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Abstract

Recently, the forward-backward and Douglas-Rachford envelope func-
tions were proposed in the literature. The stationary points of these enve-
lope functions have a close relationship with the solutions of the possibly
nonsmooth optimization problem to be solved. The envelopes were shown
to be smooth and convex under some additional assumptions. Therefore,
these envelope functions create powerful bridges between nonsmooth and
smooth optimization.

In this paper, we present a general envelope function that has these
envelope functions as special cases. Under additional assumptions, we
provide properties of the general envelope function that improve corre-
sponding known results for the special cases. As a new special case, we
present an envelope function for the generalized alternating projections
method (GAP), named the GAP envelope. It enables for convex feasibil-
ity problems with two sets of which one is affine, to be solved by finding
any stationary point of the smooth and sometimes convex GAP envelope.
We finally note that primal-dual embedding of cone programs imply that
most convex optimization problems can be solved this way.

1 Introduction

Many convex optimization problems can be solved by finding a fixed-point to a
nonexpansive operator S : Rn → Rn. That is, finding a point x ∈ fixS, where

fixS = {x ∈ Rn | Sx = x}. (1)

This is the basis for many first-order methods such as forward-backward splitting
[9], Douglas-Rachford splitting [12, 27], the alternating direction method of
multipliers (ADMM) [16, 22, 5] and its linearized versions [8], the three operator
splitting method [10] and generalized alternating projections [25, 1, 29, 14, 7]
that generalizes [39].

All these methods seek a fixed-point by an averaged iteration of the nonex-
pansive mapping S. So, they can be written on the following general form

xk+1 = (1− α)xk + αSxk. (2)



This method is known to converge to a fixed-point of S, see [9]. The rate of
convergence can, however, be very slow in practice.

One way to improve convergence of such first-order methods is to precondi-
tion the problem data. This approach has been extensively studied in the litera-
ture and has proven very successful in practice; see, e.g., [4, 6, 26, 17, 19, 20, 18]
for a limited selection of such approaches. The underlying idea is to incorporate
static second-order information in the respective algorithms.

In this paper, we build on the recently proposed forward-backward envelope
in [34, 37] and Douglas-Rachford envelope in [33] that have pioneered the pos-
sibility for smooth optimization of nonsmooth problems in first-order methods.
The assumption on the underlying composite convex optimization problem is
that one of the functions is twice continuously differentiable with a Lipschitz
continuous gradient. These envelope functions enable for second-order methods
such as truncated Newton methods or quasi-Newton methods to be incorpo-
rated in the respective basic methods, see [34, 37]. This can lead to significantly
improved local convergence.

In this paper, we show that a unifying property of forward-backward split-
ting and Douglas-Rachford splitting is that they are on the form (2), where
S = S2S1, S1 and S2 are nonexpansive and gradients of some functions f1
and f2 respectively, and f1 is twice continuously differentiable. We propose a
general differentiable envelope function for such fixed-point iterations that has
the forward-backward and Douglas-Rachford envelopes as special cases. Other
special cases include the Moreau envelope and the ADMM envelope (which is a
special case of the Douglas-Rachford envelope since ADMM is Douglas-Rachford
splitting applied to the Fenchel dual problem, see [15]).

We analyze this general envelope function in the more restrictive setting of
f1 being quadratic, or equivalently S1 = ∇f1 being affine, i.e., of the form S1 =
P (·)+q, with P linear. We show that if P is nonsingular, the stationary points of
the envelope coincide with the fixed-points of S = S2S1. We provide quadratic
upper and lower bounds to the envelope function that improve corresponding
results for the known special cases in the literature. The bounds imply, e.g.,
that the gradient of the envelope function is always 2-Lipschitz continuous. If
in addition the linear operator P that defines S1 is positive semidefinite, the
envelope function is convex. Since the fixed-points of S and stationary points
of the envelope coincide, a fixed-point to S can, when P is positive semidefinite,
be found by minimizing a smooth and convex envelope function.

In [34, 37, 33] it was shown that forward-backward splitting and Douglas-
Rachford splitting can be seen as variable metric gradient methods applied to the
respective envelope functions. In the setting we consider (with S1 being affine),
they show that it instead is a scaled gradient method with fixed metric. We show
that this holds also in this general setting. To do this, we interpret the averaged
iteration in (2) as a scaled gradient method applied to the envelope function.
Since the envelope function has nice smoothness properties and is in some cases
convex, more efficient methods to find a fixed-point to S, or equivalently a
stationary point of the envelope, probably exist. For instance, quasi-Newton,
nonlinear conjugate gradient, or truncated Newton methods, some of which



has been proposed to be used with the forward-backward envelope in [34, 37]
can be used to improve local convergence (see [31] for details on the methods).
Devising new algorithm or suggesting which existing ones that are most efficient
is, however, outside the scope of this paper.

We also provide a new envelope function that is a special case of the general
envelope, namely the generalized alternating projections (GAP) envelope. Gen-
eralized alternating projections [25, 1, 29, 14, 7] (which is also referred to as the
method of alternating relaxed projections, e.g., in [3]) solves feasibility problems
involving a finite number of nonempty closed and convex sets. This is done by
alternating relaxed projections on the sets. It can use either under-relaxation, in
which the step does not go all the way to the projection point, or over-relaxation
when the step goes past the projection point, up towards the reflection point.
Our envelope function applies to problems with two sets, with one nonempty
closed and convex and one affine. Since the general envelope function always
has a Lipschitz continuous gradient, so has the GAP envelope. If in addition,
the first relaxed projection (onto the affine set) is an under-relaxation, the GAP
envelope is convex. Therefore all feasibility problems with an affine subspace
and a convex set can be solved by minimizing a smooth convex function.

This class of feasibility problems is not as restrictive as it first may sound.
Actually, all convex convex cone programs can be posed as feasibility problems of
this form using, e.g., the self-dual homogeneous embedding [40]. Many different
types of convex optimization problems, such as LP, QP, SOCP, SDP, and lasso-
type problems, can be cast as cone programs. (This is one reason why the
CVX modeling languages [24, 11, 38] transform the stated problems to cone
programs [23], before invoking a solver.) Therefore, the GAP envelope is another
envelope function (besides the known forward-backward and Douglas-Rachford
envelopes) and that enables for solving many nonsmooth convex optimization
problems (at least those that can be solved by the CVX modeling languages)
using smooth optimization techniques.

2 Preliminaries

2.1 Notation

We denote by R the set of real numbers, Rn the set of real column-vectors of
length n, and Rm×n the set of real matrices with m rows and n columns. Further
R := R ∪ {∞} denotes the extended real line. We denote inner-products on Rn
by 〈·, ·〉 and their induced norms by ‖ ·‖. We will also use scaled norms ‖x‖P :=
〈Px, x〉 where P is a positive definite operator (defined in Definition 2). We will
use the same notation for scaled semi-norms, i.e., ‖x‖P := 〈Px, x〉 where P is
a positive semidefinite operator (defined in Definition 1). The identity operator
is denoted by I. The conjugate function is denoted and defined by f∗(y) ,
supx {〈y, x〉 − f(x)}. The adjoint operator to a linear operator L : Rn → Rm
is defined as the unique operator L∗ : Rm → Rn that satisfies 〈Lx, y〉 =
〈x, L∗y〉. The linear operator L : Rn → Rn is self-adjoint if L = L∗. The



notation argminx f(x) refers to any element that minimizes f while the notation
Argminx f(x) refers to the set of minimizers. Finally, ιC denotes the indicator
function for the set C that satisfies ιC(x) = 0 if x ∈ C and ιC(x) =∞ if x 6∈ C.

2.2 Background

In this section, we introduce some standard definitions that can be found, e.g.
in [2, 35].

2.2.1 Operator properties

Definition 1 (Positive semidefiniteness) A linear operator L : Rn → Rn
is positive semidefinite if it is self-adjoint and all eigenvalues λi(L) ≥ 0.

Remark 1 An equivalent characterization of a positive semidefinite operator is
that 〈Lx, x〉 ≥ 0 for all x ∈ Rn.

Definition 2 (Positive definiteness) A linear operator L : Rn → Rn is
positive definite it is self-adjoint and if all eigenvalues λi(L) ≥ m with m > 0.

Remark 2 An equivalent characterization of a positive definite operator L is
that 〈Lx, x〉 ≥ m‖x‖2 for some m > 0 and all x ∈ Rn.

Definition 3 (Lipschitz mappings) A mapping T : Rn → Rn is δ-Lipschitz
continuous with δ ≥ 0 if

‖Tx− Ty‖ ≤ δ‖x− y‖

holds for all x, y ∈ Rn. If δ = 1 then T is nonexpansive and if δ ∈ [0, 1) then T
is δ-contractive.

Definition 4 (Averaged mappings) A mapping T : Rn → Rn is α-averaged
if there exists a nonexpansive mapping S : Rn → Rn and α ∈ (0, 1] such that
T = (1− α)I + αS.

Definition 5 (Negatively averaged mappings) A mapping T : Rn → Rn
is β-negatively averaged with β ∈ (0, 1] if −T is β-averaged.

Remark 3 For notational convenience later, we have included α = 1 and β = 1
in the definitions of (negative) averagedness. But 1-averagedness and 1-negative
averagedness is precisely nonexpansiveness. For values of α ∈ (0, 1) and β ∈
(0, 1) averagedness is a stronger property than nonexpansiveness. For more on
negatively averaged operators, see [18] where they were introduced.

Note that if a gradient operator ∇f is α-averaged and β-negatively averaged.
Then it must hold that α+β ≥ 1. This follows immediately from Lemma 4 and
Lemma 5 in Appendix C.

Definition 6 (Cocoercivity) A mapping T : Rn → Rn is δ-cocoercive with
δ > 0 if δT is 1

2 -averaged.



Remark 4 This cocoercivity definition implies that cocoercive mappings T can
be expressed as

T = 1
2δ (I + S) (3)

for some nonexpansive operator S. We also note that 1-cocoercivity is equivalent
to 1

2 -averagedness (which is also called firm nonexpansiveness).

We conclude this subsection with a result relating Lipschitz continuity and co-
coercivity to averagedness and negative averagedness.

Proposition 1 Suppose that ∇f : Rn → Rn is the gradient of some function
f : Rn → R. Then the following hold:

(i) ∇f is δ-Lipschitz continuous with δ ∈ [0, 1] if and only if it is δ+1
2 -averaged

and δ+1
2 -negatively averaged.

(ii) ∇f is 1
δ -cocoercive with δ ∈ [0, 1] if and only if it is 1

2 -averaged and δ+1
2 -

negatively averaged.

Proof. Claim (i): Follows immediately from Lemma 3, Lemma 4, and Lemma 5.
Claim (ii): Lemma 4, and Lemma 5 imply that 1

2 -averagedness and δ+1
2 -negative

averagedness is equivalent to that

0 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ δ
2‖x− y‖

2

holds for all x, y ∈ Rn. This is equivalent to that ∇f is 1
δ -cocoercive, see [30,

Theorem 2.1.5] and [2, Definition 4.4]. �

2.2.2 Function properties

Definition 7 (Strong convexity) Let P : Rn → Rn be positive definite. A
proper and closed function f : Rn → R is σ-strongly convex w.r.t. ‖ · ‖P with
σ > 0 if f − σ

2 ‖ · ‖
2
P is convex.

Remark 5 If f is differentiable, σ-strong convexity w.r.t. ‖·‖P can equivalently
be defined as that

σ
2 ‖x− y‖

2
P ≤ f(x)− f(y)− 〈∇f(y), x− y〉 (4)

holds for all x, y ∈ Rn. If P = I, i.e., if the norm is the induced norm, we
merely say that f is σ-strongly convex. If σ = 0, the function is convex.

There are many smoothness definitions for functions in the literature. We
will use the following that implies that the function is in every point majorized
and minimized by a norm-squared function.

Definition 8 (Smoothness) Let P : Rn → Rn be positive semidefinite. A
function f : Rn → R is β-smooth w.r.t. ‖ · ‖P with β ≥ 0, if it is differentiable
and

−β2 ‖x− y‖
2
P ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ β

2 ‖x− y‖
2
P (5)

holds for all x, y ∈ Rn.



2.2.3 Connections

We will later show that our envelope function satisfies upper and lower bounds
of the form

1
2 〈M(x− y), x− y〉 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 1

2 〈L(x− y), x− y〉 (6)

for all x, y ∈ Rn and for different linear operators M : Rn → Rn and L : Rn →
Rn. Depending on M and L, we get different properties of f and its gradient
∇f . Some of these are stated below. The results follow immediately from
Lemma 3 in Appendix C and the definitions of smoothness and strong convexity
in Definition 7 and Definition 8 respectively.

Proposition 2 Assume that L = −M = βI with β ≥ 0 in (6). Then (6) is
equivalent to that ∇f is β-Lipschitz continuous.

Proposition 3 Assume that M = σI and L = βI with 0 ≤ σ ≤ β in (6).
Then (6) is equivalent to that ∇f is β-Lipschitz continuous and f is σ-strongly
convex.

Proposition 4 Assume that L = −M and that L is positive definite. Then (6)
is equivalent to that f is 1-smooth w.r.t. ‖ · ‖L.

Proposition 5 Assume that M and L are positive definite. Then (6) is equiv-
alent to that f is 1-smooth w.r.t. ‖ · ‖L and 1-strongly convex w.r.t. ‖ · ‖M .

3 Envelope functions

To find a fixed-point of a nonexpansive mapping S using an averaged iteration
of that mapping, is the basis for many first-order optimization methods. Based
on ideas from [34, 33], we present another method to find such a fixed-point.
We create an envelope function whose stationary points coincide with the fixed-
points of the operator S. For forward-backward splitting and Douglas-Rachford
splitting, such envelopes have been proposed in [34] and [33] respectively. These
envelope functions turn out to be special cases of the envelopes we propose, see
Section 4. The envelope functions often possess favorable properties such as
convexity and Lipschitz continuity of the gradient. Then, any method to find a
stationary point (in the convex case, a minimizer) of the envelope function can
be used to find a fixed-point to the nonexpansive mapping S.

To formulate our envelope function, we assume that the nonexpansive oper-
ator S is a composition of S2 and S1, i.e., S = S2S1. We make the following
basic assumptions on S1 and S2, that sometimes will be sharpened or relaxed:

Assumption 1 Suppose that:

(i) S1 : Rn → Rn and S2 : Rn → Rn are nonexpansive

(ii) S1 = ∇f1 and S2 = ∇f2 for some differentiable functions f1 : Rn → R
and f2 : Rn → R



(iii) S1 : Rn → Rn is affine, i.e., S1x = Px+q and f1(x) = 1
2 〈Px, x〉+ 〈q, x〉,

where P ∈ Rn×n is a a self-adjoint nonexpansive linear operator and q ∈
Rn

Remark 6 Part (iii) of the assumption means that P is symmetric with eigen-
values in the interval [−1, 1].

Now, we are ready to define the general envelope function whose properties we
will investigate in this paper:

F (x) := 1
2 〈Px, x〉 − f2(∇f1(x)). (7)

The gradient of this function is given by

∇F (x) = Px−∇2f1(x)∇f2(∇f1(x)) = Px− PS2(S1x) = P (x− S2S1x). (8)

The set of stationary points to the envelope function F is the set of points for
which the gradient is zero. This set is denoted as follows:

X? := {x | ∇F (x) = 0}. (9)

3.1 Basic properties of the envelope function

Here, we list some basic properties of the envelope function (7). The first
two results are special cases and direct corollaries of a more general result in
Theorem 1, and therefore not proven here.

Proposition 6 Suppose that Assumption 1 holds. Then the gradient of F is
2-Lipschitz continuous. That is, ∇F satisfies

‖∇F (x)−∇F (y)‖ ≤ 2‖x− y‖

for all x, y ∈ Rn.

Proposition 7 Suppose that Assumption 1 holds and that P , the operator
defining the linear part of S1, is positive semidefinite. Then F is convex.

So, if P is positive semidefinite, then the envelope function F is convex and
differentiable with a Lipschitz continuous gradient. The set of stationary points
of F also has a close relationship with the fixed-points of S = S2S1. This is
shown next.

Proposition 8 Suppose that Assumption 1 holds and that P is nonsingular.
Then X? = fix(S2S1) where X? is defined in (9) and the fixed-point set is
defined in (1). If in addition P is positive definite, then Argminx F (x) = X? =
fix(S2S1).

Proof. The first claim follows directly from (8). The second claim follows from
(8) and that F is convex when P is positive (semi)definite, see Proposition 7.
�

These three results show that if P is positive definite, a fixed-point to S2S1

can be found by minimizing the differentiable convex function F , which has a
2-Lipschitz continuous gradient.



3.2 Finer properties of the envelope function

Here, we establish some finer properties of the envelope function. We start with
a general result on upper and lower bounds for the envelope function. This
result uses stronger assumptions on S2 than nonexpansiveness, namely that it
is α-averaged and β-negatively averaged with α, β ∈ (0, 1], see Definition 4 and
Definition 5. We state this as an assumption.

Assumption 2 The operator S2 is α-averaged and β-negatively averaged with
α ∈ (0, 1] and β ∈ (0, 1].

Theorem 1 Suppose that Assumption 1 and Assumption 2 hold. Further, let
δα = 2α− 1 and δβ = 2β − 1. Then the envelope function F in (7) satisfies

F (x)− F (y)− 〈∇F (y), x− y〉 ≥ 1
2 〈(P − δβP

2)(x− y), x− y〉

and

F (x)− F (y)− 〈∇F (y), x− y〉 ≤ 1
2 〈(P + δαP

2)(x− y), x− y〉

for all x, y ∈ Rn.

A proof to this result is found in Appendix A.
As seen in Section 2.2.3, such bounds have many implications on the prop-

erties of the function. Next, we provide some in the form of corollaries.

Corollary 1 Suppose that Assumption 1 and Assumption 2 hold and that P is
positive semidefinite. Let δα = 2α− 1 and δβ = 2β − 1. Then

1
2‖x− y‖

2
P−δβP 2 ≤ F (x)− F (y)− 〈∇F (y), x− y〉 ≤ 1

2‖x− y‖
2
P+δαP 2

where P − δβP 2 is positive semidefinite.

Proof. It follows directly from Theorem 1 and Lemma 6 in Appendix C. �

Corollary 2 Suppose that Assumption 1 and Assumption 2 hold and that either
of the following holds:

(i) P is positive definite and contractive

(ii) P is positive definite and β ∈ (0, 1) in the negative averagedness

Let δα = 2α−1 and δβ = 2β−1. Then F is 1-strongly convex w.r.t. ‖ ·‖P−δβP 2

and 1-smooth w.r.t. ‖ · ‖P+δαP 2 .

Proof. To show the strong convexity claim, it is sufficient to apply Theorem 1
and show that P −δβP 2 is positive definite, i.e., that λmin(P −δβP 2) is positive.
In (i), λi(P ) ∈ (0, 1) and δβ ∈ (−1, 1] and in (ii), λi(P ) ∈ (0, 1] and δβ ∈ (−1, 1).
From Lemma 6 it follows that in both cases, λmin(P − δβP 2) is positive. The
smoothness claim follows immediately from Theorem 1 and Definition 8. �



Next, we show a less tight characterization of the envelope function that does
not take the shape of the upper and lower bounds into account.

Corollary 3 Suppose that Assumption 1 and Assumption 2 hold. Let m =
λmin(P ), L = λmax(P ), δα = 2α − 1 ∈ [−0.5, 1], and δβ = 2β − 1 ∈ [−0.5, 1].
Then

βl
2 ‖x− y‖

2 ≤ F (x)− F (y)− 〈∇F (y), x− y〉 ≤ βu
2 ‖x− y‖

2

where βl = min(m(1− δβm), L(1− δβL)) and βu = L(1 + δαL).

Proof. This follows from Theorem 1, Lemma 6, and Lemma 7. �

We restricted δα and δβ to [−0.5, 1] (i.e, α and β to [0.25, 1]) in this result
for convenience of the statement. Similar results for other δβ and δα (and a
sharpening of the result when δβ ∈ [−0.5, 0]) can be concluded from Lemma 6
and Lemma 7.

From Corollary 3, the following two results are immediate.

Corollary 4 Suppose that Assumption 1 and Assumption 2 hold. Let δα =
2α− 1 ∈ [−0.5, 1], δβ = 2β− 1 ∈ [−0.5, 1], m = λmin(P ), and L = λmax(P ) and
suppose that either of the following two conditions holds:

(i) P is positive definite with λmin(P ) ∈ (0, 1) and λmax(P ) ∈ [m, 1)

(ii) P is positive definite with λmin(P ) ∈ (0, 1] and δβ = 2β − 1 ∈ [−0.5, 1)

Then F is min(m(1− δβm), L(1− δβL))-strongly convex (w.r.t. ‖ · ‖) and L(1 +
δαL)-smooth (w.r.t. ‖ · ‖).

Corollary 5 Suppose that Assumption 1 and Assumption 2 hold and that P is
positive semidefinite, i.e., that λmin(P ) ≥ 0. Let L = λmax(P ), δβ = 2β − 1 ∈
[−0.5, 1], and δα = 2α − 1 ∈ [−0.5, 1]. Then F is convex and it is L(1 + δαL)-
smooth (or equivalently ∇F is L(1 + δαL)-Lipschitz continuous).

The results in Theorem 1 and its corollaries hold for α-averaged and β-
negatively averaged operators S2. In Proposition 1, some properties that are
equivalent to averagedness and negative averagedness are stated. Therefore, we
can use these equivalent properties instead when stating the above results. This
is done in the following to propositions.

Proposition 9 Suppose that Assumption 1 holds and that S2 is δ-Lipschitz
continuous with δ ∈ [0, 1]. Then all results in this section hold with δβ = δα = δ.

Proposition 10 Suppose that Assumption 1 holds and that S2 is 1
δ -cocoercive

with δ ∈ [0, 1]. Then all results in this section hold with δβ = δ and δα = 0.



3.3 Relation to averaged operator iteration

As noted in [34, 33], the forward-backward and Douglas-Rachford splitting
methods are variable metric gradient methods applied to their respective enve-
lope functions. In our setting with S1 being affine, it reduces to a fixed-metric
scaled gradient method. Here, we show that this observation holds also in our
setting.

We apply the following scaled gradient method to the envelop function F :

xk+1 = xk − αP−1∇F (xk).

This scaled gradient method is equivalent to the underlying averaged iteration:

xk+1 = xk − αP−1∇F (xk)

= xk − αP−1P (S2S1x
k − xk)

= xk − α(S2S1x
k − xk)

= (1− α)xk + αS2S1x
k.

Therefore, the basic method can be interpreted as a scaled gradient method
applied to the envelope function.

This is most probably not the most efficient way to find a stationary point
of the envelope function (or equivalently a fixed-point to S2S1). At least in
the convex setting (for the envelope), there are numerous methods that can
minimize smooth functions such as truncated Newton methods, quasi-Newton
methods, and nonlinear conjugate gradient descent. See [31] for an overview of
such methods and [34, 37] for some of these methods applied to the forward-
backward envelope. Evaluating which ones that are most efficient and devising
new methods to improve performance is outside the scope of this paper.

4 Special cases

In this section, we present four special cases of our envelope function. Namely
the Moreau envelope [28], the forward-backward envelope [34, 37], the Douglas-
Rachford envelope [33], and the ADMM envelope (which is a special case of the
Douglas-Rachford envelope).

The forward-backward and Douglas-Rachford envelopes in [34, 37, 33] are
stated in a more general setting than our envelope in (7). Translated to our
setting, they only require that f1 that defines S1 through S1 = ∇f1 is twice
continuously differentiable (as opposed to quadratic in our case). To get the
forward-backward [34, 37] and Douglas-Rachford [33] envelopes in their full
generality as special cases, we state the following more general envelope function

F (x) = 〈∇f1(x), x〉 − f1(x)− f2(∇f1(x)). (10)

When f1(x) = 1
2 〈Px, x〉+〈q, x〉 it reduces to (7) since then 〈∇f1(x), x〉−f1(x) =

〈Px + q, x〉 − ( 1
2 〈Px, x〉 + 〈q, x〉) = 1

2 〈Px, x〉. The gradient of the envelope



function in (10) is

∇F (x) = ∇2f1(x)x+∇f1(x)−∇f1(x)−∇2f1(x)∇f2(∇f1(x))

= ∇2f1(x)(x−∇f2(∇f1(x)))

= ∇2f1(x)(x− S2S1x).

If ∇2f1(x) is nonsingular for all x, the set of stationary points of the envelope
coincides with the fixed-point set of S = S2S1. We do not provide any properties
of the envelope functions in this setting (it is left as future work), but merely
show that that it generalizes the previously known envelope functions.

In the more restricted setting with S1 = ∇f1 being affine, we provide enve-
lope function properties that coincide with or improve corresponding results in
the literature for the special cases.

4.1 Preliminaries

Before we present the special cases, we introduce some functions whose gradients
are operators that are used in the respective underlying methods. Most impor-
tantly, we will introduce a function whose gradient is the proximal operator,
which is defined as follows:

proxγf (z) := argmin
x
{f(x) + 1

2γ ‖x− z‖
2},

where γ > 0 is a parameter. To do this, we introduce the following function
which is a scaling and regularization of f :

rγf (x) := γf(x) + 1
2‖x‖

2 (11)

This is related to the proximal operator of f as follows:

Proposition 11 Suppose that f : Rn → R∪{∞} is proper closed and convex.
The proximal operator proxγf then satisfies

proxγf = ∇r∗γf
where r is defined in (11).

This result is from [20, Proposition 1] and implies that the proximal operator
is the gradient of a convex function.

A special case is when f = ιC , where ιC is the indicator function for the
nonempty closed and convex set C. The proximal operator then reduces to the
projection operator. The projection operator onto C is denoted by ΠC and the
corresponding regularized function is denoted and defined by

rC(x) := ιC(x) + 1
2‖x‖

2. (12)

With this notation, ΠC(x) = ∇r∗C(x). Next, we introduce a linear combination
between r∗ and 1

2‖ · ‖
2, namely

pαγf (x) := αr∗γf (x) + 1−α
2 ‖x‖

2, (13)



where we typically require that α ∈ (0, 2]. The gradient of pαγf is denoted by
Pαγf and is given by

Pαγf (x) := ∇pαγf (x) = αproxγf (x) + (1− α)x. (14)

This is called a relaxed proximal mapping. Some special cases of this will have
their own notation. Letting α = 2, we get the reflected proximal operator

Rγf (x) := P 2
γf (x) = 2proxγf (x)− x. (15)

When f = ιC , we will use notation pαC , PαC , and RC for (13), (14), and (15)
respectively. That is

pαC(x) := αr∗C(x) + 1−α
2 ‖x‖

2, (16)

PαC (x) := ∇pαC(x) = αΠC(x) + (1− α)x (17)

RC(x) := 2ΠC(x)− x. (18)

We refer to (17) as a relaxed projection, and (18) as a reflection. So, the proximal
and projected operators and their relaxed and reflected variants are gradients
of functions.

We conclude with the straightforward observation that

(x− γ∇f(x)) = ∇
(
1
2‖x‖

2 − γf(x)
)
.

That is, the gradient step operator is the gradient of the function 1
2‖x‖

2−γf(x).

4.2 The proximal point algorithm

The proximal point algorithm solves problems of the form

minimize f(x)

where f : Rn → R ∪ {∞} is proper closed and convex.
The algorithm repeatedly applies the proximal operator of f and is given by

xk+1 = proxγf (xk), (19)

where γ > 0 is a parameter. This algorithm is mostly of conceptual interest since
it is often as computationally demanding to evaluate the prox as to minimize
the function f itself.

Its envelope function, which is called the Moreau envelope [28], is a scaled
version of our envelope F in (7). The scaling factor is γ−1 and F in (7) is
obtained by letting S1x = ∇f1(x) = x, i.e., P = I and q = 0, and f2 = r∗γf ,
where rγf is defined in (11). The resulting envelope function fγ is given by

fγ(x) = γ−1F (x) = γ−1
(
1
2‖x‖

2 − r∗γf (x)
)
, (20)

and its gradient satisfies

∇fγ(x) = γ−1
(
x− proxγf (x)

)
.



The following properties of the Moreau envelope follow directly from Corollary 5
and Proposition 10 since the proximal operator is 1-cocoercive (see Remark 4
and [2, Proposition 12.27]).

Proposition 12 The Moreau envelope fγ in (20) is differentiable and convex
and ∇fγ is γ−1-Lipschitz continuous.

This coincides with previously known properties of the Moreau envelope, see [2,
Chapter 12].

4.3 Forward-backward splitting

Forward-backward splitting solves problems of the form

minimize f(x) + g(x) (21)

where f : Rn → R is convex with an L-Lipschitz (or equivalently 1
L -cocoercive)

gradient, and g : Rn → R ∪ {∞} is proper closed and convex.
The algorithm performs a forward step then a backward step and is given

by

xk+1 = proxγg(I − γ∇f)xk, (22)

where γ ∈ (0, 2
L ) is a parameter.

The envelope function, which is called the forward-backward envelope [34,
37], is a scaled version of our envelope F in (10) and applies when f is twice
continuously differentiable and ∇F is Lipschitz continuous. The scaling factor
is γ−1 and F in (10) is obtained by letting f1 = 1

2‖ ·‖
2−γf and f2 = r∗γg, where

rγg is defined in (11). The resulting forward-backward envelope function is

FFB
γ (x) = γ−1

(
〈x− γ∇f(x), x〉 − ( 1

2‖x‖
2 − γf(x))− r∗γg(x− γ∇f(x))

)
.

The gradient of this function is

∇FFB
γ (x) = γ−1

(
(I − γ∇2f(x))x+ (x− γ∇f(x))− (x− γ∇f(x))

− (I − γ∇2f(x))proxγg(x− γ∇f(x))
)

= γ−1(I − γ∇2f(x))
(
x− proxγg(x− γ∇f(x))

)
which coincides with the gradient in [34, 37]. As described in [34, 37], the
stationary points of the envelope coincides with the fixed-points of x−proxγg(x−
γ∇f(x)) if (I − γ∇2f(x)) is nonsingular.

4.3.1 S1 affine

We provide properties of the forward-backward envelope in the more restrictive
setting where S1 = ∇f1 = (I − γ∇f) is affine. This happens if f is convex
quadratic, i.e., f(x) = 1

2 〈Hx, x〉 + 〈h, x〉 with H ∈ Rn×n positive semidefinite
and h ∈ Rn. Then S1x = Px+ q with P = (I − γH) and q = −γh.



In this setting, the following result follows immediately from Corollary 1
and Proposition 10 (where Proposition 10 is invoked since S2 = proxγg is 1-
cocoercive, see Remark 4 and [2, Proposition 12.27]).

Proposition 13 Assume that f(x) = 1
2 〈Hx, x〉 + 〈h, x〉 and γ ∈ (1, 1

L ) where
L = λmax(H). Then the forward-backward envelope FFB

γ satisfies

1
2γ ‖x− y‖

2
P−P 2 ≤ FFB

γ (x)− FFB
γ (y)− 〈∇FFB

γ (y), x− y〉 ≤ 1
2γ ‖x− y‖

2
P

for all x, y ∈ Rn, where P = (I − γH) is positive definite. If in addition
λmin(H) = m > 0, then P − P 2 is positive definite and FFB

γ is γ−1-strongly
convex w.r.t. ‖ · ‖P−P 2 .

Less tight bounds for the forward-backward envelope are provided next. These
follow immediately from Corollary 4, Corollary 5, and Proposition 10.

Proposition 14 Assume that f(x) = 1
2 〈Hx, x〉 + 〈h, x〉, that γ ∈ (0, 1

L ) where
L = λmax(H), and that m = λmin(H) ≥ 0. Then the forward-backward envelope
FFB
γ is γ−1(1 − γm)-smooth and min ((1− γm)m, (1− γ  L)L)-strongly convex

(both w.r.t. to the induced norm ‖ · ‖).

This result is a slight improvement of the corresponding result in [34, The-
orem 2.3]. The strong convexity moduli are the same, but this smoothness
constant is a factor two smaller.

4.4 Douglas-Rachford splitting

Douglas-Rachford splitting solves problems of the form

minimize f(x) + g(x) (23)

where f : Rn → R ∪ {∞} and g : Rn → R ∪ {∞} are proper closed and
convex functions.

The algorithm performs two reflection steps (15), then an averaging accord-
ing to

zk+1 = (1− α)zk + αRγgRγfz
k (24)

where γ > 0 and α ∈ (0, 1) are parameters. The objective is to find a fixed-point
z̄ to RγgRγf , from which a solution to (23) can be computed as proxγf z̄, see [2,
Proposition 25.1].

The envelope function from [33], which is called the Douglas-Rachford en-
velope, is a scaled version of the basic envelope function F in (10) and applies
when f is twice continuously differentiable and ∇F is Lipschitz continuous.
The scaling factor is (2γ)−1 and F is obtained by letting f1 = p2γf with gradient

∇f1 = S1 = Rγf and f2 = p2γg, where p2γg is defined in (13). The Douglas-
Rachford envelope function becomes

FDR
γ (z) = (2γ)−1

(
〈Rγf (z), z〉 − p2γf (z)− p2γg(Rγfz)

)
. (25)



The gradient of this function is

∇FDR
γ (z) = (2γ)−1

(
∇Rγf (z)z +Rγf −Rγf −∇Rγf (z)Rγg(Rγf (z))

)
= (2γ)−1∇Rγf (z)(z −RγgRγf (z)).

which coincides with the gradient in [33] since ∇Rγf = 2∇proxγf − I and

z −RγgRγfz = z − 2proxγg(2proxγf (z)− z) + 2proxγf (z)− z
= 2(proxγf (z)− proxγg(2proxγf (z)− z)).

As described in [33], the stationary points of the envelope coincides with the
fixed-points of x−RγgRγf if ∇Rγf is nonsingular.

4.4.1 S1 affine

We state properties of the Douglas-Rachford envelope in the more restrictive
setting where S1 = Rγf is affine. This holds if f is convex quadratic, i.e., of the
form

f(x) = 1
2 〈Hx, x〉+ 〈h, x〉.

The operator S1 becomes

S1(z) = Rγf (z) = 2(I + γH)−1(z − γh)− z,

which confirms that it is affine. We implicitly define P and q through S1 =
Rγf = P (·) + q, and note that they are given by P = 2(I + γH)−1 − I and
q = −2γ(I + γH)−1h.

In this setting, the following result follows immediately from Corollary 1
since S2 = Rγg is nonexpansive (1-averaged and 1-negatively averaged).

Proposition 15 Assume that f(x) = 1
2 〈Hx, x〉 + 〈h, x〉 and γ ∈ (0, 1

L ) where
L = λmax(H). Then the Douglas-Rachford envelope FDR

γ satisfies

1
4γ ‖z − y‖

2
P−P 2 ≤ FDR

γ (z)− FDR
γ (z)− 〈∇FDR

γ (y), z − y〉 ≤ 1
4γ ‖z − y‖

2
P+P 2

for all y, z ∈ Rn, where P = 2(I + γH)−1 − I is positive definite. If in addition
λmin(H) = m > 0, then P − P 2 is positive definite and FDR

γ is (2γ)−1-strongly
convex w.r.t. ‖ · ‖P−P 2 .

The following less tight characterization of the Douglas-Rachford envelope
follows from Corollary 4 and Corollary 5.

Proposition 16 Assume that f(x) = 1
2 〈Hx, x〉 + 〈h, x〉, that γ ∈ (0, 1

L ) where
L = λmax(H), and that m = λmin(H) ≥ 0. Then the Douglas-Rachford envelope

FDR
γ is 1−γm

(1+γm)2 γ
−1-smooth and min

(
(1−γm)m
(1+γm)2 ,

(1−γL)L
(1+γL)2

)
-strongly convex.

The strong convexity modulus of this result coincides with the corresponding
one in [33, Theorem 2]. The smoothness constant in this result is 1

1+γm times

that in [33, Theorem 2], i.e., it is slightly smaller.



4.5 ADMM

The alternating direction method of multipliers (ADMM) solves problems of the
form (23). It is well known [15] that ADMM can be interpreted as Douglas-
Rachford applied to the dual of (23), namely to

minimize f∗(µ) + g∗(−µ). (26)

So the algorithm is given by

vk+1 = (1− α)vk + αRρ(g∗◦−I)Rρfv
k (27)

where ρ > 0 is a parameter, and Rρf the reflected proximal operator (15) and
(g∗ ◦ −I) is the composition that satisfies (g∗ ◦ −I)(µ) = g∗(−µ).

In accordance with the Douglas-Rachford envelope (25), the ADMM enve-
lope is defined as

FADMM
ρ (v) = (2ρ)−1

(
〈Rρf∗(v), v〉 − p2ρf∗(v)− p2ρ(g∗◦−I)(Rρf∗v)

)
. (28)

and its gradient becomes

∇FADMM
ρ (v) = (2ρ)−1∇Rρf∗(v)(v −Rρ(g∗◦−I)Rρf∗(v)).

In this section, we relate the ADMM algorithm and its envelope function
to the Douglas-Rachford counterparts. To do so, we need the following lemma
which is proven in Appendix B.

Lemma 1 Let g : Rn → R∪{∞} and be proper closed and convex and ρ > 0.
Then

Rρg∗(x) = −ρRρ−1g(ρ
−1x)

Rρ(g∗◦−I)(x) = ρRρ−1g(−ρ−1x)

p2ρ(g∗◦−I)(y) = −ρ2p2ρ−1g(−ρ
−1y)

where Rρg is defined in (15) and p2ρg is defined in (13).

First, we show that the zk sequence in (primal) Douglas-Rachford (24) and
the vk sequence in ADMM (i.e., dual Douglas-Rachford) in (27) differ by a factor
only. This is well known [13], but the relation is stated next with a simple proof.

Proposition 17 Assume that ρ > 0 and γ > 0 satisfy ρ−1 = γ. Further
assume that z0 = ρ−1v0. Then zk = ρ−1vk for all k ≥ 1, where {zk} is the
primal Douglas-Rachford sequence defined in (24) and the {vk} is the ADMM
sequence is defined in (27).

Proof. Lemma 1 implies that

vk+1 = (1− α)vk + αRρ(g∗◦−I)Rρf∗vk

= (1− α)vk + αρRρ−1g(−ρ−1(−ρRρ−1f (ρ−1vk)))

= (1− α)vk + αρRρ−1g(Rρ−1f (ρ−1vk)))



Multiply by ρ−1, let zk = ρ−1vk, and identify γ = ρ−1 to get

zk+1 = (1− α)zk + αRγg(Rγf (zk))).

This concludes the proof. �

There is also a tight relationship between the ADMM and Douglas-Rachford
envelopes. Essentially, they have opposite signs.

Proposition 18 Assume that ρ > 0 and γ > 0 satisfy ρ = γ−1 and that
z = ρ−1v = γv. Then

FADMM
ρ (v) = −FDR

γ (z).

Proof. Using Lemma 1 several times, γ = ρ−1, and z = ρ−1v, we conclude that

FADMM
ρ (v) = (2ρ)−1

(
〈Rρf∗(v), v〉 − p2ρf∗(v)− p2ρ(g∗◦−I)(Rρf∗(v))

)
= (2ρ)−1

(
− ρ〈Rρ−1f (ρ−1v), v〉+ ρ2pρ−1(f◦−I)(−ρ−1v)

+ ρ2pρ−1g(−ρ−1(−ρRρ−1f (ρ−1v)))
)

= −ρ2
(
〈Rρ−1f (ρ−1v), ρ−1v〉 − p2ρ−1f (ρ−1v) + p2ρ−1g(Rρ−1f (ρ−1v))

)
= −(2γ)−1

(
〈Rγf (z), z〉 − p2γf (z) + p2γg(Rγf (z))

)
= −FDR

γ (z)

This concludes the proof. �

This result implies that the ADMM envelope is concave when the DR en-
velope is convex, and vice versa. We know from Section 4.4 that the operator
S1 = Rρf∗ is affine when f∗ is quadratic. This happens when

f(x) =

{
1
2 〈Hx, x〉+ 〈h, x〉 if Ax = b

∞ else

and H is positive definite on the nullspace of A. From Proposition 15 and
Proposition 16, we conclude that an appropriate choice of ρ implies that the
ADMM envelope is convex. Therefore, and the Douglas-Rachford envelope is
concave in this setting.

Remark 7 The standard ADMM formulation is applied to solve problems of
the form

minimize f̂(x) + ĝ(z)
subject to Ax+Bz = c

Using infimal post-compositions, also called image functions, the dual of this is
on the form (26), see e.g., [21, Appendix B] for details. So also this setting is
implicitly considered.



5 The GAP envelope

In this section, we provide an envelope function to a generalization of the classic
alternating projections method in [39]. The generalization uses relaxed projec-
tions and is sometimes referred to as the method of alternating relaxed projec-
tions (MARP) [3], but we will refer to it as generalized alternating projections
(GAP). The algorithm is analyzed in [25, 1, 29, 14, 7] and a more general for-
mulation is treated in [9].

GAP solves feasibility problems with a finite number of nonempty closed
and convex sets that have a nonempty intersection. Here, we consider feasibility
problems with two sets:

find x ∈ C ∩D

where C ⊂ Rn and D ⊂ Rn are nonempty closed and convex.
The generalized alternating projections method is given by

xk+1 = (1− α)xk + αPα2

C Pα1

D xk. (29)

where PαC is the relaxed projection in (17), and α ∈ (0, 1] and α1, α2 ∈ (0, 2].
These assumptions imply that Pα2

C is α2

2 -averaged if α2 ∈ (0, 2) and nonexpan-
sive if α2 ∈ (0, 2] (and similarly for Pα1

D ). If α1 = 2 or α2 = 2, the composition
Pα2

C Pα1

D is nonexpansive and we need α ∈ (0, 1) to arrive at an averaged itera-
tion that guarantees convergence to a fixed-point. If α1 = α2 = 2, the algorithm
is Douglas-Rachford splitting (see Section 4.4) applied to a feasibility problem.
In this case, we have ΠD(fix(Pα2

C Pα1

D )) = C ∩D. For all other feasible choices
of α1 and α2, the fixed-point set satisfies fix(Pα2

C Pα1

D ) = C ∩ D. In either
case, the algorithm performs an averaged iteration to find a fixed-point to the
nonexpansive operator Pα2

C Pα1

D .
The algorithm is on the the general form we consider and we identify S2 in

Assumption 1 with Pα2

C and S1 with Pα1

D . We consider in particular the case
when S1 = Pα1

D is affine, i.e., S1 = P (·) + q. This holds if D is an affine set, i.e.,
if D = {x ∈ Rn | Ax = b} for some linear operator A. Let N denote the linear
part of the projection onto the affine set ΠD, i.e.,

N = ΠD0
(30)

where D0 = {x ∈ Rn | Ax = 0}, and let d denote the constant part, to get
ΠDx = Nx+ d. The operator S1 then satisfies

S1x = Pα1

D x = (1− α1)x+ α1ΠD = (1− α1)x+ α1(Nx+ d).

This implies that P and q that define the affine operator S1 = P (·) + q satisfy

P = (1− α1)I + α1N, q = α1d. (31)

The GAP envelope function follows from the general envelope in (7) and is
given by

FGAP
α1,α2

(x) = 1
2 〈Px, x〉 − p

α2

C (Pα1

D x)



where pα2

C is defined in (16) and P is from (31). Since Pα1

D = Px + q and
∇pα2

C = Pα2

C , its gradient satisfies

∇FGAP
α1,α2

(x) = Px− P∇pα2

C (Px+ q)

= P (x− Pα2

C Pα1

D x).

So if P is nonsingular, the stationary points of the GAP envelope coincides with
the fixed-points of Pα2

C Pα1

D . The following proposition follows immediately from
Proposition 8.

Proposition 19 Suppose that α1, α2 ∈ (0, 2] and that α1 6= 1. Then the set of
stationary points to the gap envelope FGAP

α1,α2
is the fixed-point set of Pα2

C Pα1

D .

Next, we state some properties of the GAP envelope.

Proposition 20 Suppose that α1 ∈ (0, 2] and α2 ∈ (0, 2]. Then the GAP
envelope FGAP

α1,α2
satisfies

1
2 〈M(x− y), x− y〉 ≤ FGAP

α1,α2
(x)− FGAP

α1,α2
(y)− 〈∇FGAP

α1,α2
(y), x− y〉

≤ 1
2 〈L(x− y), x− y〉

where

M = α1(1− α1)(I −N) (32)

and

L = (1− α1)(1 + (α2 − 1)(1− α1))I + α1(1 + (α2 − 1)(2− α1))N (33)

where N is defined in (30).

Proof. The operator Pα2

C is α2

2 -averaged and 1-negatively averaged (nonexpan-
sive). So we can apply Theorem 1 with δβ = 1, δα = α2 − 1, and P in (31).
Using N = N2 (which holds since N is a projection onto a linear subspace), we
conclude that

M = P − P 2 = (1− α1)I + α1N − ((1− α1)I + α1N)2

= (1− α1)I + α1N − ((1− α1)2I + 2α1(1− α1)N + α2
1N)

= ((1− α1)− (1− α1)2)I + (α1 − (2α1 − α2))N

= ((1− α1)− (1− 2α1 + α2
1))I + (α2

1 − α1))N

= α1(1− α1)I + α1(α1 − 1))N

= α1(1− α1)(I −N)

and that

L = P + (α2 − 1)P 2 = (1− α1)I + α1N + (α2 − 1)((1− α1)I + α1N)2

= ((1− α1) + (α2 − 1)(1− α1)2)I + (α1 + (α2 − 1)(2α1(1− α1) + α2
1))N

= (1− α1)(1 + (α2 − 1)(1− α1))I + α1(1 + (α2 − 1)(2− α1))N.

This concludes the proof. �



Since N is a projection operator onto a linear subspace, it has only two
distinct eigenvalues, namely zero and one. Therefore, there are only two distinct
eigenvalues of M and L in (32) and (33). Expressions for these eigenvalues are
given in the following proposition.

Proposition 21 The eigenvalues of M in (32) are

λi(M) =

{
0 for i such that λi(N) = 1

α1(1− α1) for i such that λi(N) = 0
(34)

and the eigenvalues of L in (33) are

λi(L) =

{
α2 for i such that λi(N) = 1

(1− α1)(1 + (α2 − 1)(1− α1)) for i such that λi(N) = 0
(35)

with N defined in (30).

Proof. First note that λi(a1I + a2N) = a1 + a2λi(N). This implies that
λi(M) = α1(1− α1)(1− λi(N)), and (34) is proven. It also implies that

λi(L) = (1− α1)(1 + (α2 − 1)(1− α1)) + α1(1 + (α2 − 1)(2− α1))λi(N).

For λi(N) = 0, we see that (35) holds. In the case of λi(N) = 1, we conclude
that

λi(L) = (1− α1)(1 + (α2 − 1)(1− α1)) + α1(1 + (α2 − 1)(2− α1))

= 1− α1 + α2(1− α1)2 − (1− α1)2 + α1 + α1α2(2− α1)− α1(2− α1)

= 1 + α2(1− 2α1 + α2
1)− 1 + 2α1 − α2

1 + α1α2(2− α1)− 2α1 − α2
1

= α2(1− 2α1 + α2
1) + α2(2α1 − α2

1)

= α2.

This concludes the proof. �

Using this, we can show that for α1 ∈ [1, 2], the GAP envelope is convex on
the nullspace of A and concave on its orthogonal complement, the rangespace
of A∗.

Proposition 22 Let N (A) denote the nullspace of A and let R(A∗) denote its
orthogonal complement, the rangespace of A∗. Then the GAP envelope is convex
and α2-smooth when restricted to R(A∗). If α1 ∈ [1, 2], the GAP envelope is
concave and α1(α1 − 1)-smooth when restricted to N (A).

Proof. The subspace R(A∗) is spanned by the eigenvectors corresponding to
λi(N) = 1. Therefore, Proposition 21 implies that for all x, y ∈ R(A∗), the
lower bound in Proposition 20 becomes 〈M(x − y), x − y〉 = 0 and the upper
bound in Proposition 20 satisfies 〈L(x − y), x − y〉 = α2‖x − y‖2. This proves
the first claim.



The second claim is proven similarly. The subspace N (A) is spanned by
the eigenvectors corresponding to λi(N) = 0. Therefore, Proposition 21 implies
that for all x, y ∈ N (A), the lower bound in Proposition 20 becomes 〈M(x −
y), x− y〉 = α1(1−α1)‖x− y‖2 and the upper bound in Proposition 20 satisfies
〈L(x − y), x − y〉 = (1 − α1)(1 + (α2 − 1)(1 − α1))‖x − y‖2. Noting that (1 −
α1)(1 + (α2− 1)(1−α1)) ≤ 0 when α1 ∈ [1, 2] and α2 ∈ (0, 2] proves the second
claim. �

The following proposition is a straightforward consequence of Proposition 20
and Proposition 21 and is stated without a proof.

Proposition 23 Suppose that α1 ∈ (0, 2] and α2 ∈ (0, 2]. Then the GAP
envelope FGAP

α1,α2
satisfies

βl
2 ‖x− y‖

2 ≤ FGAP
α1,α2

(x)− FGAP
α1,α2

(y)− 〈∇FGAP
α1,α2

(y), x− y〉 ≤ βu
2 ‖x− y‖

2

where βl = min((1−α1)α1, 0) and βu = max((1−α1)(1+(α2−1)(1−α1)), α2).
If in addition α1 ∈ (0, 1], then it is convex.

If the first relaxed projection is under-relaxed, i.e., if α1 ∈ (0, 1], then the
GAP envelope is convex. From Proposition 19, we also know that if α1 6= 1 its
set of stationary points is the fixed-point set of Pα2

C Pα1

D . For convex functions,
all stationary points are minimizers. This therefore implies that all convex
feasibility problems where one set is affine, can be solved by minimizing the
smooth convex GAP envelope function by setting α1 ∈ (0, 1). In Section 6, we
will see that most convex optimization problems can actually be cast on this
feasibility form.

6 Cone programming

In this section we show that many convex optimization problems can be written
as a convex feasibility problem involving one product of cones and one affine
set. This observation is not new (see, e.g., [40]) but is included here since it is
a crucial step in showing that almost all convex optimization problems can be
solved by minimizing the smooth convex unconstrained GAP envelope.

The CVX optimization modeling languages [24, 11, 38] are based on trans-
forming the provided (possibly nonsmooth and constrained) convex optimization
problem to a convex cone program of the form

minimize cTx
subject to Ax+ s = b

s ∈ K

where K is a (product of) closed and convex cones.
This transformation can be done for many convex optimization classes in-

cluding QPs, LPs, SOCPs, SDPs, Lasso-type problems, etc, see [23]. To arrive



at a feasibility problem originating from the cone program, we pose its dual:

maximize −bT y
subject to −AT y = c

y ∈ K∗

Assuming strong duality, the primal and dual objectives agree, i.e., cTx+bT y =
0. Using this relation and embedding both the primal and dual problem into
one master problem, we get the following primal-dual feasibility problem

find (x, s, y)

subject to

A I 0
0 0 −AT
cT 0 bT

xs
y

 =

bc
0


(s, y) ∈ K ×K∗

This feasibility problem has one affine subspace and one product of convex
cones. (There are many other ways to construct a feasibility problem with an
affine subspace and a product of convex cones. One example is the homogeneous
self-dual embedding which was proposed in [40] and used in the ADMM-based
solver SCS [32].)

There are various ways to solve this embedding problem, or reformulations
of it, using the forward-backward envelope in [34, 37] or the Douglas-Rachford
envelope in [33]. It can also be solved by finding a stationary point of the some-
times convex GAP envelope in Section 5. This provides another bridge (besides
the forward-backward and Douglas-Rachford envelopes) that allows almost all
convex optimization problems (at least those that can be formulated as convex
cone programs and therefore be solved using the CVX modeling languages) to
be solved using smooth optimization techniques.

7 Conclusions

We have presented a unified framework for envelope functions. Special cases
include the Moreau envelope, the forward-backward envelope, the Douglas-
Rachford and ADMM envelopes. We also presented a new envelope function,
namely the generalized alternating projections (GAP) envelope. Under addi-
tional assumptions, we have provided quadratic upper and lower bounds to the
general envelope function. These coincide with or improve corresponding results
for the known special cases in the literature. We have also shown that almost
all convex optimization problems can be solved by solving a feasibility problem
and that this feasibility problem can be solved by minimizing the smooth and
sometimes convex GAP envelope function.
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A Proof to Theorem 1

First, we establish that

−δα‖x− y‖2P 2 ≤ 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉 ≤ δβ‖x− y‖2P 2 .
(36)

We have

〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉
= 〈∇f2(Px+ q)−∇f2(Py + q), P (x− y)〉
= 〈∇f2(Px+ q)−∇f2(Py + q), (Px+ q)− (Py + q))〉

This implies that

−(2α− 1)‖x− y‖2P 2 = −(2α− 1)‖(Px+ q)− (Py − q)‖2

≤ 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉
≤ (2β − 1)‖(Px+ q)− (Py − q)‖2

= (2β − 1)‖x− y‖2P 2

where Lemma 4 and Lemma 5 are used in the inequalities. Recalling that
δα = 2α−1 and δβ = 2β−1, this shows that (36) holds. Further, for any δ ∈ R
we have

〈∇F (x)−∇F (y), x− y〉 = 〈P (x−∇f2∇f1(x))− P (x−∇f2∇f1(y)), x− y〉
= 〈P (x− y), x− y〉
− 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉

= 〈(P − δP 2)(x− y), x− y〉+ δ‖x− y‖2P 2

− 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉. (37)

Let δ = −δα, then (37) and (36) imply

〈∇F (x)−∇F (y), x− y〉 ≤ 〈(P + δαP
2)(x− y), x− y〉.

Let δ = δβ , then (37) and (36) imply

〈∇F (x)−∇F (y), x− y〉 ≥ 〈(P − δβP 2)(x− y), x− y〉.

Applying Lemma 2 in Appendix C gives the result.

B Proof to Lemma 1

Using the Moreau decomposition [2, Theorem 14.3]

proxρg∗(x) = x− ρproxρ−1g(ρ
−1x),



we conclude that

Rρg∗(x) = 2proxρg∗(x)− x
= 2(x− ρproxρ−1g(ρ

−1x))− x
= −ρ

(
2(proxρ−1g(ρ

−1x))− (ρ−1x)
)

= −ρRρ−1g(ρ
−1x)

and

Rρ(g∗◦−I)(x) = 2proxρ(g∗◦−I)(x)− x
= −2proxρg∗(−x)− x
= −2(−x− ρproxρ−1g(−ρ−1x))− x
= 2ρproxρ−1g(−ρ−1x)) + x

= ρ(2proxρ−1g(−ρ−1x)− (−ρ−1x))

= ρRρ−1g(−ρ−1x).

To show the third claim, we first derive an expression for r∗ρ(g∗◦−I). We have

r∗ρ(g∗◦−I)(y) = (ρ(g∗ ◦ −I) + 1
2‖ · ‖

2)∗(y)

= sup
z
{〈y, z〉 − ρ sup

x
{〈z, x〉 − g(−x)} − 1

2‖z‖
2}

= sup
z
{〈y, z〉+ ρ inf

x
{〈z,−x〉+ g(−x)} − 1

2‖z‖
2}

= sup
z
{〈y, z〉+ ρ inf

v
{〈z, v〉+ g(v)} − 1

2‖z‖
2}

= sup
z

inf
v
{〈y, z〉+ ρ〈z, v〉+ ρg(v)− 1

2‖z‖
2}

= inf
v

sup
z
{〈y + ρv, z〉+ ρg(v)− 1

2‖z‖
2}

= inf
v
{ 12‖y + ρv‖2 + ρg(v)}

= inf
v
{〈y, ρv〉+ 1

2‖ρv‖
2 + ρg(v)}+ 1

2‖y‖
2

= − sup
v
{〈−y, ρv〉 − 1

2‖ρv‖
2 − ρg(v)}+ 1

2‖y‖
2

= −ρ2 sup
v
{〈−ρ−1y, v〉 − 1

2‖v‖
2 − ρ−1g(v)}+ 1

2‖y‖
2

= −ρ2r∗ρ−1g(−ρ
−1y) + 1

2‖y‖
2,

where the sup-inf swap is valid by the minimax theorem in [36] since we can
construct a compact set for the z variable due to strong convexity of ‖ · ‖2. This
implies that

p2ρ(g∗◦−I)(y) = 2r∗ρ(g∗◦−I)(y)− 1
2‖y‖

2

= −2ρ2r∗ρ−1g(−ρ
−1y) + 1

2‖y‖
2

= −ρ2(2r∗ρ−1g(−ρ
−1y)− 1

2‖ − ρ
−1y‖2)

= −ρ2p2ρ−1g(−ρ
−1y).



This concludes the proof.

C Technical lemmas

Lemma 2 Assume that f : Rn → R is differentiable and that M : Rn → Rn
and L : Rn → Rn are linear operators. Then

− 1
2 〈M(x− y), x− y〉 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 1

2 〈L(x− y), x− y〉
(38)

if and only if

−〈M(x− y), x− y〉 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ 〈L(x− y), x− y〉 (39)

Proof. Adding two copies of (38) with x and y interchanged gives

−〈M(x− y), x− y〉 ≤ 〈∇f(x)− f(y), x− y〉 ≤ 〈L(x− y), x− y〉. (40)

This shows that (38) implies (39). To show the other direction, we use integra-
tion. Let h(τ) = f(x+ τ(y − x)), then

∇h(τ) = 〈y − x,∇f(x+ τ(y − x))〉

since f(y) = h(1) and f(x) = h(0), we get

f(y)− f(x) = h(1)− h(0) =

∫ 1

0

∇h(τ)dτ =

∫ 1

0

〈y − x,∇f(x+ τ(y − x))〉dτ

Therefore

f(y)− f(x)− 〈∇f(x), y − x〉 =

∫ 1

0

〈∇f(x+ τ(y − x)), y − x〉dτ − 〈∇f(x), y − x〉

=

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

=

∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), τ(y − x)〉dτ

=

∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), (x+ τ(y − x))− x〉dτ.

Using the upper bound in (39), we get∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), (x+ τ(y − x))− x〉dτ

≤
∫ 1

0

τ−1〈Lτ(x− y), τ(x− y)〉dτ

= 〈L(x− y), x− y〉
∫ 1

0

τdτ

= 1
2 〈L(x− y), x− y〉.



Similarly, using the lower bound in (39), we get∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), (x+ τ(y − x))− x〉dτ

≥ −
∫ 1

0

τ−1〈Mτ(x− y), τ(x− y)〉dτ

= −〈M(x− y), x− y〉
∫ 1

0

τdτ

= − 1
2 〈M(x− y), x− y〉.

This concludes the proof. �

Lemma 3 Assume that f : Rn → R is differentiable and that L is positive
definite. Then that f is L-smooth, i.e., that f satisfies

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ β
2 ‖x− y‖

2
L (41)

holds for all x, y ∈ Rn is equivalent to that ∇f is β-Lipschitz continuous w.r.t.
‖ · ‖L, i.e., that

‖∇f(x)−∇f(y)‖L−1 ≤ β‖x− y‖L (42)

holds for all x, y ∈ Rn.

Proof. We start by proving the result using the induced norm ‖ · ‖ only, i.e.,
in the Hilbert space setting. (This covers, e.g., the setting with inner-product
〈x, y〉H = 〈Hx, y〉 and scaled norm ‖ · ‖H =

√
〈x, y〉H that will be used later.)

To do this, we introduce the functions h := 1
β f and r := 1

2 (h+ 1
2‖ · ‖

2).

Since L = I in the norm, the condition (42) is β-Lipschitz continuity of ∇f
(w.r.t. ‖ · ‖). This is equivalent to that ∇h = 1

β∇f is nonexpansive, which by

[2, Proposition 4.2] is equivalent to that 1
2 (∇h+ I) = ∇

(
1
2 (h+ 1

2‖ · ‖
2)
)

= ∇r
is firmly nonexpansive (or equivalently 1-cocoercive). This, is equivalent to (see
[30, Theorem 2.1.5] and [2, Definition 4.4]) that:

0 ≤ r(x)− r(y)− 〈∇r(y), x− y〉 ≤ 1
2‖x− y‖

2.

holds for all x, y ∈ Rn. Multiplying by 2 and using 2r = h + 1
2‖ · ‖

2, this is
equivalent to that

0 ≤ h(x)− h(y)− 〈∇h(y), x− y〉+ 1
2 (‖x‖2 − ‖y‖2 − 2〈y, x− y〉)

= h(x)− h(y)− 〈∇h(y), x− y〉+ 1
2‖x− y‖

2 ≤ ‖x− y‖2.

Multiplying by β and using f = βh, this is equivalent to

−β2 ‖x− y‖ ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ β
2 ‖x− y‖

2.

This chain of equivalences show that the conditions are equivalent when L = I.



Next, we show that the scaled version holds. To do this, introduce the space
HH with inner-product 〈x, y〉H = 〈Hx, y〉 and induced norm ‖ · ‖H =

√
〈Hx, x〉

and the space EL inner-product 〈x, y〉 and induced norm ‖ · ‖L =
√
〈Lx, x〉.

Further let H = L and define fh : HH → R and fl : EL → R that satisfy
fh(x) = fl(x) for all x ∈ Rn. We have already shown that (41) and (42) are
equivalent for fh that is defined on the Hilbert space HH . To show that it
also holds for fl defined on EL, we show that the conditions (41) and (42) are
equivalent if defined for fh on HH and if defined for fl on EL, when L = H.

By definition of the gradient, ∇fl and ∇fh must satisfy

〈∇fl(y), x− y〉 = 〈∇fh(y), x− y〉H = 〈H∇fh(y), x− y〉

for all x, y ∈ Rn. This implies that ∇fh = H−1∇fl = L−1∇fl. Therefore that
(41) holds for fl on EL is equivalent to that it holds for fh on HH .

Further,

‖∇fh(x)−∇fh(y)‖2H = 〈∇fh(x)−∇fh(y),∇fh(x)−∇fh(y)〉H
= 〈L−1(∇f(x)−∇f(y)), L−1(∇f(x)−∇f(y))〉L
= 〈∇f(x)−∇f(y),∇f(x)−∇f(y)〉L−1

= ‖∇f(x)−∇f(y)‖2L−1 .

So that (42) holds for fl on EL is equivalent to that it holds for fh on HH . This
concludes the proof. �

Lemma 4 Assume that f is differentiable. Then ∇f is α-averaged with α ∈
(0, 1] if and only if

−(2α− 1)‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ ‖x− y‖2. (43)

Proof. The operator ∇f is α-averaged if and only if ∇f = (1 − α)I + αR
for some nonexpansive operator R. Therefore, ∇f is α-averaged if and only if
∇f − (1 − α)I is α-Lipschitz continuous, since ∇f − (1 − α)I = αR. Letting
g := f − 1−α

2 ‖ · ‖
2, we get ∇g = αR. Therefore ∇g is α-Lipschitz. According

to Lemma 3 this is equivalent to that

|g(x)− g(y)− 〈∇g(y), x− y〉| ≤ α
2 ‖x− y‖

2

or equivalently

|f(x)− f(y)− 〈∇f(y), x− y〉 − 1−α
2 ‖x− y‖

2| ≤ α
2 ‖x− y‖

2

which is equivalent to

− 2α−1
2 ‖x− y‖

2 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 1
2‖x− y‖

2.

Applying Lemma 2 gives the result. �



Lemma 5 Assume that f is differentiable. Then ∇f is β-negatively averaged
with β ∈ (0, 1] if and only if

−‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ (2β − 1)‖x− y‖2. (44)

Proof. This follows immediately from 4 since −∇f is β-averaged by definition.
�

Lemma 6 Suppose that P is a linear self-adjoint and nonexpansive operator
with largest eigenvalue λmax(P ) = L and smallest eigenvalue λmin(P ) = m,
satisfying −1 ≤ m ≤ L ≤ 1. Further suppose that δ ∈ [−1, 1] and let j be the
index that minimizes | 12δ −λi(P )|, i.e., j = argmini(| 12δ −λi(P )|). The smallest
eigenvalue of P − δP 2 satisfies the following:

(i) if δ ∈ [0, 1], then λmin(P − δP 2) = min(m− δm2, L− δL2)

(ii) if δ ∈ [−0.5, 0], then λmin(P − δP 2) = m− δm2

(iii) if δ ∈ [−1,−0.5], then λmin(P − δP 2) = λj(P )− δλj(P )2

Proof. From the spectral theorem it follows that the eigenvalues to λi(P −
δP 2) = λi(P ) − δλi(P )2. So we need to find the λi(P ) that minimizes the
function ψ(λ) = λ− δλ2, where λi(P ) ∈ [−1, 1] for different δ.

For δ ∈ [0, 1], the function ψ is concave, and the minimum is found in
either of the end points, so λmin(P − δP 2) = min(m − δm2, L − δL2). This
shows (i). If instead δ ∈ [−1, 0) the function ψ is convex. The unconstrained
minimum is at 1

2δ . Then, since the level sets of ψ are symmetric around 1
2δ , the

constrained minimum is the eigenvalue λi(P ) closest to 1
2δ . For δ ∈ [−0.5, 0)

this is λmin(P ) = m, and for δ ∈ [−1,−0.5] this is λj(P ). This concludes the
proof. �

Lemma 7 Suppose that P is a linear self-adjoint and nonexpansive operator
with largest eigenvalue λmax(P ) = L and smallest eigenvalue λmin(P ) = m,
satisfying −1 ≤ m ≤ L ≤ 1. Further suppose that δ ∈ [−1, 1] and let j be the
index that minimizes | 12δ + λi(P )|, i.e., j = argmini(| 12δ + λi(P )|). The largest
eigenvalue of P + δP 2 satisfies the following:

(li) if δ ∈ [−0.5, 1], then λmax(P + δP 2) = L+ δL2

(lii) if δ ∈ [−1,−0.5], then λmax(P + δP 2) = λj(P ) + δλj(P )2

Proof. From the spectral theorem it follows that the eigenvalues to λi(P +
δP 2) = λi(P ) + δλi(P )2. So we need to find the λi(P ) that maximizes the
function ψ(λ) = λ+ δλ2, where λi(P ) ∈ [−1, 1] for different δ.

For δ ∈ [0, 1], the function ψ is convex, and the maximum is found in either
of the end points. The function ψ is monotonically increasing on [−1, 1], so



the maximum is found at L + δL2. For δ ∈ [−1, 0), the function ψ is concave.
Its unconstrained maximum is at 1

−2δ . Since the level sets of ψ are symmetric

around 1
−2δ , the constrained maximum is the eigenvalue closest to 1

−2δ . For
δ ∈ [−0.5, 0), this is λmax(P ) = L, and for δ ∈ [−1,−0.5] this is λj(P ). This
concludes the proof. �


