HOME ASSIGNMENT 5

Problem 1. A dog is chasing a hare. The dog starts at position (0, y) and the hare starts at (x, 0). The hare is running with speed v_h along the positive x-axis and the dog is running with speed $v_d(>v_h)$ and always in the direction pointing towards the hare. Derive the boundary value problem that is solved by the time f(x, y) that the dog needs to catch the hare.

Problem 2. Prove the principle of optimality.

Problem 3. Show that the value function is a viscosity supersolution to the HJB equation.

Problem 4. Consider the nonlinear optimal control problem

$$\min_{u} x(1)^{2} + \int_{0}^{1} (x(t)u(t))^{2} dt \quad \text{subj. to} \quad \dot{x}(t) = u(t)x(t), \quad x(0) = 1.$$

Solve the problem using dynamic programming by making the ansatz $V(t, x) = q(t)x^2$.