
LECTURE 2

2. Calculus of variations

2.1. Integral constraints. Assume that we add the constraint

C(y) :=

∫ b

a

M(x, y(x), y′(x))dx = C0

to the basic calculus of variations problem.

Recall that for finite-dimensional optimization with smooth functions f : Rn → R and h : Rn → R a
necessary condition for x∗ to solve

min
x∈Rn

f(x),

s.t. h(x) = 0

is that h(x∗) = 0 and (∇f(x∗))⊤d = 0 for all d ∈ R
n such that (∇h(x∗))⊤d = 0, or equivalently that

(2.1) ∇f(x∗) + λ∗∇h(x∗),

for some λ∗ ∈ R.

For a perturbation η to be valid we must have that C(y + αη) = C0 + o(α). The infinite-dimensional
equivalent to constrained optimization in R

n is that for y to be a weak extremum, δJ |y (η) = 0 for all

perturbations η ∈ V, with η(a) = η(b) = 0, such that δC|y (η) = 0.

This means that, as elements of a suitable L2-space,
(

Ly −
d
dx
Ly′
)

is orthogonal to the subspace

orthogonal to
(

My −
d
dx
My′

)

, which gives us the following equivalent of (2.1):

(2.2)

(

Ly −
d

dx
Ly′

)

+ λ∗

(

My −
d

dx
My′

)

= 0,

that can be re-written as

(L+ λ∗M)y =
d

dx
(L+ λ∗M)y′ .

To be an extremum of the constrained problem y should thus be an extremum to (J + λ∗C)(y), for some
λ∗ ∈ R.

Example If we return to the catenary problem were we have

J(y) =

∫ b

a

y(x)
√

1 + (y′(x))2dx,

which is another “no x” problem with

Ly′ =
yy′

√

1 + (y′)2
and My′ =

y′
√

1 + (y′)2

Hence,

c = Ly′y
′ − L+ λ∗(My′y

′ −M) = (y + λ∗)

(

(y′)2
√

1 + (y′)2
−
√

1 + (y′)2

)

=
y + λ∗

√

1 + (y′)2

(

(y′)2 − (1 + (y′)2)
)

= −
y + λ∗

√

1 + (y′)2
.
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That can be written

y′ = ±

√

(λ∗ + y)2

c2
− 1,

the solution of which is y(x) = ±(c cosh
(

x+d
c

)

− λ∗), where d is another constant. If we assume that
c > 0 the minus sign can be ruled out since this would correspond to a chain bulging upwards (maximal
energy). The constants c, d and λ∗ can then be arranged to fit the boundary and length conditions. �

In some situations we have to be careful, however, as can be seen from the following example:

Example Assume that we have the constraints

(2.3) C(y) :=

∫ 1

0

√

1 + (y′(x))2dx = 1,

and y(0) = y(1) = 0, for which the only solution is y ≡ 0. We have that

My −
d

dx
My′ = −

d

dx

y′(x)
√

1 + (y′(x))2
= 0,

since clearly y is a minimizer for C. Hence, the solution to any problem with constraints y(0) = y(1) = 0
and (2.3) is y ≡ 0, but the solution to (2.2) corresponding to this problem is any extremum for the
unconstrained problem. �

In the example there is no allowed perturbation, therefore (2.2) is not valid anymore. An alternative
formulation that allow for these type of situations as well is that y solves the Euler-Lagrange equation
for λ∗

0L+ λ∗M where (λ∗
0, λ

∗) 6= (0, 0). The so defined λ∗
0 is called the abnormal multiplier.

2.2. Non-Integral constraints. In the case of non-integral constraints of the type

M(x, y(x), y′(x)) = 0

We look for solutions of the Euler-Lagrange equation for

L+ λ∗(x)M.

This can be realized by noting that the non-integral constraint is similar to the integral constraint except
that instead of holding for the integral over the entire interval it holds for every x ∈ [a, b]. Thus we get
the same type of equation but with a different multiplier for each x ∈ [a, b].

3. From Calculus of Variations to Optimal Control

Compared to the calculus of variations, optimal control deals with stronger local optima over less
regular curves and can also take into account constraints on the control actions (y′ in the CV-setting).

We will first try to loosen the regularity constraints and consider functions that are only piece-wise C1.

3.1. Corner Points. A Corner Point (CP) is a point c ∈ (a, b) such that lim
xրc

y′(x) and lim
xցc

y′(x) both

exist, but are different.

Example If we try to minimize

J(y) =

∫ 1

−1
y2(x)(y′(x)− 1)2dx

over all y ∈ C1([−1, 1] → R) with y(−1) = 0 and y(1) = 0, we can get infinitely close to the global
optimum 0. But to get zero we need insert a CP to get

y(x) =

{

0, for x ∈ [−1, 0],
x, for x ∈ (0, 1].
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Figure 1. A trajectory with a CP at x = c.

�

We consider functions y that are piecewise-C1 and thus have a finite number of corner points. To find
extremals of this type we have to generalize the 1-norm to

1-norm: ‖y‖1 = max
x∈[a,b]

|y(x)|+ max
x∈[a,b]

max{|y′(x−)|, |y′(x+)|}.

With this definition, strong minima are also weak minima, as in the C1-case. The piecewise extremals
are sometimes also referred to as broken extremals.

Assume first that y only has one CP in c ∈ (a, b). We then divide y into two different curves y1 :
[a, c] → R and y2 : [c, b] → R. To add a perturbation to y we add perturbations η1 to y1 and η2 to y2,
with η1(a) = η2(b) = 0. Now, we must allow the perturbation to move the CP an amount proportional
to α, say α∆x. Here we run into a problem since y1 is not defined on [c, b] and wise versa. To remedy
this we use linear extrapolation of the curves y1 and y2 at the point x = c. In order for the perturbed
curve y(·, α) to be continuous at c+ α∆x, we must have

y1(c) + α∆xy′1(c) + αn1(c+ α∆x) = y2(c) + α∆xy′2(c) + αn2(c+ α∆x)

⇒ α∆xy′1(c) + αn1(c+ α∆x) = α∆xy′2(c) + αn2(c+ α∆x).

Linear extrapolation

Figure 2. Adding perturbations to a trajectory with a CP.
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Evaluating the derivative w.r.t. α at α = 0 we get

∆xy′1(c) + n1(c) = ∆xy′2(c) + n2(c).

Hence,

∆x =
n1(c)− n2(c)

y′2(c)− y′1(c)
=

n1(c) − n2(c)

y′(c+)− y′(c−)
.

The perturbed cost functionals are

J1(y1 + αη1) :=

∫ c+α∆x

a

L(x, y1(x) + αη1(x), y
′
1(x) + αη′1(x))dx

and

J2(y2 + αη2) :=

∫ b

c+α∆x

L(x, y2(x) + αη2(x), y
′
2(x) + αη′2(x))dx.

Hence,

δJ1
∣

∣

y1
(η1) =

∫ c

a

(

Ly(x, y1(x), y
′
1(x))η1 + Ly′(x, y1(x), y

′
1(x))η

′
1(x)

)

dx

+ L(c, y1(c), y
′
1(c))∆x.

Using integration by parts in the usual manner and noting that y1 = y on [a, c] we get

δJ1
∣

∣

y1
(η1) =

∫ c

a

(

Ly(x, y(x), y
′(x))−

d

dx
Ly′(x, y(x), y

′(x))

)

η1(x)dx

+ Ly′(c, y(c), y
′(c−))η1(c) + L(c, y(c), y′(c−))∆x,

and similarly

δJ2
∣

∣

y2
(η2) =

∫ c

b

(

Ly(x, y(x), y
′(x))−

d

dx
Ly′(x, y(x), y

′(x))

)

η2(x)dx

− Ly′(c, y(c), y
′(c+))η2(c)− L(c, y(c), y′(c+))∆x.

Now, for y to be an extremum we must have that

δJ1
∣

∣

y1
(η1) + δJ2

∣

∣

y2
(η2) = 0,

for all perturbations η1 and η2. Letting η1(c) = η2(c) = 0 we find that the Euler-Lagrange equation must
hold on [a, b] \ {c}.

A zero first variation is thus obtained by having

0 = Ly′(c, y(c), y
′(c−))η1(c)− Ly′(c, y(c), y

′(c+))η2(c) + (L(c, y(c), y′(c−))− L(c, y(c), y′(c+)))∆x,

first note that if we let η1(c) = η2(c) 6= 0 we get ∆x = 0, so that

Ly′(c, y(c), y
′(c−)) = Ly′(c, y(c), y

′(c+)).

Hence, Ly′ is continuous at x = c. Plugging this in and using the relation for ∆x we get

0 = Ly′(c, y(c), y
′(c−))(η1(c)− η2(c)) + (L(c, y(c), y′(c−))− L(c, y(c), y′(c+)))

n1(c)− n2(c)

y′(c+)− y′(c−)

⇒ Ly′(c, y(c), y
′(c−))(y′(c+)− y′(c−)) + (L(c, y(c), y′(c−))− L(c, y(c), y′(c+))) = 0

Hence, also y′Ly′ − L is continuous at xc.

This leads us to the Weierstrass-Erdmann corner conditions:
If a curve y is a strong extremum then Ly′ and y′Ly′ − L must be continuous in every CP of y.
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3.2. Optimal Control formulation and assumptions. Assume that we have a control system

ẋ = f(t, x, u), x(t0) = x0,

where x ∈ R
n is now the state vector and u ∈ U ⊂ R

m is the control vector.

We will often assume that u is piecewise continuous, but keep in mind that measurability and local
boundedness (local integrability) is enough.

We define the cost functional

J(u) :=

∫ tf

t0

L(t, x(t), u(t))dt +K(tf , xf ),

where xf = x(tf ). This form with a running cost and a final cost is called the Bolza form. A problem is
in Lagrange form if K ≡ 0 and in Mayer form if L ≡ 0.

Note that we can always move from Bolza form to Mayer form by introducing the additional state x0,
with

ẋ0 = L(t, x(t), u(t))

and x0(t0) = 0. Then the terminal cost is K̃(tf , xf ) = x0(tf ) +K(tf , xf ).

We can also move from Bolza to Lagrange form since

J(u) =

∫ tf

t0

(

L(t, x(t), u(t)) +
d

dt
K(t, x(t))

)

dt+K(t0, x0),

where the last part is a constant and can be removed from the optimization.

We can also represent time as one of the state variables by introducing the extra state xn+1 with
ẋn+1 = 1 and xn+1(t0) = t0.

We have the target set S ⊂ [t0,∞)× R
n, such that (tf , xf ) ∈ S. A few possibilities target sets are

Free-time, fixed-endpoint: S = [t0,∞)× {x1}.
Fixed-time, free-endpoint: S = t1 × R

n.
Fixed-time, fixed-endpoint: S = t1 × {x1}.

3.3. Variational approach to the fixed-time, free-endpoint problem. We can write the cost func-
tion for this case as

J(u) =

∫ t1

t0

L(t, x(t), u(t))dt +K(x(t1)).

Let u∗(·) be an optimal control for this problem, so that J(u∗) ≤ J(u) for all u that are piecewise C0,
and let x∗(·) be the corresponding state trajectory.

In Calculus of Variations we consider perturbations of the form

(3.1) x = x∗ + αη,

but this is not practical for the problem at hand since it is not obvious how this perturbation would
translate to the control. Instead we let the perturbation ξ act on u and get

(3.2) u = u∗ + αξ,

where ξ is a piecewise continuous function from [t0, t1] to R
m.

How does then (3.2) translate to (3.1) or rather to

(3.3) x(·, α) = x∗ + αη + o(α).
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We want xα(t, 0) = η(t). Then we have

η̇(t) =
d

dt
xα(t, 0) = xαt(t, 0) = xtα(t, 0)

=
d

dα

∣

∣

∣

α=0
ẋ(t, α)

=
d

dα

∣

∣

∣

α=0
f(t, x(t, α), u∗(t) + αξ(t))

= fx(t, x(t, 0), u
∗(t))xα(t, 0) + fu(t, x(t, 0), u

∗(t))ξ(t)

= fx
∣

∣

∗
η + fu

∣

∣

∗
ξ, η(t0) = 0.

We thus get a linearization of the original system around the optimal trajectory.

To be able to use Calculus of variations we apply the differential-equation constraint

ẋ(t)− f(t, x(t), u(t)) = 0

and get the augmented cost function

J(u) =

∫ t1

t0

(L(t, x(t), u(t)) + 〈p(t), ẋ(t)− f(t, x(t), u(t))〉) dt+K(x(t1)),

for some C1 function p : [t1, t1] → R
n.

By defining the Hamiltonian H(t, x, u, p) := 〈p(t), f(t, x, u)〉−L(t, x, u), we can rewrite the augmented
cost as

J(u) =

∫ t1

t0

(〈p(t), ẋ(t)〉 −H(t, x(t), u(t), p(t))) dt+K(x(t1)).

The first variation is defined by

J(u)− J(u∗) = δJ
∣

∣

u∗
(ξ)α + o(α)

We have

K(x(t1))−K(x∗(t1)) ≈ α 〈Kx(x
∗(t1)), η(t1)〉 ,

and

H(t, x, u, p) −H(t, x∗, u∗, p) = H(t, x∗ + αη + o(α), u∗ + αξ, p)−H(t, x∗, u∗, p)

≈ α
〈

Hx

∣

∣

∗
(t), η(t)

〉

+ α
〈

Hu

∣

∣

∗
(t), ξ(t)

〉

.

Using integration by parts we get
∫ t1

t0

〈p(t), ẋ(t)− ẋ∗(t)〉 dt = 〈p(t), x(t)− x∗(t)〉
∣

∣

t1

t0
−

∫ t1

t0

〈ṗ(t), x(t) − x∗(t)〉 dt

≈ α 〈p(t1), η(t1)〉 − α

∫ t1

t0

〈ṗ(t), η(t)〉 dt.

Putting this together we get

δJ
∣

∣

u∗
(ξ) =−

∫ t1

t0

(〈

ṗ(t) +Hx

∣

∣

∗
(t), η(t)

〉

+
〈

Hu

∣

∣

∗
(t), ξ(t)

〉)

dt

+ 〈Kx(x
∗(t1)) + p(t1), η(t1)〉 .

If we let ṗ∗ = −Hx

∣

∣

∗
, with boundary condition p∗(t1) = −Kx(x

∗(t1)) we get

δJ
∣

∣

u∗
(ξ) = −

∫ t1

t0

〈

Hu

∣

∣

∗
(t), ξ(t)

〉

dt = 0,
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for all ξ that are piecewise-C0 on [t0, t1]. Hence, Hu

∣

∣

∗
(t) ≡ 0 implying that the function H(t, x∗(t), ·, p∗(t))

has a stationary point in u∗(t), for all t ∈ [t0, t1]. The vector (x∗, p∗) solves the canonical equations

ẋ∗ = Hp

∣

∣

∗
ṗ∗ = −Hx

∣

∣

∗

Written out in terms of f and L we have

ṗ∗ = −(fx)
⊤p∗ + Lx

∣

∣

∗
.

The two linear systems ẋ = Ax and ż = −A⊤z are called adjoint. Therefore, p∗ is sometimes referred to
as the adjoint vector.


