Optimal Controller Synthesis for the Decentralized Two-Player Problem with Output Feedback

Laurent Lessard, Lund University
with Sanjay Lall, Stanford University

American Control Conference
Montréal, Canada
June 29, 2012

The classical (centralized) LQG problem

- $\mathcal{P}_{i j}$ and \mathcal{K} are matrices of proper rational transfer functions.
- Find a stabilizing \mathcal{K} that minimizes

$$
\left\|\mathcal{P}_{11}+\mathcal{P}_{12} \mathcal{K}\left(I-\mathcal{P}_{22} \mathcal{K}\right)^{-1} \mathcal{P}_{21}\right\|_{\mathcal{H}_{2}}
$$

The decentralized LQG problem

- \mathcal{K} has sparsity pattern \mathcal{S}. e.g.

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathcal{K}_{11} & 0 \\
\mathcal{K}_{21} & \mathcal{K}_{22}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

- Assumption: \mathcal{P}_{22} also has sparsity pattern \mathcal{S}.

Previous Work

Bad news:

- Optimal controller is nonlinear even for simple LQG examples [Witsenhausen 1968]
- Decentralized controller synthesis is hard in general [Blondel, Tsitsiklis 2000]

Good news:

- Large classes of decentralized problems can be convexified [Ho, Chu 1972; Qi, Salapaka, et al 2004; Rotkowitz, Lall 2006]
- In many such cases, the optimal controller is linear [Ho, Chu 1972; Rotkowitz 2008]

Great news:

- Explicit state-space solution for state feedback with sparsity [Swigart, Lall 2010; Shah, Parrilo 2010]
- Characterization of separable problems [Kim, Lall 2012]

Centralized solution

State-space formula for the plant:

$$
\left[\begin{array}{ll}
\mathcal{P}_{11} & \mathcal{P}_{12} \\
\mathcal{P}_{21} & \mathcal{P}_{22}
\end{array}\right]=\left[\begin{array}{c|cc}
A & B_{1} & B \\
\hline C_{1} & 0 & D_{12} \\
C & D_{21} & 0
\end{array}\right]
$$

Optimal controller:

$$
\mathcal{K}_{\mathrm{opt}}=\left[\begin{array}{c|c}
A+B K+L C & -L \\
\hline K & 0
\end{array}\right] \quad \begin{aligned}
K & =\operatorname{are}\left(A, B, C_{1}, D_{12}\right) \\
L & =\operatorname{are}\left(A^{\top}, C^{\top}, B_{1}^{\top}, D_{21}^{\top}\right)^{\top}
\end{aligned}
$$

Interpretation:

$$
\begin{align*}
\dot{\xi} & =A \xi+B u-L(y-C \xi) \\
u & =K \xi
\end{align*}
$$

Two-player solution

State-space formula for the plant:

$$
\left[\begin{array}{cc}
\mathcal{P}_{11} & \mathcal{P}_{12} \\
\mathcal{P}_{21} & \mathcal{P}_{22}
\end{array}\right]=\left[\begin{array}{c|cc}
A & B_{1} & B \\
\hline C_{1} & 0 & D_{12} \\
C & D_{21} & 0
\end{array}\right] \quad A=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right], \text { etc. }
$$

Optimal controller:

$$
\mathcal{K}_{\mathrm{opt}}=\left[\begin{array}{cc|c}
A+B K+\hat{L} C & 0 & -\hat{L} \\
B(K-\hat{K}) & A+B \hat{K}+L C & -L \\
\hline K-\hat{K} & \hat{K} & 0
\end{array}\right]
$$

- K and L same as in centralized case
- $\hat{K} \sim\left[\begin{array}{cc}0 & 0 \\ * & *\end{array}\right]$ and $\hat{L} \sim\left[\begin{array}{cc}* & 0 \\ * & 0\end{array}\right]$, so $\mathcal{K}_{\mathrm{opt}} \in \mathcal{S}$

Two-player solution

Optimal controller:

$$
\mathcal{K}_{\mathrm{opt}}=\left[\begin{array}{cc|c}
A+B K+\hat{L} C & 0 & -\hat{L} \\
B(K-\hat{K}) & A+B \hat{K}+L C & -L \\
\hline K-\hat{K} & \hat{K} & 0
\end{array}\right]
$$

Interpretation:

$$
\begin{aligned}
\dot{\zeta} & =A \zeta+B \hat{u}-\hat{L}(y-C \zeta) \\
\hat{u} & =K \zeta \\
\dot{\xi} & =A \xi+B u-L(y-C \xi) \\
u & =K \zeta+\hat{K}(\xi-\zeta)
\end{aligned}
$$

$$
\zeta=\mathbf{E}\left(x \mid \mathcal{Y}_{1}\right)
$$

$$
\xi=\mathbf{E}\left(x \mid \mathcal{Y}_{1,2}\right)
$$

Outline of solution method

1. Modified Youla parameterization:

2. Model-matching problem

$$
\begin{aligned}
& \underset{\mathcal{K} \text { stabilizing }}{\operatorname{Kin} \in \mathcal{S}} \\
& \text { becomes: } \operatorname{minimize}_{\substack{\mathcal{Q} \text { stable } \\
\mathcal{Q} \in \mathcal{S}}}\left\|\mathcal{P}_{11}+\mathcal{P}_{12} \mathcal{K}\left(I-\mathcal{P}_{22} \mathcal{K}\right)^{-1} \mathcal{P}_{3}\right\|
\end{aligned}
$$

Outline of solution method

3. Person-by-person optimality

$$
\underset{Q_{i j} \text { stable }}{\operatorname{minimize}}\left\|\mathcal{T}_{1}+\mathcal{T}_{2}\left[\begin{array}{cc}
\mathcal{Q}_{11} & 0 \\
\mathcal{Q}_{21} & \mathcal{Q}_{22}
\end{array}\right] \mathcal{T}_{3}\right\|
$$

- fix \mathcal{Q}_{11} and solve for $\mathcal{Q}_{21}, \mathcal{Q}_{22}$.
- fix \mathcal{Q}_{22} and solve for $\mathcal{Q}_{11}, \mathcal{Q}_{21}$.

4. Impose matching conditions (key step!)
5. Transform back $\mathcal{Q} \rightarrow \mathcal{K}$.

Solution details

Standard AREs:

$$
\begin{aligned}
(X, K) & =\operatorname{are}\left(A, B, C_{1}, D_{12}\right) & (\tilde{X}, J) & =\operatorname{are}\left(A_{22}, B_{22}, C_{1} E_{2}, D_{12} E_{2}\right) \\
(Y, L) & =\operatorname{are}\left(A^{\top}, C^{\top}, B_{1}^{\top}, D_{21}^{\top}\right)^{\top} & (\tilde{Y}, M) & =\operatorname{are}\left(A_{11}^{\top}, C_{11}^{\top}, E_{1}^{\top} B_{1}^{\top}, E_{1}^{\top} D_{21}^{\top}\right)^{\top}
\end{aligned}
$$

Coupled linear equations:

$$
\begin{aligned}
&\left(A_{22}+B_{22} J\right)^{\top} \Phi+\Phi\left(A_{11}+M C_{11}\right)-\left(\tilde{X}-X_{22}\right)\left(\Psi C_{11}^{\top}+U_{21}\right) V_{11}^{-1} C_{11}+ \\
&\left(Q_{21}+J^{\top} S_{12}^{\top}+\tilde{X} A_{21}-X_{21} M C_{11}\right)=0 \\
&\left(A_{22}+B_{22} J\right) \Psi+\Psi\left(A_{11}+M C_{11}\right)^{\top}-B_{22} R_{22}^{-1}\left(B_{22}^{\top} \Phi+S_{12}^{\top}\right)\left(\tilde{Y}-Y_{11}\right)+ \\
&\left(W_{21}+U_{21} M^{\top}+A_{21} \tilde{Y}-B_{22} J Y_{21}\right)=0
\end{aligned}
$$

New control and estimation gains:

$$
\hat{K}=\left[\begin{array}{cc}
0 & 0 \\
-R_{22}^{-1}\left(B_{22}^{\top} \Phi+S_{12}^{\top}\right) & J
\end{array}\right] \quad \hat{L}=\left[\begin{array}{cc}
M & 0 \\
-\left(\Psi C_{11}^{\top}+U_{21}\right) V_{11}^{-1} & 0
\end{array}\right]
$$

Optimal decentralized cost

$$
\mathcal{J}_{\text {opt }}=\left\|\left[\begin{array}{c|c}
A+B K & B_{1} \\
\hline C_{1}+D_{12} K & 0
\end{array}\right]\right\|^{2} \quad \text { centralized cost }
$$

$$
+\left\|\left[\begin{array}{c|c}
A+L C & B_{1}+L D_{21} \\
\hline D_{12} K & 0
\end{array}\right]\right\|^{2}
$$

cost of decentralization

$$
+\left\|\left[\begin{array}{c|c}
A+B \hat{K}+\hat{L} C & (\hat{L}-L) D_{21} \\
\hline D_{12}(\hat{K}-K) & 0
\end{array}\right]\right\|^{2}
$$

Summary

For two-player output feedback:

- Each player estimates the global state
- Some gains are decoupled, found by solving separate AREs
- Others are coupled, found by solving linear equations
- Can quantify the cost due to decentralization

Rough structure:

$$
u_{\mathrm{opt}}=K \hat{x}_{\mid 1}+\hat{K}\left(\hat{x}_{\mid 2}-\hat{x}_{\mid 1}\right)
$$

Further Information

- Complete proof of the two-player problem (submitted TAC)
- Extension to the broadcast case (submitted CDC'12)
http://www.control.lth.se/lessard/

Thank you!

