµ)

= sup
x
{〈−A∗Hµ, x〉H − fH(x)}

= sup
x

{
〈−HH−1ATKµ, x〉2 − fe(x)

}
= sup

x

{
〈−LL−1ATKµ, x〉2 − fe(x)

}
= sup

x
{〈−A∗Lµ, x〉L − fL(x)} = dL(µ)

where A∗Mµ = M−1ATKµ is used. This implies that we can show properties of
d ∈ HK by defining f on any space HM . Thus, Proposition 4 gives that 1-strong
convexity of f when defined on HH implies ‖A∗‖2-smoothness of d, where

‖A∗‖ = sup
µ
{‖A∗µ‖H | ‖µ‖K ≤ 1}

= sup
µ

{
‖H−1ATKµ‖H | ‖µ‖K ≤ 1

}
= sup

µ

{
‖H−1/2ATETEµ‖2 | ‖Eµ‖2 ≤ 1

}
= sup

ν

{
‖H−1/2ATET ν‖2 | ‖ν‖2 ≤ 1

}
= ‖H−1/2ATET ‖2.

Squaring this gives the smoothness claim. To show the strong-convexity claim,
we use that 1-smoothness of f when defined on HL implies θ2-strong convexity
of d where θ > 0 satisfies ‖A∗µ‖L ≥ θ‖µ‖K for all µ ∈ HK , see Proposition 4.



We have

‖A∗µ‖2L = ‖L−1ATKµ‖2L
= ‖L−1/2ATET (Eµ)‖22
= ‖Eµ‖2EAL−1ATET

≥ λmin(EAL−1ATET )‖Eµ‖22
= λmin(EAL−1ATET )‖µ‖2K ,

i.e, θ2 = λmin(EAL−1ATET ). The smallest eigenvalue λmin(EAL−1ATET ) > 0
since A is surjective, i.e. has full row rank, and E and L are positive definite
matrices. This concludes the proof. �

This result shows how the smoothness constant and strong convexity mod-
ulus of d1 ∈ Γ0(HK) change with the space HK on which it is defined. Com-
bining this with Proposition 3, we get that the bound on the convergence rate
for Douglas-Rachford splitting applied to the dual problem (22) (or equivalently
ADMM applied to the primal (21)) is optimized by choosing K = ETE where
E is chosen to

minimize
λmax(EAH−1ATET )

λmin(EAL−1ATET )
(30)

and by choosing γ = 1√
λmax(EAH−1ATET )λmin(EAL−1ATET )

. Using a non-diagonal

K usually gives prohibitively expensive prox-evaluations. Therefore, we propose
to select a diagonal K = ETE that minimizes (30). The reader is referred to
[26, Section 6] for different methods to achieve this exactly and approximately.

Remark 8 It can be shown (details are omitted for space considerations) that
solving the dual problem on space HK using Douglas-Rachford splitting is equiv-
alent to solving the preconditioned problem

minimize f(x) + g(y)
subject to E(Ax+By) = Ec.

(31)

using ADMM. Therefore, the metric selection presented here covers the precon-
ditioning suggestion in [22] as a special case.

Remark 9 Metric selection and preconditioning is not new for iterative meth-
ods. It can be used with the aim to reduce the computational burden within
each iteration [11, 43, 8, 7, 33], and/or with the aim to reduce the total number
of iterations like in our analysis and in [22, 26, 4, 7, 33]. It is interesting to
note that in our paper (if we restrict ourselves to quadratic f with Hessian H)
and in [22, 26, 7, 33], different algorithms are analyzed with different methods,
but all analyses suggest to make AH−1AT well conditioned (by choosing a met-
ric or doing preconditioning). The analyzed algorithms are ADMM here and
in [22], (fast) dual forward-backward splitting in [26], and Uzawa’s method to



solve linear systems of the form
[
H AT

A 0

]
(x, µ) = (−q, b) in [7, 33]. This linear

system is the KKT-condition for the problem minx{f(x)+g(y) | Ax = y} where
f(x) = 1

2x
THx + qTx and g(y) = ιy=b(y). The dual functions are d1(µ) =

(q + ATµ)TH−1(ATµ + q) with Hessian AH−1AT and d2(µ) = g∗(µ) = bTµ.
The functions d1 in the dual problems in all these analyses are the same (if we
restrict ourselves to quadratic f with Hessian H in our setting), but the func-
tions d2 are different. So all the different metric selections (preconditionings)
try to make d1, and its Hessian AH−1AT , well conditioned.

6.1 Heuristic metric selection

Many problems do not satisfy all assumptions in Assumption 2, but for many
interesting problems a couple of them are typically satisfied. Therefore, we will
here discuss metric and parameter selection heuristics for ADMM (Douglas-
Rachford applied to the dual (22)) when some of the assumptions are not met.
We focus on quadratic problems of the form

minimize 1
2x

TQx+ qTx+ f̂(x)︸ ︷︷ ︸
f(x)

+g(y)

subject to Ax+By = c

(32)

where Q ∈ Rn×n is positive semi-definite, q ∈ Rn, f̂ ∈ Γ0(Rn), g ∈ Γ0(Rm),
A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.

One set of assumptions that guarantee linear convergence for dual Douglas-
Rachford splitting is that Q is positive definite, that f̂ is nonsmooth, and that
A has full row rank. By inverting these, we get a set of assumptions that if
anyone of these are satisfied, we cannot guarantee linear convergence:

(i) Q is not positive definite, but positive semi-definite.

(ii) f̂ is nonsmooth, e.g., the indicator function of a convex constraint set or
a piece-wise affine function

(iii) A does not have full row rank.

In the first case, we loose strong convexity in f and smoothness in the dual d1.
In the second case, we loose smoothness in f and strong convexity d1. In the
third case, we loose strong convexity in the dual d1.

We directly tackle the case where the assumptions needed to get linear con-
vergence are violated by all points (i), (ii), and (iii). For the dual case we con-

sider, i.e., the ADMM case, we propose to select the metric as if f̂ ≡ 0 in (32).
To do this, we define the quadratic part of f in (32) to be fpc(x) := 1

2x
TQx+qTx

and introduce the function dpc := f∗pc ◦ −AT . The conjugate function of fpc is
given by

f∗pc(y) = sup
x
{〈y, x〉 − fpc(x)} =

{
1
2 (y − q)TQ†(y − q) if (y − q) ∈ R(Q)

∞ else



where Q† is the pseudo-inverse of Q and R denotes the range space. This gives

dpc(µ) =

{
1
2 (ATµ+ q)TQ†(ATµ− q) if (ATµ+ q) ∈ R(Q)

∞ else

with Hessian AQ†AT on its domain. We approximate the dual function d1(µ) =
f∗(−ATµ)+cTµ with dpc(µ)+cTµ. Then we propose to select a diagonal metric
K = ETE such that this approximation is well conditioned in directions where
it has curvature. That is, we propose to select a metric K = ETE such that the
pseudo condition number of AQ†AT is minimized. This is achieved by finding
an E to

minimize
λmax(EAQ†ATET )

λmin>0(EAQ†ATET )

where λmin>0 denotes the smallest non-zero eigenvalue. (See [26, Section 6]
for methods to achieve this exactly and approximately.) This heuristic reduces
to the optimal metric choice in the case where linear convergence is achieved.
The γ-parameter is also chosen in accordance with the above reasoning and
Corollary 2 as γ = 1√

λmax(EAQ†ATET )λmin>0(EAQ†ATET )
.

If instead f̂ in (32) is the indicator function of an affine subspace, i.e.,

f̂ = ιLx=b and Q is strongly convex on the null-space of L. Then d1(µ) =

1
2µ

TAP11A
Tµ+ξTµ+χ+cTµ where ξ ∈ Rn, χ ∈ R, and

[
Q LT

L 0

]−1
=
[
P11 P12

P21 P22

]
.

Then we can choose metric by minimizing the pseudo condition number of
AP11A

T (which is the Hessian of d1) and select γ as
γ = 1√

λmax(EAP11ATET )λmin>0(EAP11ATET )
.

7 Numerical example

7.1 A problem with linear convergence

We consider a weighted Lasso minimization problem formulation with inspira-
tion from [10] of the form

minimize 1
2‖Ax− b‖

2
2 + ‖Wx‖1 (33)

with x ∈ R200, the data matrix A ∈ R300×200 is a sparse with on average 10
nonzero entries per row, and b ∈ R300. Each nonzero element in A and b is
drawn from a Gaussian distribution with zero mean and unit variance. Further,
W ∈ R200×200 is a diagonal matrix with positive diagonal elements drawn from
a uniform distribution on the interval [0, 1].

We solve the problem using ADMM in the standard Euclidean setting and in
the optimal metric setting according to Section 6. We use the optimal α = 1 and
different parameters γ. The γ parameter is varied in the range [10−2γ?, 102γ?]
where γ? is the theoretically optimal γ in the respective settings (Euclidean and
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Figure 2: Theoretical bounds on and actual number of iterations to achieve
a prespecified relative accuracy of 10−5 when solving (33) using ADMM with
α = 1 for different γ. We present results with and without preconditioning
(metric selection).

optimal metric). In Figure 2, the actual number of iterations needed to obtain
a specific accuracy (a relative tolerance of 10−5) as well as the theoretical worst
case number of iterations are plotted, both for the Euclidean and optimal metric
setting.

Figure 2 reveals that, for this particular example, the actual numbers of
iterations are fairly consistent with the iteration bounds. We also see that
there is a lot to gain by running the algorithm with an appropriately chosen
metric. Also the optimal parameters γ? give close to optimal performance in
both settings.

7.2 A problem without linear convergence

Here, we evaluate the heuristic metric and parameter selection method by ap-
plying ADMM to the (small-scale) aircraft control problem from [35, 3]. As in
[3], the continuous time model from [35] is sampled using zero-order hold every
0.05 s. The system has four states x = (x1, x2, x3, x4), two outputs y = (y1, y2),
two inputs u = (u1, u2), and obeys the following dynamics

x(t+ 1) =


0.999 −3.008 −0.113 −1.608
−0.000 0.986 0.048 0.000
0.000 2.083 1.009 −0.000
0.000 0.053 0.050 1.000

x(t) +


−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

u(t),

y(t) =

[
0 1 0 0
0 0 0 1

]
x(t).

The system is unstable, the magnitude of the largest eigenvalue of the dynamics
matrix is 1.313. The outputs are the attack and pitch angles, while the inputs
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Figure 3: Average number of iterations for different γ-values, different metrics,
and different relaxations α.

are the elevator and flaperon angles. The inputs are physically constrained to
satisfy |ui| ≤ 25◦, i = 1, 2. The outputs are soft constrained and modeled using
the piece-wise linear cost function

h(y, l, u, s) =


0 if l ≤ y ≤ u
s(y − u) if y ≥ u
s(l − y) if y ≤ l

Especially, the first output is penalized using h(y1,−0.5, 0.5, 106) and the second
is penalized using h(y2,−100, 100, 106). The states and inputs are penalized
using

`(x, u, s) = 1
2

(
(x− xr)TQ(x− xr) + uTRu

)
where xr is a reference, Q = diag(0, 102, 0, 102), and R = 10−2I. Further, the
terminal cost is Q, and the control and prediction horizons are N = 10. The
numerical data in Figure 3 is obtained by following a reference trajectory on
the output. The objective is to change the pitch angle from 0◦ to 10◦ and
then back to 0◦ while the angle of attack satisfies the (soft) output constraints
−0.5◦ ≤ y1 ≤ 0.5◦. The constraints on the angle of attack limit the rate on
how fast the pitch angle can be changed. By stacking vectors and forming
appropriate matrices, the full optimization problem can be written on the form

min 1
2z
TQz + rTt z + ILz=bxt

(z)︸ ︷︷ ︸
f(z)

+

m∑
i=1

h(z′i, di, d̄i, 106)︸ ︷︷ ︸
g(z′)

s. t. Cz = z′

where xt and rt may change from one sampling instant to the next. This fits the
optimization problem formulation discussed in Section 6.1. For this problem all
items (i)–(iii) violate the assumptions that guarantee linear convergence.



Since the numerical example treated here is a model predictive control ap-
plication, we can spend much computational effort offline to compute a metric
that will be used in all samples in the online controller. We compute a diag-
onal metric K = ETE, where E minimizes the pseudo condition number of

ECP11C
TET and P11 is implicitly defined by

[
Q LT

L 0

]−1
=
[
P11 P12

P21 P22

]
(as sug-

gested in Section 6.1). This matrix K = ETE defines the space HK on which
the algorithm is applied.

In Figure 3, the performance of ADMM when applied on HK with relaxations
α = 1

2 and α = 0.99, and ADMM applied on Rm with α = 1
2 is shown. In this

particular example, improvements of about one order of magnitude are achieved
when applied on HK compared to when applied on Rm. Figure 3 also shows
that ADMM with over-relaxation performs better than standard ADMM. The
proposed γ-parameter selection is denoted by γ? in Figure 3 (E or C is scaled
to get γ? = 1 for all examples). Figure 3 shows that γ? does not coincide with
the empirically found best γ, but still gives a reasonable choice of γ in all cases.

8 Conclusions

We have shown tight global linear convergence rate bounds for Douglas-Rachford
splitting and ADMM. Based on these results, we have presented methods to se-
lect metric and algorithm parameters for these methods. We have also provided
numerical examples to evaluate the proposed metric and parameter selection
methods for ADMM.
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A A lemma

We state the following lemma that is used in several of the proofs in this ap-
pendix.

Lemma 1 Let γ, β, σ ∈ (0,∞) and β ≥ σ. Then

max( 1−γσ
1+γσ ,

γβ−1
1+γβ ) =

{
1−γσ
1+γσ if γ ≤ 1√

βσ
γβ−1
1+γβ if γ ≥ 1√

βσ

(34)

Further max( 1−γσ
1+γσ ,

γβ−1
1+γβ ) ∈ [0, 1)

Proof. Let ψ(x) = 1−x
1+x for x ≥ 0. This implies ψ′(x) = −2

(x+1)2 , i.e., ψ is

(strictly) monotonically deceasing for x ≥ 0. So for x ≤ 1/y and x ≥ 0, we have

ψ(x) = 1−x
1+x ≥

1−1/y
1+1/y = − 1−y

y+1 = −ψ(y).

Similarly if x ≥ 1/y and x ≥ 0, we have

ψ(x) = 1−x
1+x ≤

1−1/y
1+1/y = − 1−y

y+1 = −ψ(y).



So for x ≥ 0, ψ(x) ≤ −ψ(y) if and only if x ≥ 1/y. Therefore

max( 1−γσ
1+γσ ,

γβ−1
1+γβ ) = max(ψ(γσ)),−ψ(γβ))

=

{
ψ(γσ) if 0 < γ ≤ 1√

βσ

−ψ(γβ) if γ ≥ 1√
βσ

=

{
1−γσ
1+γσ if 0 < γ ≤ 1√

βσ
γβ−1
1+γβ if γ ≥ 1√

βσ

(35)

Finally, since ψ(0) = 1 and ψ(1) = 0, and ψ is strictly monotonically decreasing,
ψ(x) ∈ [0, 1) for x ∈ (0, 1]. Also ψ(x)→ −1 as x→∞, so ψ(x) ∈ (−1, 0] for x ≥
1. Therefore, since β ≥ σ, ψ(γσ) ∈ [0, 1) if 0 ≤ γ ≤ 1

σ and −ψ(γβ) ∈ [0, 1) if γ ≥
1
β . Since 1

β ≤
1
σ , (35) implies that max(1−γσ

1+γσ ,
γβ−1
1+γβ ) = max(ψ(γσ),−ψ(γβ)) ∈

[0, 1). �

B Proof to Proposition 2

Proof. Since f is σ-strongly convex and β-smooth and since γ ∈ (0,∞), fγ is
(1 + γσ)-strongly convex and (1 + γβ)-smooth. Therefore [1, Theorem 18.15]
and [1, Theorem 13.32] directly imply that f∗γ is 1

1+γσ -smooth and 1
1+γβ -strongly

convex. From the smoothness definition in Definition 6, we get that

1
2(1+γσ)‖ · ‖

2 − f∗γ =
(

1
2(1+γσ) −

1
2(1+γβ)

)
‖ · ‖2 − (f∗γ − 1

2(1+γβ)‖ · ‖
2) (36)

is convex. Further, Definition 5 implies that f∗γ− 1
2(1+γβ)‖·‖

2 is convex (since f∗γ
is 1

1+γβ -strongly convex), and therefore (36) is the definition of 1
2(1+γσ)−

1
2(1+γβ) -

smoothness of f∗γ − 1
2(1+γβ)‖ · ‖

2.

Now, let β = σ, then f∗γ − 1
2(1+γβ)‖ · ‖

2 is 0-smooth, or equivalently by

applying [1, Theorem 18.15], ∇f∗γ − 1
1+γβ Id = proxγf − 1

1+γβ Id is 0-Lipschitz.

Let β > σ, then [1, Theorem 18.15] implies that 1
2(1+γσ) −

1
2(1+γβ) -smoothness

of f∗γ − 1
2(1+γβ)‖·‖

2 is equivalent to 1
1

1+γσ−
1

1+γβ

-cocoercivity of ∇f∗γ − 1
1+γβ Id =

proxγf − 1
1+γβ Id. This concludes the proof. �

C Proof to Theorem 1

Proof. First assume that β > σ. By Proposition 2, proxγf − 1
1+γβ Id is

1
1

1+γσ−
1

1+γβ

-cocoercive. Therefore, according to (4):

proxγf − 1
1+γβ Id = 1

2 ( 1
1+γσ −

1
1+γβ )(Id + C) (37)



for some nonexpansive mapping C.
When β = σ, Proposition 2 implies that proxγf = 1

1+γβ Id. Therefore, also

in this case, it can be represented by (37) (since the right hand side is 0). We
get

‖Rγfx−Rγfy‖ = ‖(2proxγf − Id)x− (2proxγg − Id)y‖
= ‖( 1

1+γσ −
1

1+γβ + 2
1+γβ − 1)(x− y)

+ ( 1
1+γσ −

1
1+γβ )(Cx− Cy)‖

= ‖( 1
1+γσ + 1

1+γβ − 1)(x− y)

+ ( 1
1+γσ −

1
1+γβ )(Cx− Cy)‖

≤ (| 1
1+γσ + 1

1+γβ − 1|+ 1
1+γσ −

1
1+γβ )‖x− y‖.

So Rγf is Lipschitz continuous with constant | 1
1+γσ + 1

1+γβ − 1|+ 1
1+γσ −

1
1+γβ .

The kink in the absolute value term is when

0 = 1
1+γσ + 1

1+γβ − 1

⇔ 0 = 1 + γβ + 1 + γσ − (1 + γσ)(1 + γβ)

⇔ 0 = 1− γ2σβ,

i.e, when γ = 1√
βσ

. For γ ∈ (0, 1√
βσ

], the expression in the absolute value is

positive, and the Lipschitz constant is

1
1+γσ + 1

1+γβ − 1 + 1
1+γσ −

1
1+γβ = 2

1+γσ − 1 = 1−γσ
1+γσ .

For γ ∈ [ 1√
βσ
,∞), the expression in the absolute value is negative, and the

Lipschitz constant is

1− 1
1+γσ −

1
1+γβ + 1

1+γσ −
1

1+γβ = 1− 2
1+γβ = γβ−1

1+γβ .

Lemma 1 in Appendix A implies that the Lipschitz constant therefore can be
written as

max( 1−γσ
1+γσ ,

γβ−1
γβ+1 )

and that max( 1−γσ
1+γσ ,

γβ−1
γβ+1 ) ∈ [0, 1), i.e. that Rγf is a contraction. This con-

cludes the proof.
�

D Proof to Theorem 2

Proof. Since γ ∈ (0,∞), [1, Corollary 23.10] implies that Rγg is nonexpansive

and by Theorem 1, Rγf is δ = max( 1−γσ
1+γσ ,

γβ−1
γβ+1 )-contractive. Therefore the

composition RγgRγf is also δ-contractive since

‖RγgRγfz1 −RγgRγfz2‖ ≤ ‖Rγfz1 −Rγfz2‖ ≤ δ‖z1 − z2‖ (38)



for any z1, z2 ∈ H. Now, let T = (1− α)I + αRγgRγf be the Douglas-Rachford
operator in (9). Since z̄ is a fixed-point to RγgRγf it is also a fixed-point to T ,
i.e., z̄ = T z̄. Thus

‖zk+1 − z̄‖ = ‖Tzk − T z̄‖2

= ‖(1− α)(zk − z̄) + α(RγgRγfz
k −RγgRγf z̄)‖

≤ |1− α|‖zk − z̄‖+ α‖RγgRγfzk −RγgRγf z̄‖
≤ (|1− α|+ αδ) ‖zk − z̄‖

=
(
|1− α|+ αmax( 1−γσ

1+γσ ,
γβ−1
γβ+1 )

)
‖zk − z̄‖

where (38) is used in the second inequality. For any γ ∈ (0,∞), Lemma 1 says
that δ = max( 1−γσ

1+γσ ,
γβ−1
γβ+1 ) ∈ [0, 1) and straightforward manipulations show that

the factor

|1− α|+ αδ < 1

if and only if α ∈ (0, 2
1+δ ). This concludes the proof. �

E Proof of Corollary 1

Proof. Since f is σ-strongly convex, fγ = γf + 1
2‖ · ‖

2 is (1 + γσ)-strongly
convex, and ∇f∗γ is 1

1+γσ -Lipschitz continuous, see [1, Proposition 18.15].

Now, recall from Proposition 1 that ∇f∗γ (z) = proxγf (z). Further, let z̄ be
a fixed-point to RγgRγf , i.e., z̄ satisfies z̄ = RγgRγf z̄ and x? = proxγf (z̄), see
(8). Therefore

‖xk+1 − x?‖ = ‖proxγf (zk+1)− proxγf (z̄)‖
≤ 1

1+γσ‖z
k+1 − z̄‖

≤ 1
1+γσ (|1− α|+ δα)‖zk − z̄‖

≤ 1
1+γσ (|1− α|+ δα)k+1‖z0 − z̄‖.

where the second and third inequalities come from Theorem 2. This concludes
the proof. �

F Proof of Theorem 3

Let z0 = (1, 0) or z0 = (0, 1). Then separability of Rγf (20) and Rγg1 = Id
implies that the Douglas-Rachford algorithm (9) for minimizing f + g1 is

zk+1 =
(

(1− α) + α 1−γλi

1+γλi

)
z0 (39)



with λi = β if z0 = (1, 0) and λi = σ if z0 = (0, 1). The exact rate is∣∣∣1− α+ α 1−γλi

1+γλi

∣∣∣ . (40)

Similarly, when minimizing f + g2 we get (since Rγg2 = −Id and Rγf is linear)

zk+1 =
(

(1− α)− α 1−γλi

1+γλi

)
z0 (41)

with exact rate ∣∣∣1− α− α 1−γλi

1+γλi

∣∣∣ . (42)

Let’s consider the following four cases

(i) α ≤ 1, γ ∈ (0, 1√
βσ

], g = g1, z0 = (0, 1) ⇒ λi = σ

(ii) α ≥ 1, γ ≥ 1√
βσ

, g = g1, z0 = (1, 0) ⇒ λi = β

(iii) α ≤ 1, γ ≥ 1√
βσ

, g = g2, z0 = (1, 0) ⇒ λi = β

(iv) α ≥ 1, γ ∈ (0, 1√
βσ

], g = g2, z0 = (0, 1) ⇒ λi = σ

where λi refers to the λi in (39)-(42).
Using Lemma 1 in Appendix A, it is straightforward to verify that the exact

rate factors (40) for (i) and (ii) and (42) for (iii) and (iv) equals the upper bound
on the rate in Theorem 2 for α ∈ (0, 2

1+δ ) with δ in (14).

It is also straightforward to verify that for α 6∈ (0, 2
1+δ ), the exact rate is

greater than or equal to one, so it does not converge.
We show this for the first case, and leave the three other very similar cases

for the reader to verify. For case (i) with α ∈ (0, 1], Lemma 1 implies that the
rate (40) is ∣∣∣1− α+ α 1−γσ

1+γσ

∣∣∣ = 1− α+ αmax( 1−γσ
1+γσ ,

γβ−1
1+γβ )

= |1− α|+ αmax( 1−γσ
1+γσ ,

γβ−1
1+γβ )

which is the optimal rate in Theorem 2. If instead α ≤ 0, we get∣∣∣1− α+ α 1−γσ
1+γσ

∣∣∣ = 1 + |α|(1−max( 1−γσ
1+γσ ,

γβ−1
1+γβ )) ≥ 1

since max(1−γσ
1+γσ ,

γβ−1
1+γβ ) ∈ [0, 1) by Lemma 1. So it does not converge to the

solution.
Repeating similar arguments for the three other cases gives the result.


