Market-Driven Systems

Lecture 7

Pontus Giselsson

Dept. of Automatic Control Lund Institute of Technology

Mini Problem

$$
\begin{array}{ll}
\text { Minimize } & -x_{1}-x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 1 \\
& 2 x_{1}+x_{2} \leq 1 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Equivalent matrix formulation:
Minimize $\quad\left(\begin{array}{ll}-1 & -1\end{array}\right) x$
subject to $\quad\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right) x \preceq\binom{1}{1}, x \succeq 0$
where $x=\left(x_{1} x_{2}\right)^{T}$

Mini Problem graphical solution

Mini Problem graphical solution

- Linear Programming (LP)
- LP in Production planning example
- Static systems
- Dynamical systems
- Model Predictive Control

Mini Problem graphical solution

Mini Problem graphical solution

Mini Problem graphical solution

General formulation:

Minimize $\quad c^{T} x$ subject to $A x \preceq b$

$$
H x=g
$$

Production planning example

Two products are produced:

- Garden furniture
- Sleds

Two main parts of production

- Sawing
- Assembling

Production planning example cont'd

Sawing and assembling constraints:

Production planning example cont'd

Seasonal variations in expected prices:

- Linear Programming (LP)
- LP in Production planning example
- Static systems
- Dynamical systems
- Model Predictive Control

Production planning example cont'd

Weekly production:
x_{1} : Garden furniture
x_{2} : Sleds

Product prices:
p_{1} : Garden furniture
p_{2} : Sleds
The objective is to maximize weekly profit:
$\max p_{1} x_{1}+p_{2} x_{2}$

Subject to:
Sawing constraints: $7 x_{1}+10 x_{2} \leq 100$
Assembling constraints: $16 x_{1}+12 x_{2} \leq 135$

Production planning example cont'd

Level curves for optimal points obtained with different prices:

Production planning example cont'd

Optimal production for different seasons:

- Linear Programming (LP)
- LP in Production planning example
- Static systems
- Dynamical systems
- Model Predictive Control

Mini problem

Assume that extra sawing personel is working full-time, i.e $u_{3}(t)=1, t=0,1, \ldots$

If the initial sawing capacity of the extra labor is 0 , i.e $x_{3}(0)=0$, what is the sawing capacity after three weeks, i.e. $x_{3}(3)$?

What is the stationary sawing capacity of the extra labor?

Dynamic Production planning example cont'd

The weekly cost in hiring extra personel is p_{3} and p_{4} respectively

This gives the following production planning problem that optimizes one year ahead production:

$$
\begin{array}{ll}
\max & p_{1}(t) x_{1}(t)+p_{2}(t) x_{2}(t)-p_{3}(t) u_{3}(t)-p_{4}(t) u_{4}(t) \\
\text { subject to } & 7 x_{1}(t)+10 x_{2}(t) \leq 100+x_{3}(t) \\
& 16 x_{1}(t)+12 x_{2}(t) \leq 135+x_{4}(t) \\
& x_{3}(t+1)=0.7 x_{3}(t)+30 u_{3}(t) \\
& x_{4}(t+1)=0.7 x_{4}(t)+40.5 u_{4}(t) \\
& 0 \leq u_{3}(t) \leq 1 \\
& 0 \leq u_{4}(t) \leq 1 \\
& x_{3}(0)=x_{3}^{0}, x_{4}(0)=x_{4}^{0}
\end{array}
$$

for $t=0, \ldots, 52$ and x_{3}^{0} and x_{4}^{0} are the initial capacities for the extra personel

Dynamic Production planning example cont'd

Optimal extra labor:

Hire extra personel to increase production:
Nominal learning (sawing):

$$
x_{3}(t+1)=0.7 x_{3}(t)+30 u_{3}(t)
$$

Nominal learning (assembling):

$$
x_{4}(t+1)=0.7 x_{4}(t)+40.5 u_{4}(t)
$$

where $u_{3} \in[0,1], u_{4} \in[0,1]$ is fraction of full time employment
$x_{3}(t)$ and $x_{4}(t)$ quantifies increased capacity:
Sawing: $7 x_{1}+10 x_{2} \leq 100+x_{3}(t)$
Assembling: $16 x_{1}+12 x_{2} \leq 135+x_{4}(t)$

Mini problem - solution

Sawing capacity at time $t=3$:

$$
\begin{aligned}
x_{3}(3) & =0.7 x_{3}(2)+30 u_{3}(2)=0.7\left(0.7 x_{3}(1)+30 u_{3}(1)\right)+30 u_{3}(2) \\
& =0.7\left(0.7\left(0.7 x_{3}(0)+30 u_{3}(0)\right)+30 u_{3}(1)\right)+30 u_{3}(2) \\
& =\left(0.7^{2}+0.7+1\right) 30=65.7
\end{aligned}
$$

Stationary capacity is given by:

$$
x_{3}=0.7 x_{3}+30
$$

which gives

$$
x_{3}=\frac{30}{1-0.7}=\frac{30}{0.3}=100
$$

The total sawing capacity is doubled after learning period

Dynamic Production planning example cont'd

Optimal production over 52 weeks with extra personel and product prices as before and $p_{3}=p_{4}=100$:

Dynamic Production planning example - limitations

The following is not compensated for:

- Prices may not be equal to predicted prices
- Extra personel might be fast or slow learners
- Decreased capacity due to employee illness
- ...
- Linear Programming (LP)
- LP in Production planning example
- Static systems
- Dynamical systems
- Model Predictive Control

MPC Loop

MPC Loop; In the end of each week:

1. Get data for extra employment capacity and product prices for the past week, $\left(p_{1}(t), p_{2}(t), x_{3}(t), x_{4}(t)\right)$
2. Solve the optimization problem with the gathered data as input
3. Hire extra personel the following week according to the obtained solution, $\left(u_{3}(t), u_{4}(t)\right)$
4. In the end of next week repeat the procedure, i.e. Go to 1

MPC Example - Results

Weekly production when extra labor decided using MPC:

MPC Example - Comparison
Production with extra labor as in dynamic production planning example (i.e. no feedback):

Profit over one year is 8.6% higher with MPC-feedback

Reoptimize every week to compensate for mis-match between reality and assumed model

Input to optimization problem:

- Current product prices, $p_{1}(t), p_{2}(t)$
- Current capacity of extra workers, $x_{3}(t), x_{4}(t)$

MPC Example

Product planning example with model-reality mis-match:
Modeled employee learning:

$$
\begin{aligned}
& x_{3}(t+1)=0.7 x_{3}(t)+30 u_{3}(t) \\
& x_{4}(t+1)=0.7 x_{4}(t)+40.5 u_{4}(t)
\end{aligned}
$$

Actual employee learning:

$$
\begin{aligned}
& x_{3}(t+1)=0.75 x_{3}(t)+30 u_{3}(t)+v_{3}(t) \\
& x_{4}(t+1)=0.65 x_{4}(t)+40.5 u_{4}(t)+v_{4}(t)
\end{aligned}
$$

where $v_{3}(t)$ and $v_{4}(t)$ are uniformly distributed random numbers in $\left[-0.3 x_{3}(t) 0\right]$ and $\left[-0.3 x_{4}(t) 0\right]$ respectively
The product prices $p_{1}(t)$ and $p_{2}(t)$ are additively affected by uniformly distributed random noise in [-11]

MPC Example - Results

Extra personel (decided using MPC):

MPC General Formulation

MPC introduced by an example. General formulation:

$$
\begin{array}{ll}
\text { Minimize } & \sum_{t=0}^{N} \ell(x(t), u(t)) \\
\text { subject to } & x(t+1)=f(x(t), u(t)), x(0)=x_{0} \\
& x(t) \in X, u(t) \in U \\
& \text { for } t=0, \ldots, N
\end{array}
$$

where x_{0} is a measurement of the current state

At time t :

1. Get measurements for $x(t)$, set $x_{0}=x(t)$
2. Solve the optimization problem
3. Apply the optimzation result $u(0)$ to the system
4. After one sample, Go to 1 to repeat the procedure

MPC Application

Pendulum - developed in our Department
MPC with quadratic cost and linear constraints

Pros:

- Good constraint handling
- Easily understandable tuning knobs (e.g. cost function)
- Usually gives good performance in practice
- Handles complex systems well

Cons:

- Calculation times
- System model needed
- Historically lack of theoretical understanding of the closed loop system

Summary

Model Predictive Control:

- Optimization based feedback of dynamical systems
- Explicit constraint handling
- Applicable to many types of problems

西		

