

Distributed systems

Some systems are distributed by nature: e.g. Energy Production:

- Electric companies buy electricity from different producers, sell to consumers
- Produced electricity must match comsumed electricity (which varies over day)
- Need reliable (but slow) source (e.g. nuclear power) and less reliable (but fast) source (e.g. wind power)
- How much reliable and how much fast electricity is needed?
- How much to pay for different electricity sources to get the desired amounts of electricity?

Lecture 8: Distributed Optimization

- Motivation why distributed optimization?
- Duality in Linear Programming
- Finding optimum through distributed iterations

Distributed systems cont'd

Large production companies:

- Several sub-divisions each producing several products
- Objective: Maximize company profit (not sub-division profit)
- Few common resource (e.g. packing) is shared

Can be optimized centrally by head-quaters. The resulting problem might be too large.

Distributed optimization:

- Each sub-division maximizes their profit (smaller problem)
- Head-quaters coordinates such that the common resource is fully used (if needed) and that the most profitable products are produced if common resource is limiting

Linear Programming Example

- Motivation why distributed optimization?
- Duality in Linear Programming
- Finding optimum through distributed iterations

The following example is used throughout this lecture:

A company consists of two sub-divisions. One subdivision manufactures garden furniture (by sawing and assembling), the other sub-division manufactures sleds (by sawing and assembling). Each division manufactures two different kinds of their respective products. Both subdivisions send their products to a common painting station. The objective is to maximize company profit.

Linear Programming Example

Product Garden Furniture 1 Garden Furniture 2 Sled 1 Sled 2	# of items x_1 x_2 x_3 x_4	Profit / item P1 P2 P3 P4
Sled 2	x_4	p_4

Constraints for sub-division 1:

 $7x_1 + 10x_2 \le 100$ $16x_1 + 12x_2 \le 135$

Constraints for sub-division 2:

 $10x_3 + 9x_4 \le 70$

 $6x_3 + 9x_4 \le 60$

(Sawing) (Assembling)

(Sawing)

(Assembling)

Painting Constraint:

 $5x_1 + 3x_2 + 3x_3 + 2x_4 \le 45$

Linear Programming Example

Mathematical formulation:

Maximize	$p_1x_1 + p_2x_2 + p_3x_3 + p_4x_4$
subject to	$7x_1 + 10x_2 \le 100$
	$16x_1 + 12x_2 \le 135$
	$10x_3 + 9x_4 \le 70$
	$6x_3 + 9x_4 \le 60$
	$5x_1 + 3x_2 + 3x_3 + 2x_4 \le 45$
	$x \succeq 0$

Linear Program:

$$\begin{array}{ll} \mathsf{Maximize} & c^T x \\ \mathsf{subject to} & Ax \leq b, \, x \geq 0 \end{array}$$

which was studied in the MPC-lecture.

and $\lambda = \lambda^*$.

resources:

to as strong duality

Over the next couple of slides we introduce the dual of this problem

Linear Programming Duality cont'd

 $d^* = \min_{\lambda \succeq 0} g(\lambda) = \min_{\lambda \succeq 0} \max_{x \succeq 0} \left[c^T x + \lambda^T (b - Ax) \right]$

Optimal value d^* for this min-max problem is attained by $x = x^*$

Further we have that $p^* = c^T x^* = d^*$. This equality is referred

This min-max problem is used later to distribute the optimization

 $b^T \lambda$

subject to $A^T \lambda \succeq c, \lambda \succeq 0$

Interpretation of Dual Variables

If the capacity for a resource is increased by 1, the total profit is

This gives insight to which resource to increase to gain most

Dual optimal values and d^* can be obtained by solving

Dual variables can be interpreted as marginal price for

increased by the corresponding dual variable.

min

Note symmetry to primal problem

Tightest upper bound to p^* obtained by minimizing $g(\lambda)$:

$$p^* = \begin{cases} \max_{x} c^T x \\ \text{subject to} Ax \leq b, x \geq 0 \end{cases}$$

where $p^* = c^T x^*$ is the optimal value attained by x^* .

For the constraints $Ax \leq b$, introduce dual variables $\lambda \geq 0$ and construct the corresponding dual function $g(\lambda)$:

$$g(\lambda) = \max_{x \ge 0} \left[c^T x + \lambda^T (b - Ax) \right]$$

The second term in the bracket is non-negative when $Ax \preceq b.$ Hence $g(\lambda) \geq p^*.$

Optimality Conditions

 x^* is primal optimal if and only if there are dual variables λ^* such that

$A^T \lambda^* \succeq c$	$Ax^* \preceq b$
$x^* \succeq 0$	$\lambda^* \succeq 0$
$(A_i^T \lambda^* - c_i) x_i^* = 0$	$(A_i x^* - b_i)\lambda_i^* = 0$

These conditions are called the KKT-conditions for this LP-problem

Numerical Results

Optimal solution for Division 1 (left) and Division 2 (right). Common constraint active (i.e. equality holds).

Lecture 8: Distributed Optimization

Numerical Results

Optimal dual variables and their respective constraints:

 $\begin{array}{rll} \mbox{Constraint} & \mbox{Dual variable} \\ 7x_1 + 10x_2 \leq 100 & 1.04 \\ 16x_1 + 12x_2 \leq 135 & 0 \\ 10x_3 + 9x_4 \leq 70 & 0 \\ 6x_3 + 9x_4 \leq 60 & 0.4 \\ 5x_1 + 3x_2 + 3x_3 + 2x_4 \leq 45 & 3.2 \end{array}$

Optimal value: $p^T x^* = 272$

If common (painting) constraint capacity increased to 46, optimal value becomes 272 + 3.2 = 275.2

Company would gain most by increasing painting capacity

- Motivation why distributed optimization?
- Duality in Linear Programming
- · Finding optimum through distributed iterations

Solve the LP example

$$\begin{array}{lll} \text{Maximize} & p_1x_1 + p_2x_2 + p_3x_3 + p_4x_4 \\ \text{subject to} & 7x_1 + 10x_2 \leq 100 \\ & 16x_1 + 12x_2 \leq 135 \\ & 10x_3 + 9x_4 \leq 70 \\ & 6x_3 + 9x_4 \leq 60 \\ & 5x_1 + 3x_2 + 3x_3 + 2x_4 \leq 45 \\ & x \succeq 0 \end{array}$$

in a distributed fashion using the dual problem

Distribution Example cont'd

With fixed $x = \bar{x}$ head-quaters can update the dual variable λ to decrease the value of the outer minimization problem:

$$\bar{\lambda}^+ = \bar{\lambda} - \alpha (5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4 - 45)$$

where α is the step-size

Motivation, the dual objective with $\overline{\lambda}$ is

$$g(\bar{\lambda}) = p^T \bar{x} + \bar{\lambda} (5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4 - 45)$$

and with $\bar{\lambda}^+$:

$$g(\bar{\lambda}^+) = p^T \bar{x} + \bar{\lambda}^+ (5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4 - 45) =$$

= $p^T \bar{x} + \bar{\lambda} (5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4 - 45) -$
 $- \alpha (5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4 - 45)^2 \le g(\bar{\lambda})$

Distributed Optimization Algorithm

Problem: Objective in LP not strictly concave (only concave)

This issue can be resolved in different ways:

- Add concave term to objective that do not alter optimal solution (might be difficult to keep distributed structure of the problem)
- A convex combination of all genereted primal variables $\frac{k}{k}$
 - $\sum_{j=0} \mu_j^k x^j$ with certain requirements on μ_j^k and on the

step-parameter α^k gives convergence in primal variables

This is not persued further here

Numerical Results

Primal variable iterates (x) for division 1 (left) and division 2 (right) with their respective local constraints. Triangles show optimal solution (which is not in a corner in division 2 due to the constraint with all variables). The numbers show the fraction of iterates in that corner.

Distribution of LP Example cont'd

Dual problem when constraint with all variables is "dualized":

 $\begin{array}{ll} \min_{\lambda \geq 0} \max_{x \geq 0} & p^T x + \lambda (5x_1 + 3x_2 + 3x_3 + 2x_4 - 45) \\ \text{subject to} & 7x_1 + 10x_2 \leq 100 \\ & 16x_1 + 12x_2 \leq 135 \\ & 10x_3 + 9x_4 \leq 70 \\ & 6x_3 + 9x_4 \leq 60 \end{array}$

For fixed $\lambda = \overline{\lambda}$, the inner maximization can be decomposed to two sub-problems (one for each sub-division) P_1 and P_2 :

 $P1: \begin{cases} \max_{\substack{x_1 \ge 0, x_2 \ge 0}} p_1 x_1 + p_2 x_2 + \bar{\lambda} (5x_1 + 3x_2) \\ \text{s. t.} & 7x_1 + 10x_2 \le 100 \\ 16x_1 + 12x_2 \le 135 \end{cases}$ $P2: \begin{cases} \max_{\substack{x_3 \ge 0, x_4 \ge 0}} p_3 x_3 + p_4 x_4 + \bar{\lambda} (3x_3 + 2x_4) \\ \text{s. t.} & 10x_3 + 9x_4 \le 70 \\ 6x_3 + 9x_4 \le 60 \end{cases}$

Distributed Optimization Algorithm

- 1. Initialize algorithm by $\lambda^0 = 0$ and $x^0 = 0$
 - 1.1 For fixed $\lambda = \lambda^k$ calculate local maximization problems P_1 and P_2 which gives x^{k+1}
 - **1.2** Update λ according to: $\lambda^{k+1} = \lambda^k - \alpha^k (5x_1^{k+1} + 3x_2^{k+1} + 3x_3^{k+1} + 2x_4^{k+1} - 45)$ **1.3** Set $k \leftarrow k + 1$ and Go to 1)

Convergence to optimal value and convergence in dual variables guaranteed with this algorithm

Convergence in primal variables guaranteed if objective strictly concave

Comments on Distributed Optimization

- Decomposition scheme is called dual decomposition
- Dual decomposition most useful for large problems with
 - few constraints involving all variables
 - many local constraints
- Applicable to other types of optimization problems as well (such as quadratic problems)

Numerical Results

Same as previous slide where a certain convex combination of the solutions is plotted. These converge to the primal optimal solution. The numbers correspond to iterate number.

Distributed Control	
When conditions have changed, repeat optimization.	