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One of the main limiting factors in improving glucose control for T1DM subjects is the lack of a precise
description of meal and insulin intake effects on blood glucose. Knowing magnitude and duration of such
effects would be useful not only for patients and physicians but also for the development of a controller targeting
glycemia regulation. Therefore, in this paper we focus on estimating low-complexity yet physiologically sound
and individualized MISO models of the glucose metabolism in T1DM able to reflect the basic dynamical features
of the glucose-insulin metabolic system in response to a meal intake or an insulin injection. The models are
continuous-time second-order transfer functions relating the amount of carbohydrate of a meal and the insulin
units of the accordingly administered dose (inputs) to plasma glucose evolution (output) and consist of few
parameters clinically relevant to be estimated. The estimation strategy is continuous-time data-driven system
identification and exploits a database in which meals and insulin boluses are separated in time, allowing the
unique identification of the model parameters.

Keywords: continuous-time identification, metabolic systems, linear systems, diabetic blood glucose
dynamics

1 Introduction

1.1 Diabetes Mellitus

Diabetes Mellitus is a chronic disease characterized by the inability of the organism to au-
tonomously regulate the blood glucose levels. It is due to defects in either insulin secretion by
the pancreatic β-cells or insulin action (Williams and Pickup 1999). The basic effect of insulin
lack or insulin resistance to glucose metabolism is the prevention of efficient uptake and uti-
lization of glucose by most cells of the body. As a result, blood glucose concentration increases
(hyperglycemia, blood glucose > 180 [mg/dL]), cell utilization of glucose falls and consequently
utilization of fat and proteins for energy increases. Free fatty acids, cholesterol and phospholipids
produced during fat and protein metabolism are, then, released in the plasma causing multiple
effects throughout the body. The main long-term complications are associated with damage,
dysfunction and failure of various organs (Nathan 1993), (Klein et al. 1988). In order to prevent
the complications associated to the sustained hyperglycemia, tight regulation of patients blood
glucose levels within the near-normal range (70−180 [mg/dL]) (The American Diabetes Associ-
ation 2010) has been strongly promoted during the last decade, following the results of the major
Diabetes Control and Complications Trial (DCCT) (The Diabetes Control and Complications
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Trial Research Group 1993) and follow-up Epidemiology of Diabetes Interventions and Com-
plications (EDIC) (The Diabetes Control and Complications Trial/Epidemiology of Diabetes
Interventions and Complications Study Research Group 2005) studies.

1.2 Diabetes care

Because insulin deficiency defines T1DM, insulin replacement is the hallmark of the therapy.
Focusing on tight blood glucose targets, i.e., 70− 140 [mg/dL] (The American Diabetes Associ-
ation 2010), the philosophy of insulin replacement is to mimic the physiological insulin secretion
pattern of the non-diabetic person. In the non-diabetic subjects, insulin is secreted into the
portal circulation at two rates: a slow basal secretion throughout the 24 hours and an aug-
mented rate at meal times. Hence, the most common therapy for T1DM patients is the so-called
basal-bolus regime: a basal dose of long-acting insulin is sufficient to keep a constant glucose
concentration during fasting conditions and a prandial, i.e., at meal times, bolus of rapid-acting
insulin enhances an increased glucose uptake during and after meals. Insulin is administered
either with multiple daily injections (MDI) using a pen or as continuous subcutaneous insulin
infusion (CSII) from a pump.
Standard practice insulin therapy therefore comprises the assessment of current blood glucose

levels by means of self-monitored glucose measurements and consequent therapy adjustments
several times a day towards maintainance of normoglycemia. The most widespread approach to
self glucose monitoring is based on finger sticks 4−8 times a day, typically, and to a lesser extent
to subcutaneous interstitial fluid samples, the sampling period being 5− 10 minutes. Daily glu-
cose goals are 70−120 [mg/dL] before meal and peak levels of less than 180 [mg/dL] after meal,
as well as maintainance of glycosylated hemoglobin (HbA1c) less than 6.05% (The American Di-
abetes Association 2010). In current medical practice, the rough calculation of insulin doses and
eventually extra carbohydrate intakes is based on empirical rules-of-thumbs taking into account
patients personal knowledge of his/her own metabolism, expected future glycemia evolution and
approximation of the estimated meal carbohydrate content effects as well as insulin impact on
the subject own blood glucose. In practice, most patients are rather conservative in order to
prevent insulin-induced hypoglycemia, remaining far from the optimal treatment. The task is
non trivial and demanding, therefore the development of control tools aiming at assisting the
patients in the management of their disease has been the focus of extensive research for almost
40 years (Cobelli et al. 2009) and is progressing towards a fully automated closed-loop control
artificial pancreas (The Artificial Pancreas Project 2011, Cobelli et al. 2011, De Nicolao et al.
2011). However, while such a system is expected to improve the quality of life reducing the time
plasma glucose is outside the target range, it will be suitable and affordable only for a minority.
In addition, closed-loop control introduces certain risks, the most dangerous being potentially
severe and unavoidable hypoglycemia induced by overdelivery of insulin compensating for hyper-
glycemia following a meal (Cobelli et al. 2009). Against this background, the availability of an
“advisory system” recommending the user to take appropriate insulin injections and eventually
recovery carbohydrates, would be desirable. Within this scenario the controller is expected to
determine impulse-like control inputs, namely insulin shots and amount of carbohydrate of a
meal, which are not automatically applied but rather suggested to the patient, thereby assuring
safety. When a therapeutic action is suggested by the algorithm, the patient can accept or re-
ject it, remaining firmly in the loop. The development of such decision support system was the
focus of the major European project DIAdvisor TM (Diadvisor 2008, Poulsen et al. 2010, The
DIAdvisor Consortium 2012).

1.3 Motivation

Both in the semi-closed and in the fully closed-loop scenario, there is the need of a mathematical
model able to describe blood glucose evolution in response to the main driving sources, i.e., a meal
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intake and an insulin dose. In the application at hand the two control inputs are impulse-formed
and taken at discrete instants in time albeit simultaneously, since according to clinical practice,
the subject boluses at the same time of the meal intake. In addition, carbohydrate and insulin
have opposite influence on the glucose level, making it non-trivial to distinguish each input’s
contribution to blood glucose fluctuations. To date several types of glucose metabolism models
have been proposed to the purpose of simulation and in-silico trial, glucose changes prediction
and hypo-, hyperglycemia early detection (see e.g. (Cobelli et al. 2009) for a comprehensive
review). Most of these efforts were first-principles based descriptions of diabetes physiology
(Bergman et al. 1981, Dalla Man et al. 2007, Wilinska et al. 2005) and only to a lesser extent
mathematical modeling by means of system identification (St̊ahl and Johansson 2009, Cescon
et al. 2009, Finan et al. 2010, Kirchsteiger et al. 2011a,b, van Heudsen et al. 2012, Cescon et al.
2012). However, while many of these models exhibit good predictive performances, less attention
has been dedicated to the fundamental aspects of estimating correct signs and time constants
of the identified models impulse responses as pointed out in (St̊ahl 2012). Moreover, desirable
features of a glucose metabolism model would include a clinician-friendly structure and few
tunable parameters with physiological meaning. The objective of this work was, therefore, to
estimate low-complexity yet physiologically sound and individualized transfer function models
of glucose metabolism in response to meal and insulin inputs, addressing the problem in T1DM
therapy related to the quantification of magnitude and duration effects of carbohydrate and
insulin on blood glucose. These information can be used by physicians as support in treatment
analysis and planning, and by practitioners in model-based controller development.
In the light of the above discussion a continuous time-domain identification approach, namely
the predictor based identification (PBSIDcont) method (Chiuso 2007, Bergamasco and Lovera
2010), was taken. Advantages of such an approach are listed below:

(1) Physical insight into the glucose metabolism system
• a continuous-time (CT) model is preferred to its discrete-time (DT) counterpart when

parameters with physiologic meaning are desired, e.g., static gain and time constants
for glucose and insulin. While these parameters are directly linked to the CT model, the
parameters of DT models are a function of the sampling interval and do not normally
have any physical interpretation (Aström et al. 1984);

(2) Non-uniformly sampled data
• meal and insulin intakes appears at sparse discrete time instants, non equidistantly

spaced and not synchronized with blood glucose self-monitoring. In addition, in the sit-
uation of a subcutaneous glucose sensor often samples are missed every now and then,
due to loss of connection between transmitter and receiver and sensor misplacement.
Hence, the standard DT LTI model will not be applicable because the assumption
of a uniformly sampled environment no longer holds. The coefficients of CT models,
instead, are assumed to be independent of the sampling period, the measurements are
considered as points on a continuous line which do not need to be equidistantly spaced
(Aström et al. 1984);

(3) Transformation between CT and DT models
• Inter-sample behaviour assumption (e.g., ZOH)

(4) Use of linear algebra tools in the algorithms (Golub and Van Loan 1996)
• robust implementation and overcome being trapped into local minima

The aim of this paper is to promote the use of the continuous-time PBSID approach to the prob-
lem of obtaining personalized models of T1DM patients glucose dynamics from actual patients
sampled input-output data.

The article is organized as follows. Section 2 deals with the experimental conditions while Sec.
3 presents the explanation of the modeling work. Section 4 shows identification and validation
results for the estimated models over the considered population, whereas the discussion on
the achievements is left to Sec. 5. Last, Sec. 6 concludes the paper with final remarks and
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considerations for future work.

2 Methods and materials

2.1 Glucose sensors

Dexcom Seven R©Plus (Dexcom 2011) continuous glucose monitoring sensor (CGMS) was used
for interstitial glucose samples. The system consists of three components: a disposable sensor
unit including a subcutaneous probe, a radio transmitter connected to the external part of the
sensor and a hand-held receiver device that displays the sensor-measured glucose information
sent wirelessly from the transmitter. The sensor provides an automatic glucose reading every 5
minutes, lasting for up to 7 days of uninterrupted wear-time. Besides the start-up calibration
performed at sensor insertion, a calibration update to fingertip blood glucose was required every
12 hours to make sure the sensor readings remain accurate. To this purpose, the HemoCue
Glucose 201+ Analyzer (Hemocue 2011) was adopted for capillary blood glucose measurements.
A small drop of blood was taken from the fingertip and analyzed in a test strip by the meter.
The results of the test were then entered in the receiver by the subject to update calibration of
the CGM device.

2.2 Experimental conditions

The clinical protocol for data acquisition was designed under the aegis of DIAdvisor TM (Di-
advisor 2008), a large scale FP7-IST European project, reviewed and approved by the ethical
committees of the Clinical Investigation Centers participating in the trials, namely, Montpel-
lier University Hospital (CHU) in Montpellier, France, Padova University Clinics (UNIPD) in
Padova, Italy and the Clinical Institute of Experimental Medicine (IKEM) in Prague, Czech
Republic. A population of T1DM subjects using basal-bolus insulin regimen participated in the
study signing an informed and witnessed consent form. The trial comprised a series of experiment
sessions for a duration of up to 9 weeks per patient. In particular, to the purpose of separately
estimating meal and insulin impact on blood glucose dynamics, overcoming therefore the lack of
input excitation observed in almost all the data-sets treated in the literature (Finan et al. 2009)
a novel meal test was carried out as follows. Patients were admitted to the clinic for a 6.5 hours
observation period, from 6:30 am to 1:00 pm, fasting from the midnight, equipped with a Dex-
com Seven R©Plus (Dexcom 2011) continuous glucose monitoring sensor for interstitial glucose
samples and a HemoCue Glucose 201+ Analyzer (Hemocue 2011) for capillary blood glucose
measurements. After arrival, a recalibration of the CGM system was performed by the subjects
using the HemoCue meter, in order to be able to start data collection at 7:00 am with a well cal-
ibrated glucose monitoring device. A standardized breakfast, the amount of carbohydrate being
40 [g], was served at 8:00 am and fully ingested within 20 minutes. The patients calculated and
noted on their personal logbook the amount of insulin needed to cover this meal, based on the
outcome of the HemoCue glucose meter at the start of the meal. However, contrary to standard
practice, the insulin bolus was administered 2 hours later. No other meals nor snacks were con-
sumed until 1:00 pm. Blood samples were drawn every 10 minutes for the 3 hours following the
meal intake and every 20 minutes otherwise to assess glucose concentration by means of a Yellow
Spring Instrument (YSI) 2300 STAT Plus blood glucose analyzer (Yellow Spring Instruments
2013). The medical information of patients is reported in Table 1. Representative patients data
are shown in Figs. 2, 4, the remaining patients in the population behaving similarly. A second
meal test was performed 14±3 days apart, on day 3 of a 72-hours long in-hospital visit. Prior to
this test, the subjects performed an exercise test on an ergo-cyclometer on day 1, whereas they
were served a big meal containing 100 [g] carbohydrate on day 2, in order to excite the system
making hospital conditions closer to outpatient conditions. For the whole duration of the second
admission test, the same protocol for data collection used in the first admission was followed,
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Table 1. Patients informations

Name Gender Age [yr] Dd∗ [yr] BMI [kg/m2] HbA1c Therapy TDI ∗∗ [IU]

CHU101 M 25 15 23.7 9 MDI 50
CHU107 M 62 19 24.3 8.9 CSII 30.7
CHU117 M 61 42 31.1 8 CSII 53
CHU118 M 35 10 24.6 7.2 MDI 46
CHU125 F 69 25 28.7 7.6 MDI 25
CHU136 M 40 9 26.8 9.6 MDI 29
CHU138 M 46 33 22 7.5 CSII 28
CHU143 M 36 26 23.4 7.5 CSII 36.4
CHU144 F 38 31 22.6 7.2 CSII 30
CHU145 M 34 9 23 7.1 CSII 37
UNIPD201 M 28 7 21.7 7.1 MDI 55
UNIPD217 M 46 14 28.4 9.3 MDI 60
UNIPD219 M 48 36 21.1 7.6 MDI 40
UNIPD233 M 36 33 26.5 7.3 MDI 57
UNIPD234 M 24 11 21.7 7.1 MDI 55
IKEM302 M 29 10 23.5 5.7 CSII 60
IKEM306 M 35 7 21.8 5.9 CSII 31
IKEM309 F 51 11 23.5 7.4 MDI 31
IKEM311 M 44 38 24.5 6.8 MDI 48
IKEM324 F 28 16 21.5 6.4 CSII 36
IKEM326 F 50 12 23.9 8.2 CSII 29
IKEM330 M 64 18 25 5.4 MDI 48

MEAN 42 19.5 24.5 7 42.1

∗Disease duration

∗∗Total Daily Insulin

except for the blood samples to assess glucose concentration with the YSI, this time drawn every
15 minutes for the 4 hours following carbohydrate ingestion.

3 Modeling the impact of meal and insulin intakes on blood glucose

3.1 Model structure

Second order linear transfer function models with time delays were proposed to approximate
the behaviour of glucose in response to inputs, namely meal and insulin intakes. The choice was
based on the analysis of the collected data and confirmed by physiology as follows. From steady-
state conditions during the sleep and almost constant blood glucose levels corresponding to the
overnight fast as seen in the time interval before 8:00 am (Figs. 2, 4), at 8:00 am an input was
applied, namely 40 [g] of carbohydrate intake, which caused the controlled variable to rise (Figs.
2, 4). In absence of any action taken, for some patients plasma glucose concentration began to fall
after about 90 minutes from carbohydrate ingestion (Fig. 2) suggesting the presence of 2 poles
in the transfer function from carbohydrate to blood glucose, one faster than the other. For other
patients, plasma glucose didn’t fall during the time interval 8:00 am to 10:00 am (Fig. 4) leading
to the assumption of an integrator term in the transfer function as glucose storage term. At 10:00
am, the insulin shot which was previously calculated by the patient was administered, making
glucose concentration to clearly fall for both the previously described type of subjects with an
integrator-like behaviour. Further, time delays associated with both inputs were observed in each
of the data series and have been easily incorporated in the model structure. It is well known
from physiology, indeed, that there are time delays accounting for glucose intestinal absorption
dynamics and insulin pharmacokinetics/pharmacodynamics. In contrast to most of the existing
models in the literature, we did not use any compartment model for the description of the rate of
appearance in plasma following a food intake, nor for the subcutaneous depots-to-plasma insulin
dynamics, overcoming the limitations introduced by the nonlinear nature of such models (Dalla
Man et al. 2007) and most importantly the lack of appropriate tracer data required to fit the
unknown parameters of those models to the individuals. Rather, the meal input was represented
by a pulse of the duration of 15 minutes (since the food was completely ingested by the patients
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within 20 minutes at maximum to comply with the clinical protocol) applied at the time instant
tcarb = 8:00 am, while the insulin dose was considered an impulse-formed input applied at time
instant tins = 10:00 am.
Realization theory was used as support for model order. Indeed, looking at the singular values

of the Hankel matrix constructed from the output blood glucose a model order n = 2 could be
confirmed for both the meal impact and the insulin impact transfer function models (see Fig.
1). All these facts, led us to the formulation of the following model structure:

YBG(s) = Gcarb(s)ucarb(s) +Gins(s)uins(s) (1)

where YBG(s) is the Laplace transform of the output blood glucose concentration, ucarb, uins ∈
Z+ are the inputs carbohydrate amount and insulin doses, respectively, while the transfer func-
tions from carbohydrate to blood glucose Gcarb(s) and from insulin to blood glucose Gins(s) are
given in Eq. 2 and 3, respectively:

Gcarb(s) = e−sτcarb
Kcarb

(1 + sTcarb,1)(1 + sTcarb,2)
(2)

Gins(s) = e−sτins
Kins

s(1 + sTins)
(3)

Further, Kcarb,Kins ∈ R are the gains and Tcarb,1, Tcarb,2, Tins ∈ R are the time constants
governing rise and fall, respectively, of plasma glucose, τcarb, τins ∈ R+ are the time delays
associated with carbohydrate and insulin appearance in plasma, respectively. Actually, for the
type of patients behaving like the one depicted in Fig. 4, Tcarb,2 = ∞ and the transfer function
becomes:

Gcarb(s) = e−sτcarb
Kcarb

s(1 + sTcarb,1)
(4)

The proposed model structure has some interesting properties. First of all it is simple, con-
taining only a few parameters to be identified from data. Kcarb, Tcarb,1, Tcarb,2 can be related
to glucose tolerance, i.e., how the body metabolizes glucose, while Kins, Tins can be related to
insulin sensitivity or resistance, i.e., how effective is insulin in lowering blood sugar levels. More-
over, τcarb, τins account for food transportation and absorption along the gastro-intestinal tract
and insulin transit from the subcutaneous tissues to plasma, respectively. All these factors are
of uttermost importance in diabetes treatment and failure to estimate them correctly leads not
only to unsuccessful glucose control but also to serious health damages. We believe this type
of model easy to understand by practitioners, since all the parameters can be given a clinical
interpretation. In particular, it would be straightforward for a physician to assess whether a
model is physiologically plausible or not.

3.2 Identification method

Let u(t) ∈ R2 and y(t) ∈ R be breakfast carbohydrate, insulin injection and blood glucose, re-
spectively, which are input and output, respectively, of the linear, continuous-time time-invariant
system Σn(A,B,C) described by the differential equations:











dx(t) = Ax(t)dt+Bu(t)dt+ dw(t)

dz(t) = Cx(t)dt+ dv(t)

y(t)dt = dz

(5)
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Figure 1. Model-order selection for all the patients. Top Carbohydrate modeling, Bottom Insulin modeling

Without loss of generality it is assumed that the dimension n = 2. The noise w(t) ∈ Rn and
v(t) ∈ Rl are Wiener processes with incremental covariance given by:

E{
[

w(t)dt
v(t)dt

] [

w(t)dt
v(t)dt

]

ᵀ

} =

[

Q S
Sᵀ R

]

dt (6)

The initial state, w(t), v(t) and u(t) are assumed to be mutually independent. The system
matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are such that (A,C) is observable, (A, [B,Q

1

2 ])
is controllable and the system is stable. The input-output data sequences of system (5) are
observed at the sample times not necessarily equidistantly spaced {tk}N0 , tk+1 ≥ tk for all
k and are denoted as {u(tk)}N0 , {y(tk)}N0 . The continuous-time model identification problem,
thus, consists in identifying the system parameters A, B, C up to a similarity transformation
or equivalently the (system invariant) transfer function F (s) = C(sI − A)−1B starting from
{u(tk)}N0 , {y(tk)}N0 .
From the set of first-order differential equations, we have in the Laplace domain notation:

sX(s) = AX(s) +BU(s) +W (s) + sx0, x0 = x(t0)

Y (s) = CX(s) + V (s)
(7)

Introduction of the causal, stable, realizable linear operator proposed in (Johansson 1994)

λ(s) =
1

1 + sτ
(8)

in order to replace the Laplace domain differentiation as represented by s, mapping the left-half
plane into the disc Ω centered in 0.5, permits an algebraic reformulation of the model:

X = (I + τA)[λX] + τB[λU ] + τ [λW ] + (1− λ)x0

Y = CX + V
(9)
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Reformulation to linear system equations while disregarding the initial conditions gives:

[

ξ
y

]

=

[

(I + τA) τB
C 0

] [

x
u

]

+

[

τv
e

]

, x(t) = [λξ](t)

=

[

Aλ Bλ

C 0

] [

x
u

]

+

[

τv
e

]

,

{

Aλ = I + τA

Bλ = τB

(10)

the mapping between (A,B) and (Aλ, Bλ) being bijective. Provided that a standard positive
semi-definiteness condition of Q is fulfilled so that the Riccati equation has a solution

Pλ = AλPλA
ᵀ

λ +Qλ − (AλPλC
ᵀ

λ + Sᵀ

λ)(CλPλC
ᵀ

λ +Rλ)
−1(CλPλA

ᵀ

λ + Sλ)

Kλ = (AλPλC
ᵀ

λ + Sᵀ

λ)(CλPλC
ᵀ

λ +Rλ)
−1

(11)

with noise covariance

E{
[

τv(t)dt
e(t)dt

] [

τv(t)dt
e(t)dt

]

ᵀ

} =

[

Qλ Sλ

Sᵀ

λ Rλ

]

dt (12)

it is possible to replace the linear model of Eq. (10) by the innovations model

[

ξ
y

]

=

[

Aλ Bλ

C 0

] [

x
u

]

+

[

Kλ

I

]

w, Kλ = τK (13)

Taking the innovations model inverse (predictor form) we have

[

ξ
w

]

=

[

Aλ −KλC Bλ

−C 0

] [

x
u

]

+

[

Kλ

I

]

y

=

[

Āλ Bλ

−C 0

] [

x
u

]

+

[

Kλ

I

]

y, Āλ = Aλ −KλC

y = Cx+ w

(14)

Further, all the eigenvalues of Āλ are assumed to be inside the disc Ω. Now, in this framework,
the PBSID algorithm which was originally developed in discrete-time (Chiuso 2007) can be
reformulated for the continuous-time case (Bergamasco and Lovera 2010). By recursion it is
found that

[λpy](t) = CĀp
λξ(t) +

p
∑

h=1

CĀh−1
λ (Bλ[λ

p−hu](t) +Kλ[λ
p−hy](t)) + [λpw](t)

[λp+1y](t) = CĀp+1
λ ξ(t) +

p+1
∑

h=1

CĀh−1
λ (Bλ[λ

p+1−hu](t) +Kλ[λ
p+1−hy](t)) + [λp+1w](t)

...

[λp+fy](t) = CĀp+f
λ ξ(t) +

p+f
∑

h=1

CĀh−1
λ (Bλ[λ

p+f−hu](t) +Kλ[λ
p+f−hy](t)) + [λp+fw](t)

(15)
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Introducing the matrix notation (Bergamasco and Lovera 2010)

Y[p,p+f ](t) =
[

[λpy](t) [λp+1y](t) · · · [λp+fy](t)
]

U[p,p+f ](t) =
[

[λpu](t) [λp+1u](t) · · · [λp+fu](t)
]

W[p,p+f ](t) =
[

[λpw](t) [λp+1w](t) · · · [λp+fw](t)
]

Z[p−1,p+f−1](t) =







[λp−1z](t) [λpz](t) · · · [λp+f−1z](t)
...

... · · ·
...

[λ0z](t) [λz](t) · · · [λf−1z](t)







, z(t) =

[

u(t)
y(t)

]

(16)

we have

Y[p,p+f ](t) = Ō[p,p+f ]ξ(t) + Ξ0Z[p−1,p+f−1](t) +W[p,p+f ](t) (17)

where

Ξ0 =
[

CĀp−1
λ [Bλ Kλ] CĀp−2

λ [Bλ Kλ] · · · · · · C[B̄λ Kλ]
]

Ō[p,p+f ] =
[

CĀp
λ CĀp+1

λ · · · CĀp+f
λ

]

ᵀ (18)

Let us consider, now, the finite sequences of (possibly non-uniformly) sampled input-output data
{u(tk)}N0 , {y(tk)}N0 at sample times {tk}N0 , tk+1 ≥ tk, ∀k. As the regression model of Eq. (17) is
valid for all times, it is also a valid regression model at sample times {tk}N0

Y[p,p+f ](tk) = Ō[p,p+f ]ξ(tk) + Ξ0Z[p−1,p+f−1](tk) +W[p,p+f ](tk) (19)

Let p be sufficiently large as compared to the eigenvalues of Āλ. Then, Ō[p,p+f ] can be neglected,

i.e., Āj
λ ∈ o(1/

√
N), ∀j ≥ p, N number of available samples (Chiuso 2007), so that finally we

obtain

YN
[p,p+f ] = Ξ0ZN

[p−1,p+f−1] +WN
[p,p+f ] + o(1/

√
N) (20)

where

YN
[p,p+f ] =

[

[λpy](t0) · · · [λpy](tN ) · · · [λp+fy](t0) · · · [λp+fy](tN )
]

(21)

and similarly for UN
[p,p+f ],Z

N
[p−1,p+f−1],W

N
[p,p+f ]. Matrix Ξ0 is estimated solving the least-squares

problem

Ξ̂0 = argmin
Ξ0,D

|| YN
[p,p+f ] − Ξ0ZN

[p−1,p+f−1] ||
2
F (22)

where || · ||F stands for the Frobenius norm of a matrix (Golub and Van Loan 1996). For finite p
the solution of this linear problem will be biased due the approximation made disregarding the
initial states. In the LTI literature a number of contributions studied the effect of the window
size and although they proved the asymptotic properties of the algorithms (if p → ∞ the bias
disappears) it is hard to quantify the effect for finite p (Knudsen 2001, Chiuso and Picci 2005,
Chiuso 2007). Once the Markov parameters of the system are found in Ξ0 estimated solving Eq.
(22), the next step consists in estimating the state sequence. To this end, consider the following



January 9, 2014 11:20 International Journal of Control IJC˙SIdraft˙revised

10 Taylor & Francis and I.T. Consultant

matrices

Ξ =











Ξ0

Ξ1
...

Ξf−1











=











CĀp−1
λ [Bλ Kλ] CĀp−2

λ [Bλ Kλ] · · · · · · · · · C[Bλ Kλ]
0 CĀp−1

λ [Bλ Kλ] · · · · · · · · · CĀλ[Bλ Kλ]
...

. . .
. . .

. . .
. . .

...

0 · · · 0 CĀp−1
λ [Bλ Kλ] · · · CĀf−1

λ [Bλ Kλ]











(23)

Ō[0,p−1] =















C
CĀλ

CĀ2
λ

...
CĀp−1

λ















(24)

It holds

Ō[0,p−1]XN
[p,p] = ΞZN

[p−1,p−1] (25)

By singular value decomposition

ΞZN
[p−1,p−1] =

[

U U⊥

]

[

Σn 0
0 Σ

] [

V
V⊥

]

(26)

the state can be estimated:

ˆXN
[p,p] = ΣnV (27)

From the output equation in Eq.(14) an estimate of C can be obtained by means of least-squares
estimation, i.e.,

Ĉ = argmin
C

|| YN
[p,p] − CXN

[p,p] ||
2
F (28)

as well as the innovation sequence

WN
[p,p] = YN

[p,p] − ĈX̂N
[p,p] (29)

Finally, the matrices Aλ, Bλ,Kλ are found solving the least-squares problem

Âλ, B̂λ, K̂λ = argmin
Aλ,Bλ,Kλ

|| X̂N
p+1,p −AλX̂N

p,p−1 −BλUN
p,p−1 −KλWN

p,p−1 ||2F (30)

A summary of the steps carried out in the identification procedure is reported in Algorithm 1.

Algorithm 1:

(1) Construct the matrices UN
[p,p+f ], Y

N
[p,p+f ], Z

N
[p−1,p+f−1] according to Eq. (21)

(2) Solve Eq.(22) for Ξ̂0

(3) Compute the SVD in Eq.(26)
(4) Choose the model order by inspecting the singular values from step (3)
(5) Get the estimated state-sequence X̂N

[p,p] using Eq.(27)

(6) With X̂N
[p,p] solve Eq.(28)
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(7) Compute the innovation sequence from Eq.(29)
(8) Obtain Aλ, Bλ,Kλ solving the least-squares in Eq.(30)

(9) Calculate the state-space matrices A,B,K by means of the relations: A =
1

τ
(Aλ − I),

B =
1

τ
Bλ, K =

1

τ
Kλ.

3.2.1 Comments

Four parameters have to be chosen : (i) the low-pass filter pole location 1/τ , (ii) the system
order n, (iii) the length of the past horizon p and (iv) the length of the future horizon f . The
parameter τ is related to the expected bandwidth of the system to identify, and is chosen such
that 1/τ ≥ ωb. As the model order n is concerned in this paper we shall consider it as given.
The length of the past horizon has to be estimated from data, e.g., using standard criterions for
VARX model order estimation (Peternell 1995, Chiuso 2007). A suitable future horizon can be
taken f ≤ p, as suggested in (Chiuso 2010).

3.3 Identification strategy

Our objective was to estimate the unknown parameter vector

θ̂ =
[

K̂carb K̂ins T̂carb,1 T̂carb,2 T̂ins τ̂carb τ̂ins
]ᵀ

(31)

so that the estimation error between the actual blood glucose data yBG(t) and the simulated
model data ŷBG(t) was minimized in a least-squares sense:

θ̂ = argmin
θ

∫ T

0
(yBG(t)− ŷBG(t, θ))

2dt (32)

where t is the continuous-time index and T = 4 [h], i.e., time interval 8:00-10:00 am, subject to
some constraints on θ, namely K̂carb > 0, K̂ins < 0 to guarantee qualitatively correct responses
to inputs (blood glucose increases after a meal intake and decreases after an insulin shot) and
T̂carb,1, T̂carb,2, T̂ins > 0 to guarantee stability. To this end, data collected during the first admis-
sion visit were exploited, in particular, the CGMS data were used as measurements of glycemia,
being easily available in standard clinical practice and in the specific case of the trial result-
ing in accordance with the YSI measurements. The equilibrium glycemia level, i.e., the value
of blood glucose just before breakfast was administered, was taken away from the data series.
Subsequently, the meal test data sequences were splitted into 2 parts: the interval [8:00+τcarb,
10:00+τins) for the quantification of the breakfast impact and the interval [10:00+τins, 1:00] for
that of the insulin bolus impact, the time delays being determined empirically. The continuous-
time predictor-based identification (PBSIDcont) algorithm shown in Sec. 3.2 was applied to the
first portion of the data and the parameters Kcarb, Tcarb,1, Tcarb,2 were estimated. Next, the ef-
fect of such carbohydrate intake predicted by the identified model if no insulin would have been
taken at 10:00 am was removed (black dotted curve in Fig. 2, 4) and the PBSIDcont algorithm
applied to the resulting data in order to get an estimate of Kins, Tins.
Up to 6% missing CGMS data points for one single subject was reported; however, this didn’t

play a major role as the continuous-time set-up for the identification can handle non-uniformly
sampled records.
The user parameters were chosen as follows:

• τ = 10 was selected at first, then refined by trial and error
• n = 2 according to the Hankel singular values (see fig. 1)
• p = f = 3 based on standard criteria for model order estimation Ljung (1999)
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Table 2. Estimated model parameters

Name τcarb [min] Kcarb Tcarb,1 Tcarb,2 τins [min] Kins Tins

CHU101 6 42.7822 11.7786 37.1747 2 -16.3552 14.48
CHU107 4 6.2703 6.8259 ∞ 6 -85.4642 76.10
CHU117 3 29.2354 11.0011 12.5000 4 -90.0913 9.1324
CHU118 3 25.8144 7.5019 12.6263 6 -17.5864 17.19
CHU125 4 3.9614 10.8530 ∞ 4 -55.2759 44.15
CHU136 5 40.9486 6.6269 19.8807 3 -21.8811 17.7462
CHU138 5 2.5881 18.5529 ∞ 10 -4.5 100
CHU143 4 4.0786 4.5725 ∞ 2 -70.5128 94.9668
CHU144 4 8.2976 22.3414 ∞ 3 -85.4118 58.8235
CHU145 5 2.2107 10.6746 ∞ 8 -4.4030 21.4362
UNIPD201 3 75.9147 12.0192 26.4550 8 -33.5649 41.8410
UNIPD217 3 3.7976 3.2020 ∞ 3 -254.3849 588.5815
UNIPD219 6 55.2045 2.7420 27.6243 3 -18.4587 15.5376
UNIPD233 5 97.8365 2.3827 71.4286 3 -146.3858 443.4590
UNIPD234 2 4.0998 5.2826 ∞ 6 -19.0558 10.6815
IKEM302 7 3.4471 7.7220 ∞ 3 -16.7655 11.8652
IKEM306 4 6.7401 8.9928 ∞ 3 -39.6333 55.55
IKEM309 5 6.4525 6.8871 ∞ 12 -51.9976 59.6303
IKEM311 3 5.5341 8.4104 ∞ 5 -31.4745 39.2157
IKEM324 4 3.2397 9.1827 ∞ 8 -32.4379 36.5497
IKEM326 4 4.6976 11.1185 ∞ 9 -16.0565 20.0280
IKEM330 9 1.5772 4.0420 ∞ 5 -13.9050 32.2997

4 Results

Table 2 collects the estimated parameters for all the patients. The top plots in Figs. 2 and 4
presents simulation results on identification data for some representative patients. In particular,
the actual CGMS data used for model parameters identification is compared with the glycemia
level predicted by the meal model when no insulin is taken and the estimated glycemia level
resulting from the application of both meal and insulin model. Figures 3 and 5 show the response
to 10 [g] of carbohydrate and to 1 [IU] predicted by the models for the representative patients.
Notice that without loss of generality the equilibrium level at the start of the simulation was
chosen as the actual CGMS value at the beginning of the breakfast as far as the carbohydrate
response is concerned, and as the highest glucose peak for insulin response. Validation was per-
formed on the second admission set of data. The YSI measurements were taken as glycemia
assessment, due to poor CGM data. We recall in passing that the second admission took place
14±3 days after the first admission and that in the days prior to the test the subjects glucoregu-
latory system was challenged by an exercise test and a big lunch containing 100 [g] carbohydrate.
Results of such validation are shown in the bottom plots of Figs. 2 and 4 for some representative
patients. As for performance assessment, the following metrics were considered:

• Percentage Variance Accounted For (VAF):

VAF =
(

1−
E [(y(t)− ŷ(t))(y(t)− ŷ(t))ᵀ]

E [y(t)yᵀ(t)]

)

× 100%

where E [·] denotes mathematical expectation. The VAF of two signals that are the same is
100%. If they differ, the VAF will be lower.

• Root Mean Square Error (RMSE) [mg/dL2]:

RMSE =

√

(y(t)− ŷ(t))(y(t)− ŷ(t))ᵀ

N

where N denotes the number of samples.

Results of performance statistics compared across the population are presented in tables 3 and
4 and in Figs. 6 and 7.
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Figure 2. Patient UNIPD219. DIAdvisor II trial. Top Visit 2, identification data; Bottom Visit 3 cross-validation data.
Actual CGMS (star) vs. simulated breakfast impact (dot) and simulated joint meal and insulin intakes (diamond) [mg/dL].
All the measurements vs. time of the day [h]
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Figure 3. Patient UNIPD219. Response to Top 10 [g] of carbohydrate Bottom 1 [IU] of insulin. Blood glucose excursion
[mg/dL] vs. time [min]
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Figure 4. Patient IKEM326. DIAdvisor II trial. Top Visit 2, identification data; Bottom Visit 3 cross-validation data.
Actual CGMS (star) vs. simulated breakfast impact (dot) and simulated joint meal and insulin intakes (diamond) [mg/dL].
All the measurements vs. time of the day [h]

0 30 60 90 120 150 180 210 240 270 300

80
90

100
110
120

0 30 60 90 120 150 180 210 240 270 300
235

240
245

250

255

Response to 10 [g] carbohydrates

Response to 1 [IU] insulin

Time[min]

∆
B
G
[m

g/
d
L
]

∆
B
G
[m

g/
d
L
]

Figure 5. Patient IKEM326. Response to Top 10 [g] of carbohydrate Bottom 1 [IU] of insulin. Blood glucose excursion
[mg/dL] vs. time [min]
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Table 3. Carbohydrate effect modeling: performance evaluation

On estimation data On validation data

Name VAF [%] RMSE [mg/dL2] VAF [%] RMSE [mg/dL2]

CHU101 96.05 4.99 data not available data not available
CHU107 96.30 22.81 data not available data not available
CHU117 91.35 10.81 81.84 35.90
CHU118 91.71 13.42 39.37 42.56
CHU125 97.08 11.38 data not available data not available
CHU136 92.90 16.03 data not available data not available
CHU138 96.59 6.19 79.58 24.30
CHU143 92.27 21.75 78.09 51.57
CHU144 99.81 6.60 data not available data not available
CHU145 97.83 5.62 data not available data not available
UNIPD201 98.97 6.40 94.81 16.63
UNIPD217 92.21 14.67 86.84 25.99
UNIPD219 97.62 8.61 69.11 151.33
UNIPD233 95.92 9.94 69.46 42.74
UNIPD234 93.19 22.18 73.96 36.94
IKEM302 95.48 12.64 71.39 53.50
IKEM306 99.17 11.25 67.74 21.20
IKEM309 92.38 19.98 82 79.49
IKEM311 93.98 28.16 data not available data not available
IKEM324 98.09 6.79 70.37 52.35
IKEM326 98 7.98 77.97 127.82
IKEM330 94.49 5.64 data not available data not available

MEAN 95.51 12.44 74.46 54.45
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Figure 6. Population study. Breakfast impact modeling. Top Panels Percentage VAF; Bottom Panels RMSE [mg/dL2].
Left Performances evaluated on the first admission (estimation) data; Right Performances evaluated on the second admission
(validation) data. Each box presents the results achieved over the considered population. The central mark is the median,
the edges of the box are the 25th and 75th percentiles.
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Table 4. Insulin effect modeling: performance evaluation

On estimation data On validation data

Name VAF [%] RMSE [mg/dL2] VAF [%] RMSE [mg/dL2]

CHU101 95.63 18.08 data not available data not available
CHU107 99.75 1.65 data not available data not available
CHU117 98.52 6.58 73.09 168.34
CHU118 98.96 3.90 53.89 176.58
CHU125 99.35 2.64 data not available data not available
CHU136 97.27 6.69 data not available data not available
CHU138 98.71 3.01 42.19 48.45
CHU143 98.88 4.36 71.87 91.22
CHU144 98.98 12.48 data not available data not available
CHU145 97.17 2.88 data not available data not available
UNIPD201 99.49 5.88 22.88 141.93
UNIPD217 99.30 7.38 64.71 116.17
UNIPD219 89.79 20.90 62.75 99.71
UNIPD233 97.70 10.47 57.61 202.78
UNIPD234 96.17 14.16 11.57 98.11
IKEM302 97.39 15.35 86.93 182.47
IKEM306 99.81 2.58 63.67 57.71
IKEM309 94.40 8.63 71.34 56.68
IKEM311 97.89 10.47 data not available data not available
IKEM324 98.16 4.44 20.58 134.16
IKEM326 98.47 2.71 74.45 46.67
IKEM330 98.44 2.96 data not available data not available

MEAN 94.79 9.88 62.67 115.78
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Figure 7. Population study. Insulin impact modeling. Top Panels Percentage VAF; Bottom Panels RMSE [mg/dL2]. Left
Performances evaluated on the first admission (estimation) data; Right Performances evaluated on the second admission
(validation) data. Each box presents the results achieved over the considered population. The central mark is the median,
the edges of the box are the 25th and 75th percentiles.
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5 Discussions

Continuous-time transfer function models of second order with time delays were proposed to
quantify the impact of a carbohydrate intake and an insulin injection on blood glucose dy-
namics. The choice of the model structure was motivated by inspection of the data series for
the available 6 hours test with a physiologically sound interpretation. The glucoregulatory sys-
tem was considered at steady-state during the overnight fast up until breakfast. Actually, small
fluctuations around the blood glucose equilibrium level were noticed but were not considered
significant nor affecting the estimation procedure. The parameters in the models are linked to
clinical variables. In particular, Kcarb, Tcarb can be related to glucose tolerance, i.e., how the
body metabolizes glucose, whereas Kins, Tins are connected to insulin sensitivity or resistance,
i.e., how effective is insulin in lowering blood glucose. Time delays accounting for food trans-
portation along the gastro-intestinal tract as well as insulin kinetics from the subcutaneous
tissues to plasma have been incorporated in the models as in (Percival et al. 2010). Further,
the long delays between subcutaneous insulin administration and insulin action in the identi-
fied transfer functions reflected what already known from clinical practice. Model responses to
10 [g] of carbohydrate and 1 [IU] of insulin were considered physiologically plausible, resulting
in model behavior compatible with experimental evidence. Indeed, the empirical observations
recently published by Elleri and co-workers (Elleri et al. 2013) and by Schmidt and co-workers
(Schmidt et al. 2012) strengthened the achieved results. Specifically, Elleri and co-workers stud-
ied the effects of a low-glycemic-load (LG) meal and a high-glycemic-load (HG) meal matched for
carbohydrates (121 [g]) on T1DM children (Brouns et al. 2005). The outcome was a sustained,
slowly declining plasma glucose profile which continued beyond the 8 hours of observations with
an unpronounced peak of 210.6±36 [mg/dL] within 153±104 [min] after the intake of the LG
meal, and a distinct earlier peak of 248.4±63 [mg/dL] at 98±29 [min]. The first resembling the
absorption profiles in Fig. 5, while the second that in Fig. 3. Similar experimental evidence was
presented in (Schmidt et al. 2012), where solid meals and a liquid snack were compared, the
first behaving like a LG meal, while the second like a HG meal. As for insulin response, the
experiments in (Schmidt et al. 2012) showed a larger decrease in glycemia per insulin unit than
that predicted by the proposed models, the reason being attributable to the different initial con-
ditions of the subjects metabolism. Another critical issue concerns the pharmacokinetics of the
rapid-acting insulin analogues used by the subjects at this stage. Unfortunately, we did not have
any data collected after 1:00 pm, preventing us from the possibility of verifying the duration of
insulin action predicted by the identified models.

Prior information could be incorporated in the tuning procedure, taking into account the patient
personal history of the disease and the experience gained in its regulation. It is a well known fact,
indeed, that the subjects learn by trial-and-error how their glycemia reacts to different sources
of carbohydrate and different insulin analogues. However, as yet, it is not clear how this can be
realized.

The inputs were considered impulse-formed, the only information required by the identification
method being the size of the meal and of the insulin intake, retrieved from the patient’s logbook.
The approach resembles standard clinical practice, it’s personalized and it takes into account the
high inter-subject variability. The strategy is particularly appealing as it amounts to estimating
only 7 parameters. We mention here that the most recent physiological model (Dalla Man et al.
2007) has 25 unknown patient-specific parameters. Contrary to previous contributions dealing
with simulated data obtained with in-silico ad-hoc experiments, e.g. (van Heudsen et al. 2012),
(Boiroux et al. 2012), we have employed actual T1DM patient data collected within DIAdvisor
TM (Diadvisor 2008). Moreover, estimation and validation were performed on separate sets of
data, collected at least two weeks apart. To the best of the author’s knowledge this is the
first time that such a validation methodology is followed in diabetic blood glucose dynamics
modeling. Intra-patient variability was observed by cross-validation, as highlighted by the poor
performances reported in Tables 3 and 4 (right columns) and may suggest the need of a model
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parameters updating scheme. The critical issue here is to capture qualitatively the dynamic
behaviour of blood glucose levels in diabetes with a tolerance of ± 35 [mg/dL]. Experiment
design turned out to be of crucial importance, not only being tightly connected to the intended
use of the model but also being constrained due to safety issues when dealing with patients harm.
Despite the simple structure the models are able to sufficiently describe the main dynamics of
the gluco-regulatory system.The proposed models were obtained from breakfast data only and
may, hence, turn out not to be accurate in modeling lunch and dinner. In order to assess whether
or not this is the case, a clinical meal test similar to that used in this contribution should be
carried out, provided a 4-hours at least period of steady state prior to the test so to be able to
apply the same method to the new set of data. In addition to this, it would be appropriate to
administer a high-glycemic-load and a low-glycemic-load (Brouns et al. 2005) meals containing
the same type of food to different groups of subjects, in order to verify whether the dynamic
behaviour of blood glucose in response to a meal intake is due to patients or food characteristics.
Post-prandial glucose fluctuations, indeed, are likely to be critically dependent on a number of
factors, including meal composition, small intestinal delivery and absorption of nutrients, rate
of gastric emptying and hepatic and renal glucose metabolism, the relative contribution of these
factors remaining unclear (Horowitz et al. 2002). In an ideal protocol, insulin administration
should be postponed by at least 3 hours and patient monitoring should continue for at least 6-8
hours after insulin intake, in order to model the effects of the inputs accurately. In the actual
setting glycemia levels were assessed by a subcutaneous continuous glucose monitoring sensor
calibrated against a self-monitoring finger-stick glucose meter. This introduces issues such as
sensor noise, device recalibration, sensor time delays just to mention a few, requiring additional
components to the control system, i.e., a sensor model (Breton and Kovatchev 2008), which was
disregarded.
In order to identify the unknown parameters in the transfer functions, a continuous time-

domain identification approach was taken, specifically, the predictor based subspace identification
(PBSID) method using low-pass filters. The algorithm requires a few user’s parameters to be
tuned. The pole of the low-pass filter was chosen larger than the expected bandwidth of the
system and refined by trial and error; the length of the past and the future window size p and
f , respectively, was chosen to be 3 according to standard criterions for model order estimations.

6 Conclusions and future work

The contribution presented a successful application of continuous-time identification methods to
T1DM blood glucose dynamics modeling. Low-order continuous-time transfer function models
were identified from actual T1DM patients data collected adhering to a unique protocol for a
meal test and validated on a separate set of data collected 14 ± 3 days apart. The strategy is
appealing as it amounts to estimating only 7 parameters. The model structure is simple and the
parameters have intuitive meaning that can be linked to clinical practice. The estimated models
are straigntforward and can be easily interpreted by health-care professionals and may guide
development of clinical decision support systems or automated closed-loop insulin delivery. The
work considered breakfast data only. Thus, it would be interesting to perform the same type of
modeling for other meals or snacks, possibly administering both a high-glycaemic-load and a low-
glycaemic-load meal to the same subject. Further, future work will be carried out to extend the
study on a larger population. By doing so, it will become apparent whether or not it is possible
to classify subjects based on their clinical characteristics so to build appropriate nominal models,
suitable as instruments for therapy, for each of the category.
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