
LECTURE 6

6. The Linear Quadratic Regulator

6.1. Fixed-time, free-endpoint. Suppose that we have the system

ẋ = A(t)x+B(t)u, x ∈ R
n, u ∈ R

m,

the terminal set S = {t1} × R
n and the cost functional

J(u) =

∫

t1

t0

(

x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t)
)

dt+ x⊤(t1)Mx(t1),

where Q, R and M are matrixes of appropriate size with M = M⊤ ≥ 0, Q(t) = Q⊤(t) ≥ 0 and
R(t) = R⊤(t) > 0.

Hence, J punishes size of both x and u, with

L(t, x, u) = x⊤Q(t)x+ u⊤R(t)u.

We want to find a state-feedback control for this system but we still turn to the maximum principle.
We have

H(t, x, u, p) = p⊤(A(t)x+B(t)u)− x⊤Q(t)x− u⊤R(t)u.

The canonical equations give

ṗ∗(t) = −Hx

∣

∣

∣

∗

(t) = −A⊤(t)p∗(t) + 2Q(t)x∗(t)

and by the transversality condition for the free-endpoint problem

p∗(t1) = −2Mx∗(t1).

Since H is continuously differentiable in u, the Hamiltonian maximization condition gives Hu

∣

∣

∣

∗

(t) =

(p∗)⊤B(t)− 2(u∗)⊤R(t) = 0, hence

u∗(t) =
1

2
R−1(t)B⊤(t)p∗(t),

which is a maximizer since Huu = −2R(t) is negative definite.

Now, the canonical equations can be written
(

ẋ∗

ṗ∗

)

=

(

A(t) 1
2B(t)R−1(t)B⊤(t)

2Q(t) −A⊤(t)

)(

x∗

p∗

)

=: H(t)

(

x∗

p∗

)

.

The matrix H(t) is sometimes referred to as the Hamiltonian matrix. Let this linear system have state
transition matrix Φ(·, ·). Specifically we have

(

x∗(t)
p∗(t)

)

= Φ(t, t1)

(

x∗(t1)
p∗(t1)

)

= Φ(t, t1)

(

x∗(t1)
−2Mx∗(t1)

)

,

where Φ(t, t1) = Φ−1(t1, t). If we make the division

Φ =

(

Φ11 Φ12

Φ21 Φ22

)

1
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then this can be written

x∗(t) = (Φ11(t, t1)− 2Φ12(t, t1)M) x∗(t1)

p∗(t) = (Φ21(t, t1)− 2Φ22(t, t1)M) x∗(t1).

Assuming that Φ11(t, t1)− 2Φ12(t, t1)M can be inverted we get

p∗(t) = (Φ21(t, t1)− 2Φ22(t, t1)Mx∗(t1)) (Φ11(t, t1)− 2Φ12(t, t1)M)−1
x∗(t) =: −2P (t)x∗(t),

with P (t1) = M , giving us the optimal state-feedback control

u∗(t) = −R−1(t)B⊤(t)P (t)x∗(t).

6.1.1. Riccati’s differential equation. Through p∗(t) = −2P (t)x∗(t) we have

ṗ∗(t) = −2Ṗ (t)x∗(t)− 2P (t)ẋ∗(t).

The equation ṗ∗ = −Hx

∣

∣

∣

∗

now gives

−2Ṗ (t)x∗(t)− 2P (t)A(t)x∗(t) + 2P (t)B(t)R−1(t)B⊤(t)P (t)x∗(t) = −A⊤(t)p∗(t) + 2Q(t)x∗(t)

= −2A⊤(t)P (t)x∗(t) + 2Q(t)x∗(t).

Using the fact that this should be true for all initial points we get the Riccati differential equation (RDE)
for P :

Ṗ (t) = −P (t)A(t)−A⊤(t)P (t)−Q(t) + P (t)B(t)R−1(t)B⊤(t)P (t).

6.1.2. Value function and optimality. So far the maximum principle has given us a candidate for an op-
timal control. But as we remember the maximum principle is only a necessary condition for optimality.
To make sure that the found control is in fact a global optimum we use dynamic programming.

The equation for the adjoint vector p∗(t) = −2P (t)x∗(t) leads us to the guess V (t, x) = x⊤P (t)x.

Lecture assignment Show that the guess V (t, x) = x⊤P (t)x solves the HJB equations when P (t)
solves the Riccati differential equation.

Solution The HJB-equation gives

−x⊤Ṗ (t)x = inf
u
{x⊤Q(t)x+ u⊤R(t)u+ 〈2P (t)x,A(t)x +B(t)u〉}.

The infimum is attained with 2R(t)u∗ + 2B⊤(t)P (t)x = 0 or

u∗ = −R−1(t)B⊤(t)P (t)x.

Putting this into the HJB-equation gives

−x⊤Ṗ (t)x =x⊤Q(t)x+ (−R−1(t)B⊤(t)P (t)x)⊤R(t)(−R−1(t)B⊤(t)P (t)x)

+ 2x⊤P⊤(t)(A(t)x +B(t)(−R−1(t)B⊤(t)P (t)x))

=x⊤Q(t)x+ x⊤P (t)B(t)R−1(t)R(t)R−1(t)B⊤(t)P (t)x+ 2x⊤P (t)A(t)x

− 2x⊤P (t)B(t)R−1(t)B⊤(t)P (t)x.

This holds for all x ∈ R
n if

Ṗ (t) = −Q(t)− P (t)B(t)R−1B⊤(t)P (t) − P (t)A(t)−A⊤(t)P (t) + 2P (t)B(t)R−1(t)B⊤(t)P (t)

= −P (t)A(t)−A⊤(t)P (t)−Q(t) + P (t)B(t)R−1(t)B⊤(t)P (t).
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Furthermore the terminal constraints give

V (t1, x) = x⊤P (t1)x = x⊤Mx,

for all x ∈ R
n. Hence,

P (t1) = M.

V (t, x) = x⊤P (t)x thus solves the HJB equations if P (t) solves the Riccati differential equation with
boundary condition P (t1) = M . �

Since V (t, x) ≥ 0 for all (t, x), we must have that P (t) is non-negative definite.

Example. Consider the linear-quadratic control problem

min
u

∫

t1

t0

(x2(t) + u2(t))dt subj. to ẋ(t) = u(t).

We have the scalar matrices A = 0, B = 1, Q = 1, R = 1 and M = 0. The RDE then reads

Ṗ (t) = −P (t)A−A⊤P (t)−Q+ P (t)BR−1B⊤P (t)

= −1 + P 2(t),

with P (t1) = 0. Separation of variables now gives,

0
∫

P (t)

dP

P 2 − 1
=

t1
∫

t

ds,

with solution P (t) = tanh(t1−t). Hence, the optimal feedback law is given by u∗(t) = −R−1B⊤P (t)x(t) =
tanh(t1 − t)x(t). �

6.2. Infinite horizon LQR. We move to the infinite horizon case where

ẋ = Ax+Bu, x ∈ R
n, u ∈ R

m,

with (A,B) a controllable pair and

J(u) =

∫

∞

t0

(

x⊤(t)Qx(t) + u⊤(t)Ru(t)
)

dt.

By the controllability property of the system there is a control ū and a t̄ ≥ t0 (both depending on the
initial state) that takes the system to x(t̄) = 0 after which the optimal control is u ≡ 0. Hence, if an
optimal control u∗ exists, then

J(u∗) ≤
∫

t̄

t0

(

x⊤(t)Qx(t) + ū⊤(t)Rū(t)
)

dt < ∞.

In finite horizon we had

−Vt(t, x) = inf
u∈U

{

L(t, x, u) + 〈Vx(t, x), f(t, x, u)〉
}

.

In the infinite horizon case we look for a value function that is independent of t and get

0 = inf
u∈U

{

L(x, u) + 〈Vx(x), f(x, u)〉
}

.

The anzats V (x) = x⊤Px leads to

0 = inf
u∈Rm

{

x⊤Qx+ u⊤Ru+ 〈2Px,Ax +Bu〉
}

.
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which gives

u∗ = −R−1B⊤Px.

Putting this into the HJB equation we get

0 = x⊤Qx+ (R−1B⊤Px)
⊤
RR−1B⊤Px+ 〈2Px,Ax−BR−1B⊤Px〉

= x⊤Qx+ x⊤PBR−1B⊤Px+ x⊤PAx+ x⊤A⊤Px− 2x⊤PBR−1B⊤Px.

Since this should be valid for all x we get

Q+ PA+A⊤P − PBR−1B⊤P = 0

which is called the algebraic Riccati equation (ARE).

Example. Consider the infinite horizon LQR problem

min
u

∫

∞

0
(x21(t) + u2(t))dt subj. to

{

ẋ1(t) = x2(t), x1(0) = x10,

ẋ2(t) = u(t), x2(0) = x20.

This problem can be written in standard form with

Q =

[

1 0
0 0

]

, R = 1, A =

[

0 1
0 0

]

, B =

[

0
1

]

, x(0) =

[

x10
x20

]

.

The algebraic Riccati equation becomes

Q+ PA+A⊤P − PBR−1B⊤P

=

[

1 0
0 0

]

+

[

p11 p12
p21 p22

] [

0 1
0 0

]

+

[

0 0
1 0

] [

p11 p12
p21 p22

]

−
[

p11 p12
p21 p22

] [

0
1

]

[

0 1
]

[

p11 p12
p21 p22

]

=

[

1 0
0 0

]

+

[

0 p11
0 p21

]

+

[

0 0
p11 p12

]

−
[

p12
p22

]

[

p21 p22
]

=

[

1 0
0 0

]

+

[

0 p11
0 p21

]

+

[

0 0
p11 p12

]

−
[

p12p21 p12p22
p22p21 p22p22

]

=

[

0 0
0 0

]

giving the system of equations






−p212 + 1 = 0
−p222 + 2p12 = 0
p11 − p12p22 = 0

⇒







p12 = ±1
p22 = ±√

2p12
p11 = p12p22

The unique positive definite solution to this system is

P =

[ √
2 1

1
√
2

]

.

This gives the optimal feedback control

u∗ = −R−1B⊤Px = −
[

0 1
]

[ √
2 1

1
√
2

]

x = −
[

1
√
2
]

x = −x1 −
√
2x2.

The closed loop system is

ẋ = (A−BR−1BTP )x =

[

0 1

−1 −
√
2

]

x.

The system matrix has both eigenvalues in the left half plane and is thus stable, showing that u∗ is a
stabilizing feedback control. �




