HOME ASSIGNMENT 5

Problem 1. A dog is chasing a hare. The dog starts at position $(0, y)$ and the hare starts at $(x, 0)$. The hare is running with speed v_{h} along the positive x-axis and the dog is running with speed $v_{d}\left(>v_{h}\right)$ and always in the direction pointing towards the hare. Derive the boundary value problem that is solved by the time $f(x, y)$ that the dog needs to catch the hare.

Problem 2. Prove the principle of optimality.

Problem 3. Show that the value function is a viscosity supersolution to the HJB equation.

Problem 4. Consider the nonlinear optimal control problem

$$
\min _{u} x(1)^{2}+\int_{0}^{1}(x(t) u(t))^{2} d t \quad \text { subj. to } \quad \dot{x}(t)=u(t) x(t), \quad x(0)=1
$$

Solve the problem using dynamic programming by making the ansatz $V(t, x)=q(t) x^{2}$.

