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1. Introduction

As the project in optimal control I have chosen to model a rocket. The model includes
gravity, drag, varying air temperature, pressure and density, and, fuel consumption.
The German V2-rocket1 serves as model, for the model, and for the parameters that
I couldn’t find in a data sheet I have made more or less qualified guesses. The V2-
rocket was chosen since it is well-known and information about it is easy to find.
The control signals to be determined are the thrust magnitude, u, and the thrust
angle θ.

The optimization problem is to launch the rocket and to guide it to a specific
coordinate in the minimum possible time.

The optimization problem are solved using JModelica.

2. Modeling

Gravity

The gravitational force acting on the rocket is given by

Fg = mg (1)

where g is the acceleration due to gravity and

m(t) = mr + f(t). (2)

mr is the mass of the rocket excluding the fuel, f(t).

Drag

The force due to air resistance (drag2) acting on the rocket is modeled as

Fd =
1

2
ρ(p, T )v2ACd (3)

where A is the rocket cross-section, v is the rocket speed. I have not been able to
find the drag coefficient, Cd, for the V2-rocket but for a typical model rocket it is
0.753 which I used in the modeling. The air density ρ(p, T ) is a function of both the
air pressure p and the air temperature T .

Air temperature, pressure and density

The model of air temperature and density is based on the model that can be found
in the Wikipedia article on air density4.

The temperature at y meters above sea level is given by

T (y) = T0 − Ly (4)

where T0 is the temperature at sea level, measured in Kelvin, and L is the tem-
perature lapse rate. This approximate model is only valid inside the troposphere.

1http://en.wikipedia.org/wiki/V-2_rocket
2http://en.wikipedia.org/wiki/Drag_(physics)
3http://en.wikipedia.org/wiki/Drag_coefficient
4http://en.wikipedia.org/wiki/Density_of_air
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The temperature at sea level is assumed to be 15◦C which gives T0 = 288.15. The
temperature lapse rate is approximately 6.5 · 10−3. Since the absolute temperature
can never be less than zero this model is only valid for altitudes

y ≤ T0
L
≈ 44330. (5)

The rocket can never travel under ground so y ≥ 0.
The pressure at y meters above sea level is given by

p(y) = p0

(
1− Ly

T0

) gM
RL

(6)

where p0 is the pressure at sea level, M is the molar mass of air and R is the ideal
gas constant.

The density of air as functions of the pressure and temperature is given by

ρ(p, T ) =
pM

RT
(7)

V2-rocket - fuel consumption and thrust

The V2-rocket was 14 meters long, with a diameter of 1.65 meters and weighed
12,500 kg. It carried a 1000 kg warhead of Amatol5 and 8720 kg of propellant. The
propellant consisted of 3810 kg of an ethanol and water mix and 4,910 kg of liquid
oxygen. To simplify the modeling I have assumed that the rocket only has one type
of propellant and that the fuel mass f decreases according to

ḟ = −u
c

(8)

where u is a (normalized) control signal and c is a constant.
When fired, the V2-rocket burnt for approximately 60 s6. Assuming that max-

imum control signal is applied during 60 s and that there is no fuel left after that
period, the constant c can be determined. Solving

df

dt
= −1

c
, f(0) = 8720, f(60) = 0 (9)

gives

c =
3

436
. (10)

I assume that the force accelerating the rocket is given by

Fa = au (11)

where a is a constant that I need to determine and u is the normalized control signal.
To find a the following assumptions are made

• The rocket starts at rest and accelerates with u = 1.

• The rocket accelerates in a straight line, perpendicular to the gravitational
force

5http://en.wikipedia.org/wiki/Amatol
6http://www.v2rocket.com/start/makeup/design.html
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Name Value Unit Description

g 9.82 m/s2 Acceleration due to gravity

T0 288.15 K Sea level temperature

L 6.5 · 10−3 K/m Temperature lapse rate

R 8.32 J/K/mol Ideal gas constant

M 2.90 · 10−2 kg/mol Air molar mass

p0 101.325 · 103 Pa Sea level atmospheric pressure

mr 3780 kg Rocket mass

f(0) 8720 kg Initial fuel

d 1.65 m Rocket diameter

A 2.14 m2 Rocket cross-section

Cd 0.75 1 Drag coefficient

c 3/436 s/kg Fuel consumption rate

a 3.00 · 106 m/s2 Thrust coefficient

Table 1 Model constants.

• The rocket travels at sea level so that the temperature, air pressure and air
density is constant, k ≡ ρACD = 1.97.

Denoting the speed by vx, a differential equation that describes the speed is given
by (

12500− t

c

)
v̇x(t) = a− k

2
vx(t)2 (12)

Solving this with the initial conditions vx(0) = 0 gives

vx(t) =

√
a

k
tanh

(
c
√
ak ln

(
12500c

12500c− t

))
. (13)

The V2-rocket obtained a speed of 1341 m/s when the fuel was exhausted7. Assuming
that the rocket was accelerated for 60 seconds before and that it attained it maximum
speed we obtain

vx(60) = 1341 (14)

from which we can solve for a to obtain

a = 1.77 · 106. (15)

A lot of assumptions, some better than others, but still a constant that hopefully
should be in the correct order of magnitude.

All model constants are summarized in Table 1 and the variables are summarized
in Table 2.

7http://www.v2rocket.com/start/makeup/design.html
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Name Unit Description

x m x-coordinate

y m y-coordinate, altitude

v m/s speed

f kg Fuel mass

p Pa Pressure

T K Temperature

ρ kg/m3 Air density

Fd N Drag force

Fg N Gravitational force

u 1 Input signal, thrust magnitude

θ rad Input signal, thrust angle

Table 2 Model variables.

3. Dynamical equations

The position of the rockets is expressed by the its x and y coordinates. The force
equation are

m(t)ẍ(t) = (au(t)− Fd(t)) · cos (θ(t)) (16)

m(t)ÿ(t) = (au(t)− Fd(t)) · sin (θ(t))− Fg (17)

The rocket position at launch is the origin of the coordinate system

x(0) = 0, y(0) = 0 (18)

and the initial speed is zero

ẋ(0) = 0, ẏ(0) = 0. (19)

The gravitational force is given by (1). the fuel consumption by (9), the drag is
given by (3) together with (4), (6) and (7). Finally, the mass of the rocket is given
by (2).

4. Optimization problem

As mentioned above the thrust magnitude is normalized i.e.

0 ≤ u ≤ 1. (20)

Furthermore, the thrust angle is constrained to

−π
2
≤ θ ≤ π

2
. (21)
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This is justified by the fact that it makes no sense, in the following optimization
problem, that the rocket travels ”backwards”. It also makes it easier for the solver
to obtain a solution.

It was noticed that the optimal solutions found were very oscillatory. To limit
the oscillations and obtain reasonable control signal trajectories, the inputs in the
optimization problem are the derivative of u and θ respectively. Both derivatives
were limited to the interval [−0.3, 0.3].

The V2-rocket had an operational range of 320 km. It used gyroscopes to deter-
mine the direction during flight and a Müller-type pendulous gyroscopic accelerom-
eter8 to determine engine cut-off. Direction and thrust could not be changed during
the flight which should limit the operational range. Since I assume that both thrust
magnitude and angle can be changed during flight it is reasonable to assume that
the operational range should be much larger. In the optimization problem solved the
target is located ten times further away, on sea level i.e.,

x (tf ) = 3.2 · 106, y (tf ) = 0 (22)

where tf is the (free) final time.

Time optimal control

It is reasonable to assume that you would like the rocket to reach its final destination
as fast as possible, thus minimizing the risk of it being shot down. The cost function
to be minimized is

J = tf . (23)

JModelica fails to find a solution to the minimum time problem if not a good
initial guess is provided. Therefore, a sequence of optimization problems is solved.
First a simulation with constant u = 1 and θ = π

10 is performed. The result is then
used as an initial guess to solve the optimization problem with the cost function

min
u,θ

J = tf + 0.2

∫ tf

0
u̇2 + θ̇2dt. (24)

This problem is first solved using 30 elements and the inputs are constant between
in each element. The solution to this problem is then used to solve the same problem
but this time with 50 element. Lastly, this solution is used as the initial guess to
solve the original problem.

Result

The minimal time that it takes to reach the final destination is

t∗f = 303 s. (25)

The optimal trajectory can be seen in Figure 1. The altitude as function of time can
be seen in Figure 2. The optimal inputs as function of time can be seen in Figure 3
and Figure 4. Figure 5 shows how the temperature and air pressure varies as function
of time.

It has been anything but trivial to provide the solver with good initial guesses
and according to Fredrik, I would have benefited from a better solver. Unfortunately,
I did not have access to one.

8http://en.wikipedia.org/wiki/Muller-type_pendulous_gyroscopic_accelerometer
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Figure 1 The time optimal trajectory in blue. The initial optimization with 30 elements
in green and simulation result in red.
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Figure 2 Optimal altitude as function of time.
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Figure 3 Optimal thrust magnitude as function of time.

0 50 100 150 200 250 300
time [s]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

th
et

a 
[r

ad
]

Optimal thrust angle

Figure 4 Optimal thrust angle as function of time.
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Figure 5 Optimal air temperature and air pressure as function of time.
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A. JModelica code

The Modelica code used to solve the problem(s) is provided below.

model Rocket

constant Real Pi = Modelica.Constants.pi;

//

parameter Real g = 9.81; // Gravititional constant [m/s^2]

parameter Real T0 = 288.15; // Sea level temperature [K]

parameter Real L = 6.5e-3; // Temperature lapse rate [K/m]

parameter Real R = 8.31; // Ideal gas constant [J/K/mol]

parameter Real M = 0.02896; // Molar mass [kg/mol]

parameter Real p0 = 101 .325e3; // Sea level atmospheric pressure [Pa]

// V2-rocket parameters

parameter Real rocket_mass = 3780; // Mass excluding fuel [kg]

parameter Real d = 1.65; // Diameter [m]

parameter Real A = (d/2)^2*Pi; // Cross-section [m^2]

parameter Real Cd = 0.75; // Drag coefficient [1]

parameter Real c = 3/436; // Fuel consumption coefficient [s/kg]

parameter Real a = 1.77e6; // Trust constant [m/s^2]

// Variables

Real m(min=rocket_mass); // Total mass [kg]

Real fuel(start=8720, fixed=true , min=0); // Fuel [kg]

Real y(start=0, fixed=true , min=0, max=44330); // Altitude

[m]

Real v_y(start=0, fixed=true); // Velocity in y-direction

[m/s]

Real x(start=0, fixed=true); // x-position

[m]

Real v_x(start=0, fixed=true , min=0); // Velocity in x- direction [m/s]

Real v_squared; // Speed squared

[(m/s)^2]

Real p(min=0); // Pressure [Pa]

Real rho(min=0); // Air density [kg/m^3]

Real T(min=0); // Air temperature [K]

Real Fd; // Drag force [N]

Real Fg; // Gravitational force [N]

// Inputs

Real u(start=1, min=0, max=1); // Control magnitude [1]

Real theta(start=Pi/10, min=-Pi/2, max=Pi/2); // Control angle

[rad]

input Real du(min=-0.3 , max=0.3); // Derivative of u

input Real dtheta(min=-0.3 ,max=0.3); // Derivative of theta

equation

// Mass and fuel

m = rocket_mass + fuel;

der(fuel) = -u/c;

// Air temperature , pressure and density

p = p0*(1-L*y/T0)^(g*M/(R*L));

T = T0-L*y;

rho = p*M/(R*T);

// Forces acting on the rocket

Fg = m*g;
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Fd = 0.5*rho*v_squared*A*Cd;

// Rocket velocity and acceleration

der(y) = v_y;

der(v_y)*m = (a*u - Fd)*sin(theta) - Fg;

der(x) = v_x;

der(v_x)*m = (a*u - Fd)*cos(theta);

v_squared = v_x^2+v_y^2;

// Inputs

der(u) = du;

der(theta) = dtheta;

end Rocket;

optimization OptRocket(finalTime(free=true , min=startTime , initialGuess=280),

objective=finalTime , objectiveIntegrand=0.2*du^2 + 0.2*dtheta ^2)

extends Rocket;

constraint

y(finalTime) = 0;

x(finalTime) = 3.20e6;

end OptRocket;

optimization OptRocketTime(finalTime(free=true , min=250, max=350, initialGuess=280),

objective=finalTime)

extends Rocket;

constraint

y(finalTime) = 0;

x(finalTime) = 3.20e6;

end OptRocketTime;
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