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Abstract

Optimization problems with rank constraints appear in many diverse fields
such as control, machine learning and image analysis. Since the rank constraint is
non-convex, these problems are often approximately solved via convex relaxations.
Nuclear norm regularization is the prevailing convexifying technique for dealing
with these types of problem. This paper introduces a family of low-rank inducing
norms and regularizers which includes the nuclear norm as a special case. A pos-
teriori guarantees on solving an underlying rank constrained optimization problem
with these convex relaxations are provided. We evaluate the performance of the
low-rank inducing norms on three matrix completion problems. In all examples,
the nuclear norm heuristic is outperformed by convex relaxations based on other
low-rank inducing norms. For two of the problems there exist low-rank inducing
norms that succeed in recovering the partially unknown matrix, while the nuclear
norm fails. These low-rank inducing norms are shown to be representable as semi-
definite programs and to have cheaply computable proximal mappings. The latter
makes it possible to also solve problems of large size with the help of scalable
first-order methods. Finally, it is proven that our findings extend to the more gen-
eral class of atomic norms. In particular, this allows us to solve corresponding
vector-valued problems, as well as problems with other non-convex constraints.

1 Introduction
Many problems in machine learning, image analysis, model order reduction, multivari-
ate linear regression, etc. (see [1, 6, 7, 10, 25, 30, 31, 39, 40, 45]), can be posed as a
low-rank estimation problems based on measurements and prior information about a
data matrix. These estimation problems often take the form

minimize
M

f0(M)

subject to rank(M)≤ r,
(1)
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where f0 is a proper closed convex function and r is a positive integer that specifies the
desired or expected rank. Due to non-convexity of the rank constraint a solution to (1)
is known only in a few special cases (see e.g. [1, 2, 40]).

A common approach to deal with the rank constraint is to use the nuclear norm
heuristic (see [18, 39]). The idea is to convexify the problem by replacing the non-
convex rank constraint with a nuclear norm regularization term. For matrix completion
problems, this approach is shown to recover the true low-rank matrix with high prob-
ability, provided that enough random measurements are available (see [7, 9, 39]). If
these assumption are not met, however, the nuclear norm heuristic may fail in produc-
ing satisfactory estimates (see [23, 24]).

This paper introduces a family of low-rank inducing norms as alternatives to the
nuclear norm. These norms can be interpreted as the largest convex minorizers of non-
convex functions f of the form

f := ‖ · ‖+χrank(·)≤r, (2)

where ‖·‖ is an arbitrary unitarily invariant norm, and χrank(·)≤r is the indicator function
for matrices with rank less than or equal to r. This interpretation motivates the use of
low-rank inducing norms in convex relaxations to (1). In particular, assume that f0 in
(1) can be split into the sum of a convex function and unitarily invariant norm, and
the solution to the corresponding convex relaxation has rank r. Then this solution also
solves the non-convex problem, and thus provides an a posteriori optimality guarantee.
Furthermore, the choice of norms and target ranks r can be considered as regularization
parameters when used in convex relaxations of (1). Compared to the nuclear norm
approach, it is shown that this gives additional flexibility which can be exploited to
improve the quality of the estimate. Specifically, the nuclear norm is the largest convex
minorizer of f in (2) with r = 1, making it a less natural choice than other low-rank
inducing norms, because it convexifies constraints that allow for matrices of rank 1,
only.

This work particularly focuses on low-rank inducing norms, where the norm in
(2) is the Frobenius norm or the spectral norm. We refer to these norms as low-rank
inducing Frobenius norms and low-rank inducing spectral norms, respectively. The
low-rank inducing Frobenius norms, also called r∗ norms, have been previously dis-
cussed in the literature (see [4, 14, 16, 22–24, 36]). In [4, 14, 16, 36], no optimality
interpretations are considered, but in previous work we have presented such interpre-
tations for the squared r∗ norms (see [22–24]). In this paper these findings are shown
to extend to any function of low-rank inducing norms that is increasing on the nonneg-
ative real numbers. Most importantly, our results hold for linear increasing functions,
i.e. the low-rank inducing norm itself. To the best of our knowledge, no other low-rank
inducing norms from the proposed family, including low-rank inducing spectral norms,
have been proposed in the literature.

For the family of low-rank inducing norms to be useful in practice, they must be
suitable for numerical optimization. We show that low-rank inducing Frobenius norms
and spectral norms are representable as semi-definite programs (SDP). This allows us
to readily formulate and solve small to medium scale problems using standard SDP-
solvers (see [38, 44]). Moreover, it is demonstrated that these norms have cheaply com-
putable proximal mappings, comparable with the computational cost for the proximal
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mapping of the nuclear norm. This allows us to solve large-scale problems involving
low-rank inducing norms by means of proximal splitting methods (see [12, 37]). To
enable formulations with increasing convex functions, the projection onto their epi-
graphs is computed. This extends the proximal mapping computations of the squared
r∗ norm in [3, 16, 23] to the non-squared case.

The performance of different low-rank inducing norms is evaluated on three matrix
completion problems. The evaluation reveals that the choice of low-rank inducing
norms has tremendous impact on the ability to complete the covariance matrix. In
particular, the nuclear norm is significantly outperformed by the low-rank inducing
Frobenius norm, as well as the low-rank inducing spectral norm.

The findings in this work are also valid for the corresponding vector-valued prob-
lems by replacing rank with cardinality. This gives rise to optimality interpretations of,
e.g., lasso-type and inverse problems (see [25, 42, 45]). More generally, all low-rank
inducing norms lie within the class of so-called atomic norms (see [9]). It is shown that
our optimality interpretations also hold for atomic norms under very mild assumptions.
Therefore, these findings provide optimality interpretations for many other problems,
such as those listed in [9, Section 2.2].

The paper is organized as follows. We start by introducing some preliminaries
in Section 2. In Section 3, we introduce the class of low-rank inducing norms, and
provide optimality interpretations of these in Section 4. In Section 5, computability of
low-rank inducing Frobenius and spectral norms is addressed. To support the useful-
ness of having more low-rank inducing regularizers at our supply, numerical examples
are presented in Section 6. The optimality results are extended to the vector case and
to atomic norms in Section 7 and conclusions are drawn in Section 8.

2 Preliminaries
The set of reals is denoted by R, the set of real vectors by Rn, and the set of real
matrices by Rn×m. Element-wise nonnegative matrices X ∈ Rn×m are denoted by
X ∈Rn×m

≥0 . If symmetric X ∈Rn×n is positive definite (semi-definite), we write X � 0
(X � 0). These notations are also used to describe relations between matrices, e.g.,
A � B means A−B � 0. The non-increasingly ordered singular values of X ∈ Rn×m,
counted with multiplicity, are denoted by σ1(X)≥ ·· · ≥ σmin{m,n}(X). Furthermore,

〈X ,Y 〉 :=
m

∑
i=1

n

∑
j=n

xi jyi j = trace(XTY )

defines the Frobennius inner-product for X ,Y ∈ Rn×m. This inner-product gives the
Frobenius norm

‖X‖F :=
√

trace(XT X) =

√
n

∑
i=1

m

∑
j=1

x2
i j =

√√√√min{m,n}

∑
i=1

σ2
i (X),
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which is a unitarily invariant norm, i.e., ‖UXV‖F = ‖X‖F for all unitary matrices
U,V ∈Rn×m. For all x = (x1, . . . ,xq) ∈Rq, we define

`1(x) :=
q

∑
i=1
|xi|, `2(x) :=

√
q

∑
i=1

x2
i , `∞(x) := max

i
|xi|, (3)

Then the Frobenius norm satisfies ‖X‖F = `2(σ(X)), where

σ(X) := (σ1(X), . . . ,σq(X)).

The functions `1 and `∞ define the nuclear norm ‖X‖`1 := `1(σ(X)) and the spectral
norm ‖X‖`∞

:= `∞(σ(X)) = σ1(X).
For a set C ⊂Rn×m,

χC(X) :=

{
0, X ∈ C
∞, X /∈ C

denotes the so-called indicator function. We also use χrank(·)≤r to denote the indicator
function of the set of matrices which have at most rank r.

The following function properties will be used in this paper. The effective domain
of a function f :Rn×m→R∪{∞} is defined as

dom f := {X ∈Rn×m : f (X)< ∞}

and the epigraph is defined as

epi( f ) := {(X , t) : f (X)≤ t,X ∈ dom f , t ∈R}.

Further, f is said to be:

• proper if dom f 6= /0.

• closed if the epigraph is a closed set.

• positively homogeneous (of degree 1) if for all X ∈ dom( f ) and t > 0 it holds
that f (tX) = t f (X).

• nonnegative if f (X)≥ 0 for all X ∈ dom( f ).

• coercive if lim‖X‖F→∞ f (X) = ∞.

A function f :R∪{∞}→R∪{∞} is called increasing if

x≤ y ⇒ f (x)≤ f (y) for all x,y ∈ dom( f )

and if there exist x,y ∈R such that x < y and f (x)< f (y).
The conjugate (dual) function f ∗ of f is defined as

f ∗(Y ) := sup
X∈Rn×m

[〈X ,Y 〉− f (X)]
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for all Y ∈ Rn×m. As long as f is proper and minorized by an affine function, the
conjugate f ∗ is proper, closed and convex (see [28]). The function f ∗∗ := ( f ∗)∗ is
called the biconjugate function of f and can be shown to be a convex minorizer of f ,
i.e.

f (X)≥ f ∗∗(X) for all X ∈Rn×m.

In fact, f ∗∗ is the point-wise supremum of all affine functions majorized by f and
therefore the largest convex minorizer of f . This can equivalently be stated as follows
(see [27, Theorem X.1.3.5,Corollary X.1.3.6]).

Lemma 1 Let f :Rn×m→R∪{∞} be such that f ∗∗ is proper. Then

epi( f ∗∗) = cl(conv(epi f )),

where cl(·) denotes the topological closure of a set and conv(·) the convex hull. Fur-
ther, f ∗∗ = f if and only if f is proper closed and convex.

Lemma 1 implies that for a closed proper, but possibly non-convex function f , it holds
that

inf
X∈Rn×m

f (X) = inf
X∈Rn×m

f ∗∗(X).

However, determining the convex function f ∗∗ is as difficult as minimizing the non-
convex function f . Instead, it is common to convexify the problem by splitting the
function into f = f1+ f2, such that f ∗∗1 and f ∗∗2 can be easily computed. If f1 is proper,
closed and convex, then f1 = f ∗∗1 and f1 + f ∗∗2 is the largest convex minorizer of f that
keeps f1 as a summand. In particular,

inf
X∈Rn×m

[ f1(X)+ f2(X)]≥ inf
X∈Rn×m

[ f1(X)+ f ∗∗2 (X)] , (4)

which holds with equality if the solution X? to the right-hand side problem satisfies
f ∗∗2 (X?) = f2(X?). Then X? also solves the non-convex problem on the left-hand side.
This motivates the use of our terminology that f1+ f ∗∗2 is the optimal convex relaxation
of a given splitting f1 + f2, when f1 is proper closed and convex.

Finally, if f :R∪{∞}→R∪{∞}, then the monotone conjugate is defined as

f+(y) := sup
x≥0

[〈x,y〉− f (x)] for all y ∈R.

3 Low-Rank Inducing Norms
This section introduces the family of low-rank inducing norms, which includes the
nuclear norm as a special case. These can be used as regularizers in optimization prob-
lems to promote low-rank solutions. To define them, we need to characterize the class
of unitarily invariant norms in terms of symmetric gauge functions. This characteriza-
tion can be found in, e.g. [29, Theorem 7.4.7.2].
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Definition 1 A function g :Rq→R≥0 is a symmetric gauge function if

i. g is a norm.

ii. ∀x ∈Rq : g(|x|) = g(x), where |x| denotes the element-wise absolute value.

iii. g(Px) = g(x) for all permutation matrices P ∈Rq×q and all x ∈Rq.

Proposition 1 The norm ‖ · ‖ :Rn×m→R is unitarily invariant if and only if

‖X‖= g(σ1(X), . . . ,σmin{m,n}(X))

for all X ∈Rn×m, where g is a symmetric gauge function.

As noted in Section 2, the gauge functions for the Frobenius norm, spectral norm, and
nuclear norm are g = `2, g = `∞, and g = `1, respectively, where `1, `2, and `∞, are
defined in (3).

The dual norm of a unitarily invariant norm is also unitarily invariant (see [29,
Theorem 5.6.39]. Therefore, it has an associated symmetric gauge function. This will
be denoted by gD if the symmetric gauge function of the original norm is denoted by g.
More specifically, let M ∈ Rn×m, q := min{m,n}, and g : Rq → R≥0 be a symmetric
gauge function associated with a unitarily invariant norm

‖M‖g := g(σ1(M), . . . ,σq(M)).

The dual of this norm is defined as

‖Y‖gD := max
‖M‖g≤1

〈Y,M〉= gD(σ1(Y ), . . . ,σq(Y )), (5)

where the dual gauge function gD satisfies

gD(σ1(Y ), . . . ,σq(Y )) = max
g(σ1(M),...,σq(M))≤1

q

∑
i=1

σi(M)σi(Y ). (6)

The low-rank inducing norms will be defined as the dual norm of a rank constrained
dual norm in (5). This rank constrained dual norm is defined as

‖Y‖gD,r := max
rank(M)≤r
‖M‖g≤1

〈M,Y 〉 (7)

and the corresponding low-rank inducing norm as

‖M‖g,r∗ := max
‖Y‖gD,r≤1

〈Y,M〉. (8)

For q = min{m,n}, the rank constraint in (7) is redundant and the dual of the dual
becomes the norm itself.

For symmetric gauge functions g :Rq→R≥0, we denote their truncated symmetric
gauge functions by g(σ1, . . . ,σr) := g(σ1, . . . ,σr,0, . . . ,0) for any r ∈ {1, . . . ,q}. With
this notation in mind, some properties of low-rank inducing norms and their duals are
stated in the following lemma. A proof is given in Appendix A.1.1.
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Lemma 2 Let M,Y ∈Rn×m, r ∈N be such that 1≤ r≤ q := min{m,n}, and g :Rq→
R≥0 be a symmetric gauge function. Then ‖ · ‖gD,r is a unitarily invariant norm that
satisfies

‖Y‖gD,r = gD(σ1(Y ), . . . ,σr(Y )) (9)

Its dual norm ‖ · ‖g,r∗ satisfies

‖M‖g,r∗ = max
gD(σ1(Y ),...,σr(Y ))≤1

[
r

∑
i=1

σi(M)σi(Y )+σr(Y )
q

∑
i=r+1

σi(M)

]
, (10)

and

‖M‖g = ‖M‖g,q∗ ≤ ·· · ≤ ‖M‖g,1∗, (11)
rank(M)≤ r ⇒ ‖M‖g = ‖M‖g,r∗. (12)

This paper particularly focuses on low-rank inducing norms originating from the Frobe-
nius norm and the spectral norm. When the original norm is the Frobenius norm, then
g = `2. Since the norm is self dual, it satisfies gD = `D

2 = `2. The truncated version in
(9) (which is denote by ‖ · ‖r to comply with notation used, e.g., in [23]) becomes

‖Y‖r := ‖Y‖`D
2 ,r

=

√
r

∑
i=1

σ2
i (Y ).

The corresponding low-rank inducing norm is referred to as the low-rank inducing
Frobenius norm, and is denoted by

‖M‖r∗ := ‖M‖`2,r∗ = max
‖Y‖r≤1

〈Y,M〉.

In [23], this norm is referred to as the r∗ norm.
If the original norm, instead, is the spectral norm, we have g = `∞. The dual norm

is the nuclear (trace) norm (see [29, Theorem 5.6.42]), with gauge function gD = `1.
The truncated version becomes

‖Y‖`1,r :=
r

∑
i=1

σi(Y ),

and its dual, which we refer to as the low-rank inducing spectral norm, is denoted by

‖M‖`∞,r∗ := max
‖Y‖`1 ,r≤1

〈Y,M〉.

The nuclear norm is a special case of these low-rank inducing norms, corresponding to
r = 1.

Proposition 2 The nuclear norm satisfies ‖ ·‖`1 = ‖ ·‖g,1∗, where ‖ ·‖g is any unitarily
invariant norm with g(σ1) = |σ1|.

A proof to this proposition is found in Appendix A.1.2.
Next, we state a result that is the key to our optimality interpretations for low-rank

inducing norms in the next section.
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Lemma 3 Let B1
g,r∗ := {X ∈Rn×m : ‖X‖g,r∗ ≤ 1} be the unit low-rank inducing norm

ball and let

Eg,r := {X ∈Rn×m : ‖X‖g = 1, rank(X)≤ r}. (13)

Then B1
g,r∗ = conv(Eg,r), i.e. all M ∈Rn×m can be decomposed as

M = ∑i αiMi with ∑i αi = 1, αi ≥ 0,

where Mi satisfies rank(Mi)≤ r and

‖Mi‖g = ‖Mi‖g,r∗ = ‖M‖g,r∗.

A proof to this lemma is given in Appendix A.1.3. The result is a direct consequence
of Lemma 2 and extends what is known about the nuclear norm, and the results on
low-rank inducing Frobenius norms in [23].

In many cases, the set Eg,r is the set of extreme points to the unit ball B1
g,r∗. The

following result is proven in Appendix A.1.4.

Proposition 3 Suppose that ‖ · ‖g satisfies

‖∑i αiMi‖g < ∑i αi‖Mi‖g

for all αi ∈ (0,1) such that ∑i αi = 1, and all Mi ∈Rn×m with ‖Mi‖g = 1. Then Eg,r in
(13) is the set of extreme points to B1

g,r∗.

All `p norms with 1 < p < ∞ satisfy these assumptions, and therefore the unit balls of
their low-rank inducing norms have Eg,r as their extreme point sets.

The extreme point sets for the unit balls of the low-rank inducing spectral norms
are characterized next.

Corollary 1 The extreme point set of the unit ball to the low-rank inducing spectral
norm B1

`∞,r∗ is given by

Er := {X ∈Rn×m : σ1(X) = · · ·= σr(X) = 1 and rank(X) = r}.

This result is proven in Appendix A.1.5.
We could also use the nuclear norm as a basis for the low-rank inducing norm. By

Proposition 2, we know that ‖·‖`1,1∗ = ‖·‖`1 . Therefore (11) implies that any low-rank
inducing nuclear norm is just the nuclear norm, i.e.,

‖ · ‖`1 = ‖ · ‖`1,q∗ = · · ·= ‖ · ‖`1,1∗.

Compared to using the low-rank inducing Frobenius and spectral norms, this does not
provide us with a richer family of low-rank inducing norms.
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4 Optimality Interpretations
In this section, we shown that low-rank inducing norms can be interpreted as the largest
convex minorizers, i.e., the biconjugates of non-convex functions of the form (2), where
the norm is arbitrary but unitarily invariant. Using this interpretation, we show how to
create optimal convex relaxations of rank constrained optimization problems. This
yields a posteriori guarantees on when a convex relaxation involving a low-rank induc-
ing norm solves the corresponding rank constrained problem.

The interpretation of low-rank inducing norms follows as a special case of the fol-
lowing more general result.

Theorem 1 Assume f :R≥0→R∪{∞} is an increasing closed convex function, and
let freg := f (‖ · ‖g)+χrank(·)≤r with r ∈N such that 1≤ r ≤min{m,n}. Then,

f ∗reg = f+(‖ · ‖gD,r), (14)

f ∗∗reg = f (‖ · ‖g,r∗). (15)

Proof. Since epi( f (‖ · ‖g,r∗)) is closed by [28, Proposition IV.2.1.8], it follows by
Lemma 1 that if

epi( f (‖ · ‖g,r∗)) = conv(epi( freg)),

then (15) follows.
Let us start by showing that epi( f (‖·‖g,r∗))⊂ conv(epi( freg)). Assume that (M, t)∈

epi( f (‖ · ‖g,r∗)). By Lemma 3,

M = ∑i αiMi with ∑i αi = 1, αi ≥ 0

where Mi satisfies

rank(Mi)≤ r, and ‖Mi‖g,r∗ = ‖M‖g,r∗.

Hence, (M, t) = ∑i αi (Mi, t), where

t ≥ f (‖M‖g,r∗) = f (‖Mi‖g,r∗) and rank(Mi)≤ r.

This shows that (Mi, t) ∈ epi( freg), and therefore (M, t) ∈ conv(epi( freg)).
Conversely, if (M, t) ∈ conv(epi( freg)), then

(M, t) = ∑i αi (Mi, ti) with ∑i αi = 1,αi ≥ 0,

where Mi satisfies

rank(Mi)≤ r, and ti ≥ f (‖Mi‖g) = f (‖Mi‖g,r∗),

where the equality is due to (12) in Lemma 2. Since f is convex and increasing, it
holds that the composition f (‖ · ‖g,r∗) is convex (see [28, Proposition IV.2.1.8]). Thus,

t := ∑iαiti ≥ ∑iαi f (‖Mi‖g,r∗)≥ f
(
‖∑iαiMi‖g,r∗

)
= f (‖M‖g,r∗) ,

which implies that (M, t) ∈ epi( f (‖ · ‖g,r∗)), and (15) follows. Applying [41, Theo-
rem 15.3] to f (‖ · ‖g,r∗) shows (14). �
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This result generalizes the corresponding result in [23], in which the special case
f (x) ≡ x2 and ‖ · ‖g being the Frobenius norm is shown. For linear f (x) ≡ x, the
biconjugate in (15) reduces to the low-rank inducing norms of Section 3. Therefore,
they can be characterized as follows.

Corollary 2 Let r ∈N be such that 1≤ r ≤ q := min{m,n}. Then

‖·‖r∗ = (‖ · ‖F +χrank(·)≤r)
∗∗,

‖·‖`∞,r∗ = (‖ · ‖`∞
+χrank(·)≤r)

∗∗,

and the nuclear norm satisfies

‖ · ‖`1 = (‖ · ‖g +χrank(·)≤1)
∗∗,

where ‖ · ‖g is an arbitrary unitarily invariant norm that satisfies ‖M‖g = σ1(M) for
all rank-1 matrices M.

Proof. This follows immediately from Theorem 1, since ‖ · ‖r∗ = ‖ · ‖`2,r∗, where
‖ · ‖`2 = ‖ · ‖F is the Frobenius norm, and from Proposition 2. �

Remark 1 This nuclear norm representation differs from the one in [17, 18], where
it is shown that ‖ · ‖`1 = (rank+ χB1

`∞
)∗∗, i.e., it is the convex hull of the rank function

restricted to the unit spectral norm ball.

Using Theorem 1, optimal convex relaxations of rank constrained problems

minimize
M

f0(M)+ f (‖M‖g)

subject to rank(M)≤ r,
(16)

can be provided, where f0 : Rn×m→ R∪{∞} is a proper and closed convex function
and f : R≥0→ R∪{∞} is an increasing and closed convex function. The problem in
(16) is equivalent to minimizing f0 + freg with the non-convex freg defined in Theo-
rem 1. Therefore, the optimal convex relaxation of (16) is given by

minimize
M

f0(M)+ f (‖M‖g,r∗). (17)

Including an additional regularization parameter θ ≥ 0 (that can be included in f )
yields the following proposition.

Proposition 4 Assume that f0 :Rn×m→R∪{∞} is a proper closed convex function,
and that r∈N is such that 1≤ r≤min{m,n}. Let f :R≥0→R∪{∞} be an increasing,
proper closed convex function, and let θ ≥ 0. Then

inf
M∈Rn×m

rank(M)≤r

[ f0(M)+θ f (‖M‖g)]≥ inf
M∈Rn×m

[ f0(M)+θ f (‖M‖g,r∗)] . (18)

If M? solves the problem on the right such that rank(M?)≤ r, then equality holds, and
M? is also a solution to the problem on the left.
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Proof. The inequality holds since f (‖ · ‖g,r∗) = f ∗∗reg ≤ freg. From Lemma 2 it follows
that if rank(M?)≤ r then

f ∗∗reg(M
?) = f (‖M?‖g,r∗) = f (‖M?‖g) = freg(M?),

which implies that the lower bound is attained with M? and equality holds. �

Since the nuclear norm is obtained by creating a low-rank inducing norm with
r = 1, it follows that any nuclear norm regularized problem can be interpreted as an
optimal convex relaxation to a non-convex problem of the form (16), with the constraint
rank(M)≤ 1.

Proposition 4 also covers the results in our previous work [23], where the matrix
approximation problem

min
M∈Rn×m

rank(M)≤r

[ 1
2‖N−M‖2

F +h(M)
]

= min
M∈Rn×m

rank(M)≤r

[ 1
2‖N‖

2
F −〈N,M〉+ 1

2‖M‖
2
F +h(M)

]
,

is considered. Letting

f0(·) = 1
2‖N‖

2
F −〈N, ·〉+h(·), f (x) = 1

2 x2, and ‖ · ‖g = ‖ · ‖F ,

the results in [23] are a special cases of Theorem 1.

5 Computability
This section addresses the computability of convex optimization problems involving
low-rank inducing regularizers of the form f (‖·‖g,r∗). We restrict ourselves to low-
rank inducing Frobenius and spectral norm regularizers. A requirement for the optimal
convex relaxation problem in (17) to be solved efficiently, is that these regularizers are
suitable for numerical optimization.

Assuming that f0 and f are SDP representable, it is shown that (17) can be solved
via semi-definite programming. To be able to solve larger problems using first-order
proximal splitting methods (see [12, 37] and references therein), we show how to ef-
ficiently compute the proximal mappings of the considered regularizers. The com-
putational cost of computing these proximal mappings is comparable to the cost of
computing the proximal mapping for the nuclear norm, since the cost in all cases is
dominated by the singular value decomposition.

In order to deal with increasing convex functions f in (17), the problem is rewritten
into the equivalent epigraph form

minimize
M,v

f0(M)+ f (v)+χepi(‖·‖g,r∗)(M,v). (19)
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5.1 SDP representation
The low-rank inducing Frobenius norm and spectral norm

‖M‖r∗ := max
‖Y‖r≤1

〈M,Y 〉= max
‖Y‖2r≤1

〈M,Y 〉, (20)

‖M‖`∞,r∗ := max
‖Y‖`1 ,r≤1

〈M,Y 〉, (21)

are SDP representable via ‖Y‖2
r and ‖Y‖`1,r. From [22, 23], it is known that

‖Y‖2
r = min

T,γ
trace(T )− γ(n− r)

s.t.
(

T Y
Y T I

)
� 0, T � γI.

Similarly, one can verify that

‖Y‖`1,r = min
T1,T2,γ

1
2
[trace(T1)+ trace(T2)− (n+m−2r)γ]

s.t.
(

T1 Y
Y T T2

)
� 0, T1,T2 � γI,

which generalizes the SDP representation of ‖Y‖`1,min{m,n} in [39]. This implies that

‖M‖r∗ = max
Y,T,γ

〈M,Y 〉

s.t.
(

T Y
Y T I

)
� 0, T � γI,

trace(T )− γ(n− r)≤ 1,

‖M‖`∞,r∗ = max
Y,T1,T2,γ

〈M,Y 〉

s.t.
(

T1 Y
Y T T2

)
� 0, T1,T2 � γI,

1
2
[trace(T1)+ trace(T2)− (n+m−2r)γ]≤ 1,

However, these formulations cannot be used in convex optimization problems with M
as a decision variable due to the inner product 〈M,Y 〉. Therefore, we use duality to

12



arrive at

‖M‖r∗ = min
W1,W2,k

1
2
(trace(W2)+ k)

s.t.
(

kI−W1 M
MT W2

)
� 0, W1 � 0,

trace(W1) = (n− r)k;

‖M‖`∞,r∗ = min
W1,W2,k

k

s.t.
(

kI−W1 M
MT kI−W2

)
� 0, W1,W2 � 0,

trace(W1)+ trace(W2) = [(n− r)+(m− r)]k.

These formulations can be used to, e.g. solve problems on the epigraph form (19)
by enforcing the respective costs to be smaller than or equal to v ∈ R. This gives
constraints of the form ‖M‖g,r∗ ≤ v, i.e., (M,v) ∈ epi(‖ · ‖g,r∗). If f and f0 are SDP
representable, then (19) can be solved via semi-definite programming.

5.2 Splitting algorithms
Conventional SDP solvers are often based on interior point methods (see [38, 43]).
These have good convergence properties, but the iteration complexity typically grows
unfavorably with the problem dimension. This limits their application to small or
medium scale problems. First order proximal splitting methods (see e.g. [12, 37])
typically have a lower complexity per iteration, and are thus more suitable for large
problems.

These methods require the proximal mapping for all non-smooth parts of the prob-
lem to be available. The proximal mapping for a proper closed and convex functions
h :Rn×m→R∪{∞} is defined as

proxγh(Z) := argmin
X

(
h(X)+

1
2γ
‖X−Z‖2

F

)
. (22)

Applying proximal splitting methods to (19) therefore requires that the proximal map-
ping of χepi(‖·‖g,r∗) is readily computable. Since χepi(‖·‖g,r∗) is an indicator function of
the epigraph set, the proximal mapping becomes a projection, which is denoted by
Πepi(‖·‖g,r∗).

The epigraph of a norm is a cone (see [5, Proposition 10.2]). Appealing to the
Moreau-decomposition (see [5, Theorem 6.29]), we compute the projection Πepi(‖·‖g,r∗)
via

Πepi(‖·‖g,r∗)(Z,zv) = (Z,zv)−Π(epi(‖·‖g,r∗)◦(Z,zv), (23)

where Z ∈Rn×m, zv ∈R, and Π(epi(‖·‖g,r∗)◦ is projection onto the polar cone (which is
the negative dual cone of epi(‖·‖g,r∗) by definition).

13



Algorithms for projecting onto the polar cones of the low-rank inducing Frobenius
and spectral norms are derived in Appendix A.2. In these algorithms, the first step is to
perform a singular value decomposition of the prox argument Z ∈Rn×m. Then a vector
optimization problem of dimension q := min{m,n} needs to be solved. To this end, a
nested binary search is applied that only requires the solutions to simple optimization
problems with at most r+1 decision variables.

In case of the low-rank inducing Frobenius norm, these problems can be solved
explicitly, and results in an overall worst-case complexity of O(log(r) log(q− r)) with
an additionalO(q) to set up the inner problems and to return the full solution. The cost
of the prox computation is therefore dominated by the cost of computing the SVD. For
large q one may consider sparse SVD algorithms such as [34].

The projection onto the epigraph of the low-rank inducing spectral norm is per-
formed via the projection onto the epigraph of the truncated nuclear norm (modulo a
sign flip). Since this requires a third layer in the nested binary search, the worst-case
complexity is given by O(log2(r) log(q− r)+q). In [47], another algorithm to project
onto the truncated nuclear norm is presented. It uses similar techniques, but performs a
linear search for finding the parameters and thus has a higher worst case computational
cost.

Finally, note that the detour over the epigraph projection is not needed for all in-
creasing functions. The proximal mapping for the low-rank inducing Frobenius and
spectral norms can be derived very similarly to the epigraph case in Appendix A.2.
The proximal mapping for the squared low-rank inducing Frobenius norm is derived in
[16, 23]. Details are omitted for brevity.

6 Examples: Matrix Completion
The matrix completion problem seeks to complete a low-rank matrix based on limited
knowledge about its entries. The problem is often posed as

minimize rank(X)

subject to x̂i j = xi j, (i, j) ∈ I,
(24)

where I denotes the index set of the known entries. Another formulation that fits with
the low-rank inducing norms proposed in this paper is

minimize ‖X‖g

subject to rank(X)≤ r

x̂i j = xi j, (i, j) ∈ I,
(25)

where r is the target rank of the matrix to be completed. In the following, two examples
of this form will be convexified using different low-rank inducing norms. That is,

minimize ‖X‖g,r∗

subject to x̂i j = xi j, (i, j) ∈ I,
(26)

is solved for different low-rank inducing norms ‖ · ‖g,r∗.
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(a) Relative completion errors of:
(26) with ‖ · ‖g,r∗ = ‖·‖r∗
(26) with ‖ · ‖g,r∗ = ‖·‖`∞,r∗

(b) Rank of the solutions to:
(26) with ‖ · ‖g,r∗ = ‖·‖r∗
(26) with ‖ · ‖g,r∗ = ‖·‖`∞,r∗

Figure 1: Example 1: Relative completion error and ranks of the solution to (26) with
‖ · ‖g,r∗ = ‖·‖r∗ and ‖ · ‖g,r∗ = ‖·‖`∞,r∗.

Further, we discuss a covariance completion problem which is a generalization of
the problem above. In all problems it will be observed that there are convex relaxations
with low-rank inducing norms whose solutions give better completion than the nuclear
norm approach, without increasing the rank.

6.1 Example 1
In the first problem, which is taken from [23], the matrix X̂ to be completed is a low-
rank approximation of the Hankel matrix

H =

1 1 1 1
1 0

1 0
1 0 0 0



 ∈R10×10. (27)

Let the singular value decomposition of H be given by H = ∑
10
i=1 σi(H)uiuT

i and

X̂ :=
5

∑
i=1

σi(H)uiuT
i and I := {(i, j) : x̂i j > 0},

where I is the index set of known entries. The cardinality of I is 78, i.e. 22 out of 100
entries are unknown. Fig. 1 shows the completion errors and ranks of the completed
matrices for different value of r. The nuclear norm (r = 1) returns a full rank matrix
and gives a worse completion error than all other low-rank inducing Frobenius norms.
For r = 5, the solution with the low-rank inducing Frobenius norm has rank 5. Given
the known entries, this is the matrix of smallest Frobenius norm which has at most rank
5, by Proposition 4. As indicated by the small relative error, this matrix coincides with
X̂ . In fact, this is also verified analytically in [23, Theorem 3].
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(a) Relative completion errors of:
(26) with ‖ · ‖g,r∗ = ‖·‖r∗
(26) with ‖ · ‖g,r∗ = ‖·‖`∞,r∗

(b) Rank of the solutions to:
(26) with ‖ · ‖g,r∗ = ‖·‖r∗
(26) with ‖ · ‖g,r∗ = ‖·‖`∞,r∗

Figure 2: Example 2: Relative completion error and ranks of the solution to (26) with
‖ · ‖g,r∗ = ‖·‖r∗ and ‖ · ‖g,r∗ = ‖·‖`∞,r∗.

Notice that
101.2rank(X̂) log(10)� card(I) = 78,

which is why exact completion results for the nuclear norm (see [7]) do not apply. Fur-
thermore, the low-rank inducing spectral norm shows no improvement in comparison
with the nuclear norm.

6.2 Example 2
In the this second example, it as assumed that

X̂ :=
5

∑
j=1

σ j

5

∑
i=1

(H)uivT
i and I := {(i, j) : x̂i j > 0},

where H is given in (27) with the singular value decomposition H = ∑
10
i=1 σi(H)uivT

i .
The cardinality of I is 67, that is, 33 out of 100 entries are unknown. Fig. 2 shows the
completion errors and ranks of the completed matrices with different value of r. The
nuclear norm (r = 1) returns a close to full rank matrix with a relative completion error
that is among the largest for all r. In this example, the low-rank inducing spectral norms
perform significantly better than the low-rank inducing Frobenius norms. In particular,
for r = 5, the low-rank inducing spectral norm returns a rank 5 solution. Given the
known entries, this solution is the matrix of smallest spectral norm of rank at most 5
(see Proposition 4). As indicated by the zero completion error, this matrix coincides
with X̂ . Just as in the exact recovery result for the low-rank inducing Frobenius norm in
[23, Theorem 3], it can be analytically guaranteed that the low-rank inducing spectral
norm with r = 5 recovers the true matrix. Analogous to the previous example,

101.2rank(X̂) log(10)� card(I) = 67,

which is why exact completion with the nuclear norm cannot be expected.
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In both examples, the nuclear norm neither produces the lowest rank solution, nor
recovers the true matrix. In contrast, other low-rank inducing norms succeed in both as-
pects. This indicates that the richness in the family of low-rank inducing norms should
be exploited to achieve satisfactory performance in rank constrained problems. In prac-
tical applications, the ’true’ matrix is not known, and this comparison cannot be made.
However, cross validation techniques can often be used to assess the performance.

6.3 Covariance Completion
In this section, the performance of the low-rank inducing Frobenius and spectral norms
is evaluated by means of a covariance completion problem. This is a variation of the
matrix completion problems above.

Consider the linear state-space system

ẋ(t) = Ax(t)+Bu(t),

with A∈Rn×n, B∈Rn×m, m≤ n and u(t) is a zero-mean stationary stochastic process.
For Hurwitz A and reachable (A,B), it has been shown (see [19, 20]) that the following
are equivalent:

i. X := limt→∞ E
(
x(t)xT (t)

)
� 0 is the steady-state covariance matrix of x(t), where

E(·) denotes the expected value.

ii. ∃H ∈Rm×n : AX +XAT =−(BH +HT BT ).

iii. rank
(

AX +XAT B
BT 0

)
= rank

(
0 B

BT 0

)
.

In particular, H = 1
2 E
(
u(t)uT (t)

)
BT if u is white noise. The problem considered

in [11, 33, 48–50] is to reconstruct the partially known covariance matrix X and the
input matrix B, via M = −(BH +HT BT ), where the rank of M sets an upper bound
on the rank of B, i.e., the number of inputs. The objective is to keep the rank of M
low, while achieving satisfactory completion of X . In [11, 33, 48–50] the problem is
addressed by searching for the lowest rank solution:

minimize rank(M)

subject to x̂i j = xi j, (i, j) ∈ I
AX̂ + X̂AT =−M

X̂ � 0,

(28)

where I denotes set of pairs of indices of known entries. Another option is to search
for a low-rank solution, while minimizing the norm of M measured by some unitarily
invariant norm. This helps to avoid overfitting, and gives

minimize ‖M‖g

subject to rank(M)≤ r

x̂i j = xi j, (i, j) ∈ I
AX̂ + X̂AT =−M

X̂ � 0.

(29)
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Figure 3: Mass-spring-damper system with n masses and input forces u1, . . . ,un.

The authors in [11, 33, 48–50] convexify the problem by using the nuclear norm.
In [24], a similar problem is instead convexified with the low-rank inducing Frobenius
norm. We will also make a comparison with convex relaxations based on low-rank
inducing spectral norms. All these convex relaxations are of the form

minimize ‖M‖g,r∗

subject to x̂i j = xi j, (i, j) ∈ I
AX̂ + X̂AT =−M

X̂ � 0,

(30)

with the appropriate low-rank inducing norm in the cost.

6.3.1 Mass-spring-damper system

The system considered in our example is the so-called mass-spring-damper system
(MSD) (see [24, 49]) with n masses (see Fig. 3).

Assuming that the stochastic forcing affects all masses, this yields the following
state-space representation

ẋ(t) = Ax(t)+Bξ (t)

with

A =

(
0 I
−S −I

)
∈R2n×2n, B =

(
0
I

)
∈R2n×n.

Here, S is a symmetric tridiagonal Toeplitz matrix with 2 on the main diagonal, −1
on the first upper and lower sub-diagonals, and I and 0 stand for the identity and zero
matrices of appropriate size. The state vector x consists of the positions and velocities
of the masses, x = (p,v). Furthermore, ξ (t) is generated via a low-pass filtered white
noise signal w(t) with unit covariance E

(
w(t)w(t)T

)
= I as

ξ̇ (t) =−ξ (t)+w(t).

The extended covariance matrix

Xe := E
(
xexT

e
)
=

(
X Xxξ

Xξ x Xξ

)
with xe :=

(
x(t)
ξ (t)

)
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Figure 4: Interpolated colormap of the steady-state covariance matrices Xpp and Xvv
of the positions and the velocities in the MSD system with n = 20. indicates the
available one-point correlations.

is then determined by

AeXe +XeAT
e =−BeBT

e ,

where X is the steady-state covariance matrix of x(t) and

Ae :=
(

A B
0 −I

)
, Be :=

(
0
I

)
.

In our numerical experiments, we choose n = 20 masses and assume that only one-
point correlations are available, i.e. the known entries are given by the diagonal of X .
The steady-state covariance matrix can be partitioned as

X =

(
Xpp Xpv
Xvp Xvv

)
,

where Xpp and Xvv are the covariance matrices of the positions and the velocities, re-
spectively. To visualize the effects of using different low-rank inducing norms in (30),
an interpolated colormap of the reconstructed X̂pp and X̂vv is used (see Fig. 6). The in-
terpolated colormap of the true covariance matrices is shown in Fig. 4, where the black
lines indicate the known measured entries.

Fig. 5 displays the relative errors and the ranks of the estimates obtained by (30) for
different low-rank inducing norms as functions of r. The nuclear norm minimization
(r = 1), as shown in Figures 6a and 6b, gives the same rank as both the low-rank
inducing Frobenius and spectral norms for r = 2. However, the latter approaches give
better completions. The low-rank inducing spectral norm outperforms the low-rank
inducing Frobenius norm for all r ≥ 2. In particular, r = 9 gives the best completion,
with a solution of rank 10 (see Figures 6e and 6f). It is interesting that the solutions to
(30) with r = 10 for both the low-rank inducing Frobenius and spectral norms are of
rank 10. By Proposition 4, there are no better feasible rank-10 solutions that minimize
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Figure 5: Relative errors and ranks of solutions to (30) with ‖ · ‖g,r∗ = ‖·‖r∗ and ‖ ·
‖g,r∗ = ‖·‖`∞,r∗.

the Frobenius and spectral norms respectively. The solution to (30) with the low-rank
inducing Frobenius norm and r = 10, is shown in Figure 6c and 6d. The solution to the
low-rank inducing spectral norm with r = 10 looks identical to Figures 6e and 6f.

7 Extensions

7.1 The Vector Case
The results in Section 4 translate to the corresponding vector-valued problem, by re-
placing rank with cardinality, and ‖M‖g with ‖x‖g := ‖diag(x)‖g. Therefore, our op-
timality interpretations, as well as the variety of regularizers, can be applied to prob-
lems such as sparse linear regression (see [3, 8, 42]). The SDP representation and the
proximal mapping computations in Section 5 carry over, though here they have lower
computational cost. For instance, the required SVD in the prox computations turns into
a sorting, which reduces the total complexity.

7.2 Atomic Norms
In [9], the concept of an atomic norm is introduced. An atomic norm is defined as the
gauge function or the Minkowski functional of the convex hull of a set of atoms A
(see [9])

‖x‖A := inf{t > 0 : t−1x ∈ conv(A)}. (31)

Despite its name, the atomic norm is not necessarily a norm, but always defines a
distance measure. The atoms are used to model properties of a quantity that is to be
estimated. The atomic norm is a way of imposing these properties on the solution
of an optimization problem. In [9], examples of atomic sets that naturally appear in
different applications are listed. For instance, ifA is the set of rank 1 matrices with unit
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Figure 6: Recovered covariance matrices of positions (X̂pp to the left), and velocities
(X̂vv to the right), in the MSD system with n = 20 masses resulting from problem (30),
with different low-rank inducing norms.
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Frobenius norm, then the resulting atomic norm is the nuclear norm. More generally,
all low-rank inducing norms in Section 3 can be considered as atomic norms, because
Lemma 3 implies that

‖X‖g,r∗ = inf
{

t > 0 : t−1X ∈ conv(Eg,r)
}
,

with Eg,r := {X ∈Rn×m : ‖X‖g = 1, rank(X)≤ r}.
As presented for the low-rank inducing norms and regularizers in Section 4, this

section provides similar optimality interpretations for general atomic norms. It is as-
sumed that the atoms lie within a finite-dimensional real Hilbert space H with inner
product 〈·, ·〉, i.e. A⊂H. In the following, the definitions of the conic hull of A⊂H

cone(A) := {αx : x ∈ A, α ≥ 0},

and the polar gauge function to (31)

‖y‖◦A := inf{µ ≥ 0 : 〈x,y〉 ≤ µ‖x‖A for all x ∈H},

are needed. Note that, if the atomic norm in (31) is a norm, then the polar gauge
function is equal to the corresponding dual norm Our optimality interpretations will
hold if the atomic set denoted by AG can be represented as

AG := {a ∈ cone(A) : G(a) = 1}, (32)

where A⊂H, and G :H→R∪{∞}, satisfy the following assumptions.

Assumption 1 The set A⊂H is nonempty such that cone(A) is closed. The function
G :H→R∪{∞} is positively homogeneous (of degree 1), proper, closed, convex and
nonnegative with G(a)> 0 for all a ∈ A\{0}.

Many atomic sets from [9] satisfy these assumptions. For example, ifA is the set of all
permutation matrices, then

‖·‖A = ‖·‖AG
with G(·) = ‖ · ‖`∞

.

Similar constructions apply to the atomic norms that are induced, e.g. by binary vec-
tors, sparse vectors, low-rank matrices, vectors from lists, and many more (see [9])

Using the definition of atomic norms in (31), an explicit expression of the atomic
norm associated with AG is

‖x‖AG
= inf{t > 0 : t−1x ∈ conv({a ∈ cone(A) : G(a) = 1})}. (33)

The next theorem gives optimality interpretations of these atomic norms, and general-
izes Theorem 1 in the following two aspects:

I. The rank-constraint is generalized to other non-convex constraints.

II. The norms are replaced by more general functions G.

To prove the result, the following lemma is needed.
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Lemma 4 Let A ⊂ H and G : H → R∪{∞} satisfy Assumption 1, and let AG and
‖·‖AG

be defined as in (32) and (33). Then,

i. conv(AG) is closed and bounded.

ii. ‖x‖AG
= 0 if and only if x = 0.

iii. ‖x‖AG
≥ G(x) for all x ∈H, and ‖x‖AG

= G(x) for all x ∈ cone(A).

iv. For all x ∈ dom(‖·‖AG
) there exist xi ∈ cone(A) such that

x = ∑i αixi, ∑i αi = 1, αi ≥ 0, and G(xi) = ‖x‖AG
.

Proof. Item i: Since G+ χcone(A) is coercive, it follows from [5, Proposition 11.11]
that the sub-level set

{a ∈ cone(A) : G(a)≤ 1}

is bounded. Thus the same applies to AG. Further, convexity of G implies that

{x ∈H : G(x) = 1}

is closed, because, by [28, Proposition VI.1.3.3], it is the boundary of

{x ∈H : G(x)≤ 1}.

Thus, as the intersection of two closed sets is closed,

AG = cone(A)∩{x ∈H : G(x) = 1}

is closed. Applying [28, Theorem III.1.4.3] shows that conv(AG) is closed and bounded.

Item ii: This claim follows by [28, Corollary V.1.2.6].

Item iii: Let us introduce the sub-levelset

Ss
G := {x ∈H : G(x)≤ s},

which by the positive homogeneity of G satisfies

Ss
G = {sx ∈H : G(x)≤ 1}

for all s≥ 0. By the definition of AG, it holds that

conv(AG) = conv({a ∈ cone(A) : G(a) = 1})
⊂ conv({a ∈ cone(A) : G(a)≤ 1})
⊂ conv({a ∈H : G(a)≤ 1})
= {a ∈H : G(a)≤ 1}) = S1

G.
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This yields that

‖x‖AG
= inf{t > 0 : x ∈ tconv(AG)}

≥ inf{t > 0 : x ∈ tS1
G}

= inf{t > 0 : G(x)≤ t}= G(x)

for all x ∈H, and the first claim of this item is proven.
To prove the second claim, let x ∈ cone(A). If x 6∈ dom(G), the above implies that

‖x‖AG
= G(x) = ∞.

Further, Item ii shows that

x = 0 ⇒ ‖0‖AG
= G(0) = 0.

It remains to show the claim for x ∈ dom(G) \ {0}. In this case, we can define x̄ :=
G(x)−1x, which satisfies

x̄ ∈ cone(A) and G(x̄) = 1,

i.e. x̄ ∈ AG ⊂ conv(AG), and therefore

‖x̄‖AG
= inf{t > 0 : x̄ ∈ tconv(AG)} ≤ inf{t > 0 : x̄ ∈ tx̄}= 1.

That is, ‖x‖AG
≤ G(x), which in conjunction with ‖x‖AG

≥ G(x) proves that

‖x‖AG
= G(x) for all x ∈ cone(A).

Item iv: Since the claim holds trivially if x = 0, it is enough to assume that

x ∈ dom(‖·‖AG
)\{0}.

By Item ii it follows that ∞ > ‖x‖AG
> 0. Further, Item i and the definition of ‖x‖AG

in (31) imply that
‖x‖−1

AG
x ∈ conv(AG).

Thus,

‖x‖−1
AG

x = ∑i αix̄i with ∑i αi = 1, αi ≥ 0,

where x̄i satisfies

x̄i ∈ cone(A) and G(x̄i) = 1.

Defining xi := x̄i ‖x‖AG
, it follows that

x = ∑
i

αixi with xi ∈ cone(A).

Finally, the positive homogeneity of G ensures that

G(xi) = G(‖x‖AG
x̄i) = ‖x‖AG

G(x̄i) = ‖x‖AG
.

�
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Theorem 2 Assume A ⊂ H and G :H→ R∪{∞} satisfy Assumption 1, and let AG
and ‖·‖AG

be defined as in (32) and (33). Further, let freg := f (G(·))+χcone(A), where
f :R∪{∞}→R∪{∞} is an increasing, proper closed convex function. Then,

f ∗reg = f+(‖ · ‖◦AG
), (34)

f ∗∗reg = f (‖ · ‖AG). (35)

Proof. Since ‖·‖AG is a Minkowski functional, it is closed function (see [35, Lemma 1
in 5.12]). Thus, epi( f (‖·‖AG

) is a closed set, and by Lemma 1,

epi( f (‖·‖AG
)) = conv(epi( freg)) (36)

implies (35).
We start with conv(epi( freg))⊂ epi( f (‖·‖AG

)). If (x, t) ∈ conv(epi( freg)), then

(x, t) = ∑
i

αi (xi, ti) with ∑
i

αi = 1, αi ≥ 0,

where xi satisfies

xi ∈ cone(A), and ti ≥ f (G(xi)) = f (‖xi‖AG
),

and the equality follows by Lemma 4(Item iii). Since f is convex and increasing, it
holds that the composition f (‖·‖AG

) is convex (see [28, Proposition IV.2.1.8]). There-
fore,

t := ∑iαiti ≥ ∑iαi f (‖xi‖AG
)≥ f

(
‖∑iαixi‖AG

)
= f (‖x‖AG

),

and (x, t) ∈ epi( f (‖·‖AG
)).

Conversely, let (x, t) ∈ epi( f (‖·‖AG
)) with ‖x‖AG

6= 0. Lemma 4(Item iv) implies
that

x = ∑i αixi with ∑i αi = 1,αi ≥ 0,

where xi satisfies
xi ∈ cone(A) and G(xi) = ‖x‖AG

.

Thus, (x, t) = ∑i αi (xi, t) such that

t ≥ f (‖x‖AG
) = f (G(xi)), and xi ∈ cone(A).

Consequently,

(xi, t) ∈ epi( freg), and therefore (x, t) ∈ conv(epi( freg)).

Lemma 4 (Item ii) shows that (x, t) ∈ conv(epi( freg)) is trivially fulfilled if ‖x‖AG
= 0.

Finally, (34) can be proven by applying [41, Theorem 15.3] to f (‖ · ‖AG). �

Similarly to Section 4, this result gives rise to optimal convex relaxations for atomic
norms.
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Proposition 5 AssumeA⊂H and G :H→R∪{∞} satisfy Assumption 1, and letAG
and ‖·‖AG

be defined as in (32) and (33). Further, let f : R∪{∞} → R∪{∞} be an
increasing, closed convex function, and let f0 : H→ R∪{∞} be closed, proper, and
convex. For θ ≥ 0, it holds that

inf
x∈A

[ f0(x)+θ f (G(x))]≥ inf
x∈conv(A)

[
f0(x)+θ f (‖x‖AG

)
]
. (37)

If the right-hand side of the inequality is solved by x? ∈ A, then x? is a solution to the
left-hand side.

Proof. By (4) and Theorem 2 it follows that

inf
x∈cone(A)

[
f̃0(x)+θ f (G(x))

]
≥ inf

x∈H

[
f̃0(x)+θ f (‖x‖AG

)
]
, (38)

for any closed and proper convex function f̃0 : H→ R∪{∞}. In particular, let f̃0 =
f0+χconv(A), which is closed by Assumption 1. Then the left-hand side of (38) satisfies

inf
x∈cone(A)

[
f̃0(x)+θ f (G(x))

]
= inf

x∈cone(A)
x∈conv(A)

[ f0(x)+θ f (G(x))]

≤ inf
x∈A

[ f0(x)+θ f (G(x))] ,

because A⊂ cone(A)∩ conv(A). The right-hand side of (38) satisfies

inf
x∈H

[
f̃0(x)+θ f (‖x‖AG

)
]
= inf

x∈conv(A)

[
f0(x)+θ f (‖x‖AG

)
]
,

and (37) is proven. The last claim follows by Lemma 4 (Item iii). �

In [9] exact recovery results are presented for the cases when f0 is an indicator
of an affine set that contains measurement of an observed quantity x0 ∈ H. Let Q :=
{x ∈H : Ax = Ax0} denote that affine set and let f0 = χQ. Then the recovery problem
becomes

minimize
x∈Q

‖x‖AG .

Assume that this problem has a unique solution x?. In [9], conditions on the measure-
ment setQ are stated under which exact recovery x? = x0 is guaranteed. The underlying
assumption in [9], is that for small k it holds that

x0 =
k

∑
i=1

ciai with ci ≥ 0 and ai ∈ AG.

That is, the observed quantity is assumed to be a conic combination of a few atoms. For
many examples in [9, Section 2.2], the assumption holds with k = 1 and c1 = 1, i.e.,
x0 = a for some a ∈ A. A notable exception is the case of low rank matrix recovery.
In [9], rank one matrices of unit norm are used as atoms, which yields the nuclear norm
as the corresponding atomic norm. Therefore, a conic combination of r atoms is needed

26



to recover a rank-r matrix x0. By using a low-rank inducing norm ‖ · ‖g,r∗ instead, the
matrix x0 satisfies x0 = a for some a ∈ A, where A is the set of matrices with rank
less than or equal to r. With this atomic set, the problem in [9] reduces to recover
x0 = a, where a ∈A. Upon successful recovery, the convex atomic norm minimization
problem on the right-hand side of (37) solves the corresponding non-convex problem
on its left-hand side.

8 Conclusion
We have proposed a family of low-rank inducing norms and regularizers. These norms
are interpreted as the largest convex minorizers of a unitarily invariant norm that is re-
stricted to matrices of at most rank r. One feature of these norms is that optimality in-
terpretations in the form of a posteriori guarantees can be provided. In particular, it can
be checked if the solutions to a convex relaxation involving low-rank inducing norms,
also solve an underlying rank constrained problem. Our numerical examples indicate
that this is useful for, e.g. the so-called matrix completion problem. A suitably cho-
sen low-rank inducing norm yields significantly better completion and/or lower rank
than the commonly used nuclear norm approach. This has been demonstrated on the
basis of what we called low-rank inducing Frobenius and spectral norms. Both norms
have been shown to have cheaply computable proximal mappings, as well as simple
SDP representations. As a result, this extends proximal mapping computations that are
found, in e.g. [16, 23, 47]. Moreover, The class of low-rank inducing norms can be
further broadened by using continuous r as discussed in [23] for the low-rank inducing
Frobenius norm. Finally, it has been highlighted that our findings also generalize to
atomic norms, and to other non-convex problems.

A Appendix

A.1 Proofs to Results in Section 3
A.1.1 Proof to Lemma 2

Proof. Let 1 ≤ r ≤ q := min{m,n}, g : Rq → R≥0 be a symmetric gauge function,
Σ j(M) := diag(σ1(M), . . . ,σ j(M)) for M ∈ Rn×m, and 1 ≤ j ≤ q. Then for all Y ∈
Rn×m,

‖Y‖gD,r = max
rank(M)≤r
‖M‖g≤1

〈M,Y 〉= max
rank(Σq(M))≤r
‖Σq(M)‖g≤1

〈Σq(Y ),Σq(M)〉

= max
‖Σr(M)‖g≤1

〈Σr(Y ),Σr(M)〉= ‖Σr(Y )‖gD ,

where the second equality follows by [29, Corollary 7.4.1.3(c)]. Further, ‖ · ‖gD,r is
unitarily invariant, since

‖Σr(Y )‖gD = gD(σ1(Y ), . . . ,σr(Y ))
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defines a symmetric gauge function (see Proposition 1). Similarly to the above, this
implies that

‖M‖g,r∗ = max
‖Y‖gD,r≤1

〈M,Y 〉= max
gD(σ1(Y ),...,σr(Y ))≤1

q

∑
i=1

σi(M)σi(Y )

= max
gD(σ1(Y ),...,σr(Y ))≤1

[
r

∑
i=1

σi(M)σi(Y )+σr(Y )
q

∑
i=r+1

σi(M)

]
.

It remains to prove (11) and (12). The constraint set for r + 1 is a superset of the
constraint set for r and by the definition of ‖ · ‖gD,r in (9) it follows that ‖Y‖gD,r ≤
‖Y‖gD,r+1. Therefore,

‖M‖g,r∗ = max
‖Y‖gD,r≤1

〈M,Y 〉 ≥ max
‖Y‖gD,r+1≤1

〈M,Y 〉= ‖M‖g,(r+1)∗.

Note that ‖ · ‖gD = ‖ · ‖gD,q, which implies that ‖ · ‖g,q∗ = ‖ · ‖g and thus (11) is proven.
The implication in (12) follows from the derived expression for ‖·‖g,r∗, since for rank-r
matrices M, σi(M) = 0 for all i ∈ {r+1, . . . ,q}. �

A.1.2 Proof to Proposition 2

By [29, Corollary 7.4.1.3(c)] it holds that gD(σ1) = σ1 if and only if g(σ1) = σ1. Thus,
(10) yields for all M ∈Rn×m that

‖M‖g,1∗ = max
σ1(Y )≤1

σr(Y )
min{m,n}

∑
i=1

σi(M) = ‖M‖`D
∞
= ‖M‖`1 ,

where we use the fact that the dual norm of the spectral norm is the nuclear norm
(see [29, Theorem 5.6.42]).

A.1.3 Proof to Lemma 3

Proof. By definition of ‖ · ‖gD,r in (9) in Lemma 2, it holds that for all Y ∈Rn×m,

max
X∈conv(Eg,r)

〈X ,Y 〉= max
rank(X)≤r
‖X‖gD≤1

〈X ,Y 〉= ‖Y‖gD,r = max
‖X‖g,r∗≤1

〈X ,Y 〉= max
X∈B1

g,r∗
〈X ,Y 〉.

Since conv(Eg,r) and B1
g,r∗ are closed convex sets, this equality can only be fulfilled if

the sets are equal (see [28, Theorem V.3.3.1]).
Next, we prove the decomposition. Since the decomposition trivially holds for

M = 0, we assume that M ∈Rn×m \{0} and define M̄ := ‖M‖−1
g,r∗M. Then M̄ ∈ B1

g,r∗ =
conv(E) and therefore be decomposed as

M̄ = ∑i αiM̃i with ∑i αi = 1, αi ≥ 0
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where all M̃i satisfy

‖M̃i‖g = ‖M̃i‖g,r∗ = 1 and rank(M̃i)≤ r,

where the first equality is from (12) in Lemma 2. Defining Mi := M̃i‖M‖g,r∗ gives

M = ∑i αiMi with rank(Mi)≤ r

and
‖Mi‖g = ‖Mi‖g,r∗ = ‖‖M‖g,r∗M̃i‖g,r∗ = ‖M‖g,r∗‖M̃i‖g,r∗ = ‖M‖g,r∗.

This concludes the proof. �

A.1.4 Proof to Proposition 3

Proof. Let M̄ = ∑i αiMi with Mi ∈ Eg,r and αi ∈ (0,1), ∑i αi = 1 be a convex combi-
nation of points in Eg,r. Then, by assumption,

‖M̄‖g = ‖∑i αiMi‖g < ∑i αi‖Mi‖g = ∑i αi = 1

and thus M̄ 6∈ Eg,r. Since conv(Eg,r) = B1
g,r∗, this implies that Eg,r is the set of extreme

points of B1
g,r∗. �

A.1.5 Proof to Corollary 1

Proof. Let us start by showing that conv(Er) = B1
`∞,r∗. Since ‖ · ‖`1,r and ‖ · ‖`∞,r are

dual norms to each other, it follows by Lemma 3 that

‖Y‖`1,r = max
X∈B1

`∞,r∗

〈X ,Y 〉= max
rank(X)=r

1=σ1(X)=...=σr(X)

r

∑
i=1

σi(X)σi(Y ) = max
X∈conv(Er)

〈X ,Y 〉,

where the last two equalities are a result of [29, Corollary 7.4.1.3(c)]. However,
conv(Er) and B1

`∞,r∗ are closed convex sets and therefore this equation can only hold if
the sets are identical (see [28, Proposition V.3.3.1]).

It remains to show that no point in Er can be constructed as a convex combination
of other points in Er. To this end, note that a necessary condition for M ∈ Er is that

‖M‖2
F =

min{m,n}

∑
i=1

σ
2
i (M) =

r

∑
i=1

σ
2
i (M) = r.

Let M̄ = ∑i αiMi be an arbitrary convex combination with αi > 0 and ∑i αi = 1, of
distinct points Mi ∈ Er. By the strict convexity of ‖ · ‖2

F , it holds that

‖M̄‖2
F = ‖∑i αiMi‖2

F < ∑i αi‖Mi‖2
F = r ∑i αi = r.

Hence, M̄ 6∈ Er and this concludes the proof. �
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A.2 Derivations to Πepi(‖·‖g,r∗)

Utilizing the Moreau decomposition in (23), we determine the projection onto
epi(‖·‖g,r∗), by computing a projecting onto the polar cone (epi(‖·‖g,r∗))

◦. The latter
is by definition (see [5, Definition 6.21]) the negative of the dual cone to epi(‖·‖g,r∗),
i.e.

(epi(‖·‖g,r∗))
◦ =−epi(‖·‖gD,r)

= {(−Y,−w) : ‖Y‖gD,r ≤ w}= {(Y,w) : ‖Y‖gD,r ≤−w}.

Thus, the projection onto the polar cone becomes

Π(epi(‖·‖g,r∗))◦(Z,zv) = argmin
w∈R, Y∈Rn×m

w+‖Y‖gD,r≤0

1
2
[
(w− zv)

2 +‖Y −Z‖2
F
]

and we need to solve

minimize
Y,w

1
2
[
(w− zv)

2 +‖Y −Z‖2
F
]

subject to −w≥ ‖Y‖gD,r , Y ∈Rn×m.

(39)

Since the cost and the constraint in (39) are unitarily invariant, it can be shown (see [32,
46]) that Y ? and Z have a simultaneous SVD, i.e. if Z = ∑

q
i=1 σi(Z)uivT

i is an SVD of
Z then Y ? = ∑

q
i=1 σi(Y ?)uivT

i where we define q := min{m,n}. Consequently, it is
equivalent to consider the vector-valued problem

minimize
y,w

1
2

[
(w− zv)

2 +
q

∑
i=1

(yi− zi)
2

]
subject to −w≥ ‖diag(y)‖gD,r , y ∈Rq,

y1 ≥ ·· · ≥ yq,

(40)

with z1 ≥ ·· · ≥ zq ≥ 0, zi = σi(Z) and yi = σi(Y ) for 1≤ i≤ q.

Remark 2 The unique solution (y?,w?) fulfills 0 ≤ y?i ≤ zi for 1 ≤ i ≤ q. The up-
per bound holds, because otherwise ȳ? with ȳ?i = min{zi,y?i } is a feasible solution
with smaller cost. Similarly, the lower bound holds, because otherwise ȳ? with ȳ?i =
max{0,y?i } is a feasible solution with smaller cost. Thus, it is not necessary to explicitly
restrict y to be nonnegative.

To solve (40), note that there exists a t? ∈ {1, . . . ,r} such that

y?r−t? > y?r−t?+1 = · · ·= y?r , (41)

where t? = r if y?1 = y?r . This assumption implies that yr−t? ≥ yr−t?+1 is assumed to be
inactive and therefore can be removed from (40). Then also the constraints y1 ≥ ·· · ≥
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yr−t? can be removed, because the cost function and the sorting of z ensures that the
solution will always fulfill them. This yields the following problem

minimize
y,w

1
2

[
(w− zv)

2 +
q

∑
i=1

(yi− zi)
2

]
subject to −w≥ ‖diag(y)‖gD,r , y ∈Rq,

yr−t+1 = · · ·= yr ≥ ·· · ≥ yq.

(42)

Thus, solving (40) reduces to finding t? such that (42) solves (40). As it is shown later,
solving (42) can be done efficiently for the low-rank inducing norms that are considered
in this paper. The following lemma shows that t? can be found by a binary search over
t, where the decision to increase or decrease t is based on the solution of (42).

Lemma A.1 Let
(

y(t),w(t)
)

denote the solution to (42) depending on t such that

1 ≤ t ≤ r. Further let
(

y(t
?),w(t?)

)
be the solution to (40) such that y(t

?)
r−t? > y(t

?)
r−t?+1

and y(t
?)

r−t? = y(t
?)

r−t?+1 if t? = r. Then,

i. t? = min{{t : y(t)r−t > y(t)r−t+1}∪{r}}.

ii. If y(t
′)

r−t ′ ≥ y(t
′)

r−t ′+1 then y(t)r−t ≥ y(t)r−t+1 for all t ≥ t ′.

iii. If y(t
′)

r−t ′ < y(t
′)

r−t ′+1 then y(t)r−t < y(t)r−t+1 for all t ≤ t ′.

In particular,

I. y(t)r−t ≥ y(t)r−t+1 for all t ≥ t?.

II. y(t)r−t ≤ y(t)r−t+1 for all t < t?

III. If t < t? and y(t)r−t ≤ y(t)r−t+1 then
(

y(t),w(t)
)
=
(

y(t
?),w(t?)

)
.

Proof. Throughout this proof, we let p(t) denote the optimal cost of (42) as a function
of t. Since adding constraints cannot reduce the optimal cost, p is a nondecreasing
function.

Item i: By the same reasoning that led to (42), it holds that

y(t)1 ≥ ·· · ≥ y(t)r−t for 1≤ t ≤ r. (43)

Using (43), the set min{{t : y(t)r−t > y(t)r−t+1}∪{r}} contains all t for which the solution

of (42) is feasible for (40). Since p is nondecreasing and
(

y(t
?),w(t?)

)
is unique, the

first claim follows.

Item ii: The second claim is proven by contradiction. Let (y(t
′),w(t ′)) be such that
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y(t
′)

r−t ′ ≥ y(t
′)

r−t ′+1. Further assume that y(t
′+1)

r−t ′−1 < y(t
′+1)

r−t ′ . In the following, we construct
another solution (ỹ, w̃) ∈Rq+1 to (42) with t = t ′+1, which has a cost that is no larger
than p(t ′+1). However, (42) has a unique solution due to strong convexity of the cost
function. This yields the desired contradiction.

The contradicting solution is constructed as a convex combination
w̃ = (1−α)w(t ′+1)+αw(t ′) with α ∈ (0,1] and a partially sorted convex combination
of y(t

′) and y(t
′+1) with the same α . Let ŷ := (1−α)y(t

′+1)+αy(t
′) and let

ỹ := (sort(ŷ1, . . . , ŷr−t ′−2, ŷr−t ′), ŷr−t ′−1, ŷr−t ′+1, . . . , ŷq),

be the partially sorted convex combination, where sort(·) denotes sorting in descending
order.

To select α , we note that by assumption,

y(t
′)

r−t ′−1 ≥ y(t
′)

r−t ′ ≥ y(t
′)

r−t ′+1 and y(t
′+1)

r−t ′−1 < y(t
′+1)

r−t ′ = y(t
′+1)

r−t ′+1.

Therefore, there exists an α ∈ (0,1] such that

ỹr−t ′ = ŷr−t ′−1 = (1−α)y(t
′+1)

r−t ′−1 +αy(t
′)

r−t ′−1

= (1−α)y(t
′+1)

r−t ′+1 +αy(t
′)

r−t ′+1 = ŷr−t ′+1 = ỹr−t ′+1.

Since
y(t
′)

r−t ′+1 = · · ·= y(t
′)

r and y(t
′+1)

r−t ′−1 = · · ·= y(t
′+1)

r ,

it follows that
ỹr−t ′ = · · ·= ỹr.

Furthermore, the construction of ỹ as well as the sorting give that

ỹr ≥ ·· · ≥ ỹq and ỹ1 ≥ ·· · ≥ ỹr−t ′−1.

Hence, ỹ satisfies the chain of inequalities in (42) for t = t ′+1.
It remains to show that ỹ satisfies the epigraph constraint and that the cost is not

higher than p(t ′ + 1). These properties are already fulfilled for ŷ being a convex
combination of two feasible points with costs p(t ′) and p(t ′+ 1), respectively, where
p(t ′) ≤ p(t ′+ 1). Therefore, it is left to show that the sorting involved in ỹ maintains
these properties. First, we show that sorting of any sub-vector in y does not increase
the cost. Suppose that zi ≥ z j, yi ≤ y j, i.e., y is not sorted the same way as z. Then

1
2

(
(zi− yi)

2 +(z j− y j)
2)= (zi− z j)(y j− yi)+

1
2

(
(zi− y j)

2 +(z j− yi)
2)

≥
(
(zi− y j)

2 +(z j− yi)
2) ,

and thus the cost is not increased by sorting y or any sub-vector of it. Further, note that
the permutation caused by the sorting of the first r elements of y does not influence the
epigraph constraint, because ‖diag(y)‖gD,r is permutation invariant by definition.

Next notice that ỹ is obtained from ŷ by first swapping ŷr−t ′−1 and ŷr−t ′ . From the
choice of α , we conclude that

ŷr−t ′ = (1−α)y(t
′+1)

r−t ′ +αy(t
′)

r−t ′ ≥ (1−α)y(t
′+1)

r−t ′+1 +αy(t
′)

r−t ′+1 = ŷr−t ′+1 = ŷr−t ′−1.
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Thus, this swap is a sorting which does neither increase the cost, nor does it violate
the epigraph constraint. Analogously, sorting the first r− t ′ elements of the resulting
vector to obtain ỹ has the same effect and therefore we receive the desired contradiction.

Item iii: Suppose that there exist t and t ′ with t ′ > t such that y(t
′)

r−t ′ < y(t
′)

r−t ′+1 and

y(t)r−t ≥ y(t)r−t+1. Then Item ii shows that y(t
′)

r−t ′ ≥ y(t
′)

r−t ′+1, which is a contradiction.

Items I to III: The statements follow immediately from Items i to iii. �

In order to solve (42), one can proceed similarly to solving (40). There always
exists s? ≥ 0 such that the solution (y(t),w(t)) of (42) satisfies

y(t)r−t+1 = · · ·= y(t)r+s? > y(t)r+s?+1,

where s? = q−r if y(t)r = y(t)q . As before, this allows us to remove the inactive constraint
yr+s ≥ yr+s+1. Then the constraints yr+s+1 ≥ ·· · ≥ yq become redundant, because any
solution fulfills y j = z j, j ≥ r+ s+1. Finally, we are left with the following reduced
optimization problem

minimize
y,w

1
2

[
(w− zv)

2 +
r+s

∑
i=1

(yi− zi)
2

]
subject to −w≥ ‖diag(y)‖gD,r , y ∈Rq,

yr−t+1 = · · ·= yr+s.

(44)

For given t, one can perform a binary search on s in (44) in order find s?. This can be
done with the help of the following lemma.

Lemma A.2 For fixed t with 1≤ t ≤ r, let
(

y(t,s),w(t,s)
)

denote the solution to (44) for

different s satisfying 0 ≤ s ≤ r− q. Further let
(

y(t,s
?),w(t,s?)

)
be the solution to (42)

such that y(t,s
?)

r+s? > y(t,s
?)

r+s?+1 and y(t,s
?)

r+s? = y(t)r+s?+1 if s? = q− r. Then,

i. s? = min{{s : y(t,s
?)

r+s? > y(t,s
?)

r+s? }∪{q− r}}.

ii. If y(t,s
′)

r+s′ ≥ y(t,s
′)

r+s′+1 then y(t,s)r+s ≥ y(t,s)r+s+1 for all s≥ s′.

iii. If y(t,s
′)

r+s′ < y(t,s
′)

r+s′+1 then y(t,s)r+s < y(t,s)r+s+1 for all s≤ s′.

In particular,

I. y(t,s)r+s ≥ y(t,s)r+s+1 for all s≥ s?.

II. y(t,s)r+s ≤ y(t,s)r+s+1 for all s < s?.

III. If s < s? and y(t,s)r+s ≥ y(t,s)r+s+1 then
(

y(t,s),w(t)
)
=
(

y(t,s
?),w(t,s?)

)
.
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Algorithm A.1 Determine (Y ?,w?) = Π(epi(‖·‖g,r∗))◦(Z,zv), i.e., solve (39)

1: Input: Let Z ∈Rn×m, zv ∈R and r ∈N such that 1≤ r≤ q :=min{m,n} be given.

2: Let Z = ∑
q
i=1 σi(Z)uivT

i be an SVD of Z.
// Solve (39) via the vector problem (40) with data z = (σ1(Z), . . . ,σq(Z)) and zv

3: Set tmin = 1, tmax = r, and t = d tmin+tmax
2 e

// Solve (40) via (42) and binary search over t
4: while tmin 6= tmax do
5: Set smin = 0, smax = q− r, and s = d smin+smax

2 e
// Solve (42) via (44) and binary search over s

6: while smin 6= smax do
7: Solve (44)
8: Update smin, smax, and s using the binary search rules in Lemma A.2
9: end while

10: Update tmin, tmax, and t using the binary search rules in Lemma A.1
11: end while
12: Output: (Y ?,w?) = (∑

q
i=1 yiuivT

i ,w) with (y,w) being the last solution to (44).

Proof. The proof goes analogously to the proof of Lemma A.1 and is therefore omitted.
�

The nested binary search algorithm to solve (39) via (40) is summarized in Algo-
rithm A.1. The problem that decides how to update the parameters in the nested binary
search is (44). In order to solve (44) explicitly, we introduce new variables ỹ, z̃∈Rr−t+1

as

ỹi =

{
yi, if 1≤ i≤ r− t
√

t + syr, if i = r− t +1
z̃i =

{
zi, if 1≤ i≤ r− t

1√
t+s ∑

r+s
i=r−t+1 zi, if i = r− t +1

(45)

This gives

r+s

∑
i=r−t+1

(yr− zi)
2 = (ỹr−t+1− z̃r−t+1)

2 +
r+s

∑
i=r−t+1

z2
i −

(
1√
t + s

r+s

∑
i=r−t+1

zi

)2

.

Since we can ignore the constant terms, we are left with the following projection prob-
lem of reduced dimension

minimize
ỹ,w

1
2

[
(w− zv)

2 +
r−t+1

∑
i=1

(ỹi− z̃i)
2

]
subject to −w≥ ‖diag(ỹ1, . . . , ỹr−t ,

ỹr−t+1√
s+t , . . . ,

ỹr−t+1√
s+t︸ ︷︷ ︸

t times

)‖gD,r, ỹ ∈Rr−t+1.

Below, it is shown how to explicitly solve this projection problem for gD = `2 and
gD = `1 in order to arrive at the epigraph projections of the low-rank inducing Frobenius
and spectral norms.
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A.2.1 The case ‖·‖gD,r = ‖·‖r

In this case, gD = `2 and the projection problem becomes

minimize
ỹ,w

1
2

[
(w− zv)

2 +
r−t+1

∑
i=1

(ỹi− z̃i)
2

]

subject to −w≥

√
r−t

∑
i=1

ỹ2
i +

t
s+ t

ỹ2
r−t+1, y ∈Rr−t+1.

Consequently, the solution (ỹ?,w?) is the orthogonal projection of (z̃,zv) onto the
second-order cone

K :=

{
(ỹ,w) ∈Rr−t+2 :

√
r−t

∑
i=1

ỹ2
i +

t
s+ t

ỹ2
r−t+1 ≤−w

}
. (46)

The associated polar cone K◦ := {y : 〈y,x〉≤ 0 for all x∈K} is then given by (see e.g. [21])

K◦ :=

{
(y, p) ∈Rr−t+2 :

√
r−t

∑
i=1

ỹ2
i +

s+ t
t

ỹ2
r−t+1 ≤ p

}
.

This allows us to summarize the following two simple cases:

i. (ỹ?,w?) = (z̃,zv) if and only if (z̃,zv) ∈ K, i.e.√
r−t

∑
i=1

z̃2
i +

t
s+ t

z̃2
r−t+1 ≤−zv,

ii. (ỹ?,w?) = (0,0) if and only if (z̃,zv) ∈ K◦, i.e.√
r−t

∑
i=1

z̃2
i +

s+ t
t

z̃2
r−t+1 ≤ zv,

where the last statement follows by [28, Proposition III.3.2.3].
Next, it is shown how to compute the projection if (z̃,zv) does not belong to either

of these cones. By [5, Proposition 6.46] it holds that (z̃− ỹ?,zv−w?) is an element of
the normal cone to the cone K at (ỹ?,w?). Using the normal cone description in [28,
Theorem VI.1.3.5], this implies that

(z̃− ỹ?,zv−w?) = µ ∇(ỹ,w)

√
r−t

∑
i=1

ỹ2
i +

t
s+ t

ỹ2
r−t+1 +w

∣∣∣∣∣
(ỹ,w)=(ỹ?,w?)

(47)

for some µ ≥ 0. Since (z̃,zv) 6∈K we conclude that the optimal point is on the boundary
of the cone K, i.e.

−w? =

√
r−t

∑
i=1

ỹ?2
i +

t
s+ t

ỹ?2
r−t+1. (48)
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Solving the equations in (47) and using (48) give

ỹ?i =
z̃i

1− µ

w?

, 1≤ i≤ r− t,

ỹ?r−t+1 =
z̃r−t+1

1− µt
w?(s+t)

,

w? = zv−µ.

To characterize the solution, it is left to compute µ . By plugging the solution into (48),
diving by w? and taking the square, we arrive at

1 =
∑

r−t
i=1 z̃2

i

(2µ− zv)2 +
t

s+ t
z̃2

r−t+1(
µ− zv +

µt
s+t

)2 .

Defining c1 :=∑
r−t
i=1 z̃2

i =∑
r−t
i=1 z2

i and c2 :=
√

t + sz̃r−t+1 =∑
r+s
i=r−t+1 zi this can rewritten

as the fourth order polynomial equation

[(2µ− zv)
2− c1][(t + s)(µ− zv)+µt]2− tc2

2(2µ− zv)
2 = 0, (49)

which can be solved explicitly for µ ≥ 0. Resubstitution in (45) gives that the solution(
y(t,s),w(t,s)

)
to (44) can be expressed as

i. 1≤ j ≤ r− t : y(t,s)j =
zi(µ− zv)

2µ− zv
,

ii. r− t +1≤ j ≤ r+ s : y(t,s)j =
(µ− zv)∑

r+s
i=r−t+1 zi

(s+ t)(µ− zv)+µt
,

iii. r+ s+1≤ j ≤ q : y(t,s)j = z j,

iv. w(t,s) = zv−µ ,

if (z,zv) /∈ K∪K◦.

A.2.2 The case ‖·‖gD,r = ‖·‖`1,r

The second case is analog to the first case. We would like to solve

minimize
ỹ,w

1
2

[
(w− zv)

2 +
r−t+1

∑
i=1

(ỹi− z̃i)
2

]

subject to 0≥
r−t

∑
i=1
|ỹi|+

t√
t + s
|ỹr−t+1|+w, y ∈Rr−t+1.

(50)

Consequently, the solution (ỹ?,w?) is the orthogonal projection of (z̃,zv) onto

K :=

{
(ỹ,w) ∈Rr−t+2 :

r−t

∑
i=1
|ỹi|+

t√
t + s
|ỹr−t+1| ≤ −w

}
. (51)
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The polar cone K◦ := {y : 〈y,x〉 ≤ 0 for all x ∈ K} is then given by

K◦ :=
{
(y, p) ∈Rr−t+2 : max

(
|y1|, . . . , |yr−t−2|,

√
t + s
t
|yr−t+1|

)
≤ p
}
.

Similarly to before, we get the following two simple cases:

i. (ỹ?,w?) = (z̃,zv) if and only if (z̃,zv) ∈ K, i.e.

r−t

∑
i=1

z̃i +
t√

t + s
z̃r−t+1 ≤−zv,

ii. (ỹ?,w?) = (0,0) if and only if (z̃,zv) ∈ K◦, i.e.

max
(

z̃1,

√
t + s
t

z̃r−t+1

)
≤ zv,

where it is used that the z̃i are nonnegative and decreasingly sorted.
It remains to show how to compute the projection if (z̃,zv) does not belong to either

of these cones. By [5, Proposition 6.46] it holds that (z̃− ỹ?,zv−w?) is an element of
the normal cone to the cone K at (ỹ?,w?). Using the normal cone description in [28,
Theorem VI.1.3.5], we get

(z̃− ỹ?,zv−w?) ∈ µ ∂(ỹ,w)

(
r−t

∑
i=1
|ỹi|+

t√
s+ t
|ỹr−t+1|+w

)∣∣∣∣∣
(ỹ,w)=(ỹ?,w?)

(52)

for some µ ≥ 0. First note that any solution to (50) satisfies ỹ? ≥ 0. The optimality
conditions for y?i = 0 and y?i > 0 become

ỹ?i = 0⇔ z̃i ∈ [0,µ], ỹ?i > 0⇔ ỹ?i = z̃i−µ

for all i ∈ {1, . . . ,r− t}. These equivalences also hold for ỹr−t+1 with µ multiplied by
t/
√

s+ t. Therefore,

ỹ?i = max(z̃i−µ,0), 1≤ i≤ r− t,

ỹ?r−t+1 = max
(

z̃r−t+1−
tµ√
t + s

,0
)
,

w? = zv−µ.

In order to determine µ , notice that (ỹ?,w?) lies on the boundary of the cone K in (51),
which implies

0 =
r−t

∑
i=1
|ỹ?i |+

t√
t + s
|ỹ?r−t+1|+w?

=
r−t

∑
i=1

max
(

z̃i−µ,0)+
t√

t + s
max(z̃r−t+1− tµ√

t+s ,0
)
+ zv−µ.

37



We denote the solution to this equation by µ?, and solve it using a so-called break point
searching algorithm, as it has been done for similar problems in [13, 15, 26]. To this
end, let

ẑ =
(

z̃1, . . . , z̃ j,
t√

t + s
z̃r−t+1, z̃ j+1, . . . , z̃r−t

)
,

be the vector that sorts z̃ according to the break points of the max expressions, i.e., the
index j satisfies z̃ j >

√
t+s
t z̃r−t+1 ≥ z̃ j+1. Defining

α =

(
1, . . . ,1,

t2

t + s
,1, . . . ,1

)
gives that µ? can be found by solving

r−t+1

∑
i=1

max(ẑi−αiµ,0)+ zv−µ = 0. (53)

Assuming that we know an index k = k? such that

ẑk?+1−αk?+1µ
? ≤ 0 and ẑk? −αk?µ

? ≥ 0, (54)

then µ? can be determined from (53) as

µ
? =

∑
k?
i=1 ẑi + zv

1+∑
k?
i=1 αi

. (55)

Thus, computing µ? reduces to searching for k? ∈ {1, . . . ,r− t} for which (55) satisfies
(54). This can be done using a binary search, with rules from the following proposition.

Lemma A.3 Let µ? be the solution to (53), let µk be the solution to(
r−t+1

∑
i=1

ẑi−αiµ

)
+ zv−µ = 0, i.e., µ̂k =

∑
k
i=1 ẑi + zv

1+∑
k
i=1 αi

, (56)

and let k? be such that µ̂k? = µ?. Then,

i. k? = max({k : ẑk−αk µ̂k ≥ 0}).

ii. If ẑk−αk µ̂k ≥ 0, then ẑi−αiµ̂i ≥ 0 for all i ∈ {1, . . . ,k}.

iii. If ẑk−αk µ̂k < 0, then ẑi−αiµ̂i < 0 for all i ∈ {k, . . . ,r− t}.

In particular,

I. ẑk−αk µ̂k ≥ 0 for all k ∈ {1, . . . ,k?}.

II. ẑk−αk µ̂k < 0, for all k ∈ {k?+1, . . . ,r− t}.
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Proof. We first show some results needed to prove Items i and ii. Let

gk(µ) :=
k

∑
i=1

max(ẑi−αiµ,0)+ zv−µ,

which is strictly decreasing in µ . Let µk be the unique solution to the equation

gk(µ) = 0.

For all µ ∈R, we have

gk−1(µ) = gk(µ)−max(ẑk−αkµ,0)≤ gk(µ).

Since all gi are strictly decreasing in µ , we conclude the following facts:

a. µk−1 ≤ µk.

b. If ẑk−αkµk ≤ 0, then gk−1(µk) = gk(µk) = 0, hence µk−1 = µk.

Because ẑ is sorted according to break points, we conclude that if l and µ are such that
ẑl −αl µ ≥ 0, then also ẑi−αiµ ≥ 0 for all i ∈ {1, . . . , l}. Therefore, if µ is such that
ẑk−αkµ ≥ 0, we get

k

∑
i=1

max(ẑk−αkµ,0)+ zv−µ =

(
k

∑
i=1

ẑk−αkµ

)
+ zv−µ.

Hence,

c. If ẑk−αkµk ≥ 0 or ẑk−αk µ̂k ≥ 0, then µ̂k = µk.

Item i: Using Items b and c, we conclude that

µ̂k? = µk? = µk?+1 = µr−t+1 = µ
?.

Item ii: Now, assume that ẑk−αk µ̂k ≥ 0. Then, by break point sorting, it holds that
ẑk−1−αk−1µ̂k ≥ 0. Using Items a and c, we conclude that

0≤ ẑk−1−αk−1µ̂k = ẑk−1−αk−1µk ≤ ẑk−1−αk−1µk−1 = ẑk−1−αk−1µ̂k−1.

Using induction proves the result.
Item iii: Assume, on the contrary, that k is such that ẑk−αk µ̂k < 0 but that there exists
i ∈ {k, . . . ,r− t} such that ẑi−αiµ̂i ≥ 0. Then, by Item ii, ẑk−αk µ̂k ≥ 0 and we have
reached the desired contradition.
Items I and II: Follow immediately from Items i to iii. �

Now, that we know how to compute the dual variable µ = µ?, we go back to the
original variables in (45), to conclude that the solution

(
y(t,s),w(t,s)

)
to (44) can be

expressed as
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i. 1≤ j ≤ r− t : y(t,s)j = max(z j−µ,0),

ii. r− t +1≤ j ≤ r+ s : y(t,s)j =
1√
t + s

max(∑r+s
i=r−t+1 zi− tµ,0),

iii. r+ s+1≤ j ≤ q : y(t,s)j = z j,

iv. w(t,s) = zv−µ .

if (z,zv) /∈ K∪K◦.
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