
Optimal State-Feedback Control Under
Sparsity and Delay Constraints ?

Andrew Lamperski ∗ Laurent Lessard ∗∗

∗ Control and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125 USA (e-mail: andyl@cds.caltech.edu)

∗∗Department of Automatic Control, Lund University, Lund, Sweden
(e-mail: laurent.lessard@control.lth.se)

Abstract: This paper presents the solution to a general decentralized state-feedback problem,
in which the plant and controller must satisfy the same combination of delay constraints and
sparsity constraints. The control problem is decomposed into independent subproblems, which
are solved by dynamic programming. In special cases with only sparsity or only delay constraints,
the controller reduces to existing solutions.

Keywords: decentralized control, dynamic programming, linear quadratic regulators, linear
optimal control, state feedback, time delay.

NOTATION

y0:t Time history of y: {y0, y1, . . . , yt}.
a→ b There is a directed edge from node a to node b.
dij Shortest delay from node j to node i.
Msr Block submatrix (Mij)i∈s,j∈r, e.g.[

M11 M12 M13

M21 M22 M23

M31 M32 M33

]{2,3},{1}
=

[
M21

M31

]
.

1. INTRODUCTION

This paper studies a class of decentralized linear quadratic
control problems. In decentralized control, inputs to a
dynamic system are chosen by multiple controllers with
access to different information. In this work, the dynamic
system is decomposed into subsystems, each with a corre-
sponding state and controller. A given controller has im-
mediate access to some states, delayed access to some oth-
ers, and no access to the rest. Since some controllers cannot
access certain state components, the transfer matrix for
the overall controller must satisfy sparsity constraints.

While decentralized synthesis is difficult in general, some
classes of problems are known to be tractable and can be
reduced to convex, albeit infinite dimensional, optimiza-
tion problems. See Qi et al. (2004) and Rotkowitz and Lall
(2006). These papers also suggest methods for solving the
optimization problem. The former gives a sequence of ap-
proximate problems whose solutions converge to the global
optimum, and the latter uses vectorization to convert the
problem to a much larger one that is unconstrained. An
efficient LMI method was also proposed by Rantzer (2006).

The class of problems studied in this paper have partially
nested information constraints, which guarantees that
linear optimal solutions exist, Ho and Chu (1972). Explicit

? The second author would like to acknowledge the support of the
Swedish Research Council through the LCCC Linnaeus Center

state-space solutions have been reported for certain special
cases. For state-feedback problems in which the controller
has sparsity constraints but is delay-free, solutions were
given in Shah and Parrilo (2010), and Swigart (2010). For
state-feedback with delays but no sparsity, a special case
of the dynamic programming argument of this paper was
given by Lamperski and Doyle (2012).

In Sections 2 and 3, we state the problem and explain the
state and input decomposition we will use. Main results
appear in Section 4, followed by discussion and proofs.

2. PROBLEM STATEMENT

In this paper, we consider a network of discrete-time linear
time-invariant dynamical systems. We will illustrate our
notation and problem setup through a simple example,
and then describe the problem setup in its full generality.

Example 1. Consider the state-space equationsx1t+1

x2t+1

x3t+1

 =

A11 A12 0
A21 A22 0
A31 A32 A33

x1tx2t
x3t

+

B11 B12 0
B21 B22 0
B31 B32 B33

u1tu2t
u3t

+

w1
t

w2
t

w3
t

 (1)

For quantities with a time dependence, we use subscripts
to specify the time index, while superscripts denote sub-
systems or sets of subsystems. Thus, xit is the state of
subsystem i at time t. The uit are the inputs, and the
wit are independent Gaussian disturbances. The goal is to
choose a state-feedback control policy that minimizes the
standard finite-horizon quadratic cost

E
T−1∑
t=0

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

]
+ xTTQfxT (2)

with the usual requirement that R is positive definite,
while Q−SR−1ST and Qf are positive definite. Also, dif-

1 2 3

0 0 0

1

1

0

Fig. 1. Network graph for Example 1. Each node represents
a subsystem, and the arrows indicate the sparsity of
both the dynamical interactions (1) as well as the
information constraints (3). Additionally, the labels
indicate the propagation delay from one controller to
another.

ferent controllers may have access to different information.
For the purpose of this example, suppose the dependencies
are as follows

u1t = γ1t
(
x10:t, x

2
0:t−1

)
u2t = γ2t

(
x10:t−1, x

2
0:t

)
u3t = γ3t

(
x10:t−1, x

2
0:t, x

3
0:t

) (3)

Note that there is a combination of sparsity and delay
constraints; some state information may never be available
to a particular controller, while other state information
might be available but delayed. It is convenient to visualize
this example using a directed graph with labeled edges. We
call this the network graph. See Fig. 1.

Note that in Example 1, both the plant (1) and the
controller (3) share the same sparsity constraints. Namely,
x3 does not influence x1 or x2 via the dynamics, nor can
it affect u1 or u2 via the controller. This condition will
be assumed for the most general case considered herein.
As explained in Appendix A, this condition is sufficient to
guarantee that the optimal control policy γit is linear, a
very powerful fact.

A quantity of interest in this paper is the delay matrix,
where each entry dij is defined as the sum of the delays
along the fastest directed path from j to i. If no path
exists, dij =∞. In Example 1, the delay matrix is:

d =

[
0 1 ∞
1 0 ∞
1 0 0

]
(4)

This particular delay matrix only contains 0’s, 1’s, and
∞’s, but for more intricate graphs, the delay matrix can
contain any nonnegative integer, as long as it is the total
delay of the fasted directed path between two nodes.

General Case. In general, we consider any directed
graph G(V,E) with vertices V = {1, . . . , N}. Every such
edge is labeled with dij ∈ {0, 1}. We refer to this graph as
the network graph. We then define dij for all other pairs
of vertices according to the fastest-path definition above.
We consider systems defined by the state-space equations:

xit+1 =
∑
j∈V
dij≤1

(
Aijx

j
t + Biju

j
t

)
+ wit for all i ∈ V (5)

The initial state x0 can be fixed and known, such as x0 = 0,
or it may be a Gaussian random variable. Note that the
Aij denote matrices, which can be viewed as submatrices
of a larger A matrix. If we stack the various vectors and
matrices, we obtain a more compact representation of the
state-space equations:

w1 w2 w3

{1} {2, 3} {3}

{1, 2, 3}

Fig. 2. The information graph for Example 1. The nodes
of this graph are the subsets of nodes in the network
graph (see Fig. 1) affected by different noises. For
example, w2 injected at node 2 affects nodes {2, 3}
immediately, and affects {1, 2, 3} after one timestep.

xt+1 = Axt +But + wt (6)

where A and B have sparsity patterns determined by
the dij . Namely, we can have Aij 6= 0 whenever dij ∈
{0, 1} and similarly for Bij . This fact can be verified in
Example 1 by comparing (1) and (4).

We assume the noise terms are Gaussian, IID for all time,
and independent between subsystems. In other words, we
have E(wiτw

k T
t) = 0 whenever τ 6= t or i 6= k, and

E(witw
iT
t) = Wi for all t ≥ 0.

State information propagates amongst subsystems at every
timestep according to the graph topology and the delays
along the links. Each controller may use any state informa-
tion that has had sufficient time to reach it. More formally,
uit is a function of the form

uit = γit(x
1
0:t−di1 , . . . , x

N
0:t−diN). (7)

Here if t < dij (e.g. when dij = ∞), then uit has no
access to xj at all. As a technical point, we assume that G
contains no directed cycles with zero length. If it did, we
could collapse the nodes of that cycle into a single node.

The objective is to find a control policy that satisfies the
information constraints (7) and minimizes the quadratic
cost function (2). According to our formulation, the con-
troller may be any function of the past information history,
which grows with the size of the time horizon T . However,
we show in this paper how to construct an optimal con-
troller that is linear and has a finite memory which does
not depend on T .

3. SPATIO-TEMPORAL DECOMPOSITION

The solution presented herein depends on a special de-
composition of the states and inputs into independent
components. In Subsection 3.1, we define the information
graph, which describes how disturbances injected at each
node propagate throughout the network. Then, in Subsec-
tion 3.2, we show how the information graph can be used
to define a useful partition of the noise history. Finally,
Subsection 3.3 explains the decomposition of states and
inputs, which will prove crucial for our approach.

3.1 Information Graphs

The information graph a useful alternative way of repre-
senting the information flow in the network. Rather than
thinking about nodes and their connections, we track the

Node 1 · · · w1
t−3 w1

t−2 w1
t−1 w1

t

Node 2 · · · w2
t−3 w2

t−2 w2
t−1 w2

t

Node 3 · · · w3
t−3 w3

t−2 w3
t−1 w3

t

Time

{1}{1, 2, 3}

{2, 3}

{3}

Fig. 3. Noise partition diagram for Example 1 (refer to
Fig. 1 and 2). Each row represents a different node
of the network graph, and each column represents a
different time index, flowing from left to right. For
example, w2

t−2 will reach all three nodes at time t, so
it belongs to the label set {1, 2, 3}.

propagation of the noise signals wi injected at the various
nodes of the network graph. The information graph for
Example 1 is shown in Fig. 2.

Formally, we define the information graph as follows. Let
sjk be the set of nodes reachable from node j within k steps:

sjk = {i ∈ V : dij ≤ k}.

The information graph, Ĝ(U,F), is given by

U = {sjk : k ≥ 0, j ∈ V }
F = {(sjk, s

j
k+1) : k ≥ 0, j ∈ V }.

We will often write wi → s to indicate that s = si0,
though we do not count the wi amongst the nodes of the
information graph, as a matter of convention.

The information graph can be constructed by tracking
each of the wi as they propagate through the network
graph. For example, consider w2, the noise injected into
subsystem 2. In Fig. 1, we see that the nodes {2, 3} are
affected immediately. After one timestep, the noise has
reached all three nodes. This leads to the path w2 →
{2, 3} → {1, 2, 3} in Fig. 2. When two paths reach the same
subset, we merge them into a single node. For example, the
path starting from w1 also reaches {1, 2, 3} after one step.

Proposition 1. Given an information graph Ĝ(U,F), the
following properties hold.

(i) Every node in the information graph has exactly one
descendant. In other words, for every r ∈ U , there is
a unique s ∈ U such that r → s.

(ii) Every path eventually hits a node with a self-loop.
(iii) If d = maxij{dij : dij < ∞}, then an upper bound

for the number of nodes in the information graph is
given by |U | ≤ Nd.

Example 2. Fig. 4 shows the network and information
graphs for a more complex four-node network. We will
refer to this example throughout the rest of the paper.

Note that the information graph may have several con-
nected components. This happens whenever the network
graph is not strongly connected. For example, Fig. 2 has
two connected components because there is no path from
node 3 to node 2.

1

2

3

4

0

0

0

0

1

1

1 0

1

(a) Network graph for Example 2

w1 w2 w3 w4

{1} {2} {3} {3, 4}

{1, 2, 3}

{1, 2, 3, 4}

{2, 3, 4}

(b) Information graph for Example 2

Node 1 · · · w1
t−3 w1

t−2 w1
t−1 w1

t

Node 2 · · · w2
t−3 w2

t−2 w2
t−1 w2

t

Node 3 · · · w3
t−3 w3

t−2 w3
t−1 w3

t

Node 4 · · · w4
t−3 w4

t−2 w4
t−1 w4

t

Time

{1}{1, 2, 3}{1, 2, 3, 4}

{2}{2, 3, 4}

{3}{3, 4}

(c) Noise partition diagram for Example 2

Fig. 4. Network graph (a), information graph (b), and
noise partition diagram (c) for Example 2.

3.2 Noise Partition

The noise history at time t is the set random variables
consisting of all past noises:

Ht = {wiτ : i ∈ V, −1 ≤ τ ≤ t− 1}
where we have used the convention x0 = w−1. We now
define a special partition of Ht. This partition is related
to the information graph; there is one subset corresponding
to each s ∈ U . We call these subsets label sets, and they
are defined in the following lemma.

Lemma 2. For every s ∈ U , and for all t ≥ 0, define the
label sets recursively using

Ls0 = {xi0 : wi → s} (8)

Lst+1 = {wit : wi → s} ∪
⋃
r→s
Lrt . (9)

The label sets {Lst}s∈U partition the noise history Ht:

Ht =
⋃
s∈U
Lst and Lrt ∩ Lst = ∅ whenever r 6= s

Proof. We proceed by induction. At t = 0, we have
H0 = {x10, . . . , xN0 }. For each i ∈ V , s = si0 is the unique
set such that xi0 ∈ Ls0. Thus {Ls0}s∈U partitions H0. Now
suppose that {Lst}s∈U partitions Ht for some t ≥ 0. By
Proposition 1, for all r ∈ U there exists a unique s ∈ U
such that r → s. Therefore each element wik ∈ Ht is
contained in exactly one set Lst+1. Furthermore, for each

i ∈ V , Ls
i
0
t+1 is the unique label set containing wit. Therefore

{Lst+1}s∈U must partition Ht+1.

The partition defined in Lemma 2 can be visualized using a
noise partition diagram. Example 1 is shown in Fig. 3 and
Example 2 is shown in Fig. 4(c). These diagrams show the
partition explicitly at time t by indicating which parts of
the noise history belong to which label set. Each label set
is tagged with its corresponding node in the information
graph.

3.3 State and Input Decomposition

We show in Appendix A that our problem setup is partially
nested, which implies that there exists an optimal control
policy that is linear. We also show there that xt and ut
are linear functions of the noise history Ht.

Individual components uit will not depend on the full noise
history Ht, because certain noise signals will not have had
sufficient time to travel to node i. This fact can be read
directly off the noise partition diagram. To see whether
a noise symbol wit−k ∈ Lst affects uit, we simply check
whether i ∈ s. We state this result as a lemma.

Lemma 3. The input uit depends on the elements of Lst if
and only if i ∈ s. The state xit depends on the elements of
Lst if and only if i ∈ s.

The noise partition described in Subsection 3.2 induces a
decomposition of the input and state into components. We
may write:

ut =
∑
s∈U

IV,sϕst and xt =
∑
s∈U

IV,sζst (10)

where ϕst and ζst each depend on the elements of Lst . Here
I is a large identity matrix with block rows and columns
conforming to the dimensions of xit or uit depending on
the context. The notation IV,s indicates the submatrix
in which the block-rows corresponding to i ∈ V and the
block-columns corresponding to j ∈ s have been selected.
For example, the state in Example 1 can be written as:

xt =

I0
0

ζ{1}t +

0 0
I 0
0 I

ζ{2,3}t +

0
0
I

ζ{3}t +

I 0 0
0 I 0
0 0 I

ζ{1,2,3}t

The vectors ζst each have different sizes, which is due to

Lemma 3. For example, x2t is only a function of ζ
{2,3}
t and

ζ
{1,2,3}
t , since these are the only label sets that contain 2.

We also use the superscript notation for other matrices.
Taking (1) as an example, if s = {3} and r = {2, 3}, then
Asr = [A32 A33].

The state equations that define xt (5) have a counterpart
in the ζt coordinates. We state the following lemma with-
out proof.

Lemma 4. The components {ζst }s∈U and {ϕst}s∈U satisfy
the recursive equations:

ζs0 =
∑
wi→s

Is,{i}xi0 (11)

ζst+1 =
∑
r→s

(
Asrζrt +Bsrϕrt

)
+
∑
wi→s

Is,{i}wit (12)

Two important properties of the input and state decompo-
sition follow from results in this section. First, each input
uit is a function of a particular subset of the information
history Ht, which follows directly from Lemma 3.

Corollary 5. The input uit depends on the elements of
∪s3iLst . In particular, uit has the ability to compute any
state ζst for which i ∈ s.

Secondly, Lemma 2 implies that the label sets for a given
time index consist of mutually independent noises. So our
decomposition provides independent coordinates:

Corollary 6. Suppose r, s ∈ U , and r 6= s. Then:

E
[
ζrt
ϕrt

] [
ζst
ϕst

]T
= 0

4. MAIN RESULTS

Consider the general problem setup described in Section 2,
and generate the corresponding information graph Ĝ(U,F)
as explained in Section 3.1. For every node r ∈ U , define
the matrices Xr

0:T recursively as follows:

Xr
T = Qrrf

Xr
t = Qrr +AsrTXs

t+1A
sr −

(
Srr +AsrTXs

t+1B
sr
)
×(

Rrr +BsrTXs
t+1B

sr
)−1(

Srr +AsrTXs
t+1B

sr
)T

(13)
where s ∈ U is the unique node such that r → s. Finally,
define the gain matrices Kr

0:T−1 for every r ∈ U :

Kr
t = −

(
Rrr +BsrTXs

t+1B
sr
)−1(

Srr +AsrTXs
t+1B

sr
)T

(14)

Theorem 7. The optimal control policy is given by

ut =
∑
s∈U

IV,sϕst where ϕst = Ks
t ζ
s
t (15)

where the states ζst evolve according to (12). The corre-
sponding optimal cost is

V0(x0) =
∑
i∈V
wi→s

(
trace

(
(Xs

0){i},{i} E
(
xi0x

i
0

T))

+

T∑
t=1

trace
(

(Xs
t){i},{i}Wi

))
(16)

Theorem 7 describes an optimal controller as a function
of the disturbances w. The controller can be transformed
into an explicit state-feedback form as follows. For every
s ∈ U , define the subset sw = {i : wi → s}. This set
will be a singleton {i} when the node is a root node of
the information graph, and will be empty otherwise. For
example, consider Example 2 (Fig. 4(b)). When s = {3, 4}
we have sw = {4}, and when s = {2, 3, 4} we have sw = ∅.
Each s ∈ U can be partitioned as s = sw ∪ sw, where
sw = s \ sw. The states of the controller are given by

η
(s)
t = Isw,sζst for all s ∈ U satisfying sw 6= ∅

Theorem 8. Let Āsrt = Asr + BsrKr
t . The optimal state-

feedback controller is given by the state-space equations

η
(s)
0 = 0

η
(s)
t+1 =

∑
r→s

Isw,sĀsrt I
r,rwη

(r)
t

+
∑
r→s

Isw,sĀsrt I
r,rw

(
xrwt −

∑
v⊃r
v 6=r

Irw,vwη
(v)
t

)
(17)

ut =
∑
s∈U

IV,sKs
t I
s,swη

(s)
t

+
∑
s∈U

IV,sKs
t I
s,sw

(
xswt −

∑
v⊃s
v 6=s

Isw,vwη
(v)
t

)
(18)

See Section 6 for complete proofs of Theorems 7 and 8.

5. DISCUSSION

Note that for a self-loop, r → r, (13) defines a classical
Riccati difference equation. Since the information graph
can have at most N self-loops, at most N Riccati equations
must be solved. For other edges, (13) propagates the solu-
tion of the self-loop Riccati equation down the information
graph toward the root nodes.

The solution extends naturally to infinite horizon, pro-
vided that at the self-loops, r → r, the matrices satisfy
classical conditions for stabilizing solutions to the corre-
sponding algebraic Riccati equations. Indeed, as T → ∞,
Xrr
t approach steady state values. Since all gains are

computed from the self-loop Riccati equations, the gains
must also approach steady state limits.

The results can also be extended to time-varying systems
simply by replacing A, B, Q, R, S, and W with At, Bt,
Qt, Rt, St, and Wt, respectively.

The results of Swigart (2010) and Shah and Parrilo (2010)
on control with sparsity constraints correspond to the
special case of this work in which all edges have zero delay.
In this case, the information graph consists of N self-loops.
Thus, N Riccati equations must be solved, but they are
not propagated.

The results on delayed systems of Lamperski and Doyle
(2012) correspond to the special case of strongly connected
graphs in which all edges have a delay of one timestep.
Here, all paths in the information graph eventually lead
to the self-loop V → V . Thus, a single Riccati equation is
solved and propagated down the information graph.

6. PROOFS OF MAIN RESULTS

6.1 Proof of Theorem 7

The proof uses dynamic programming and takes advantage
of the decomposition described in Section 3. Begin by
defining the cost-to-go from time t as a function of the
current state and future inputs:

Jt(xt, ut:T−1) =

T−1∑
τ=t

[
xτ
uτ

]T [
Q S
ST R

] [
xτ
uτ

]
+ xTTQfxT

Note that Jt is a random variable because it does not
depend explicitly on xt+1:T . These future states are defined
recursively using (6), and thus depend on the noise terms
wt:T−1. Using the decomposition 10, the state is divided
according to xt =

∑
s∈U I

V,sζst . We use the abridged
notation ζt to denote {ζst : s ∈ U}, and we use a similar
notation to denote the decomposition of ut into ϕt. In
these new coordinates, the cost-to-go becomes:

Jt(ζt, ϕt:T−1) =∑
s∈U

(
T−1∑
τ=t

[
ζsτ
ϕsτ

]T [
Qss Sss

SssT Rss

] [
ζsτ
ϕsτ

]
+ ζsT

TQssf ζ
s
T

)
where the future states ζt+1:T are defined recursively using
(12). Now define the value function, which is the minimum
expected cost-to-go:

Vt(ζt) = min
ϕt:T−1

E Jt(ζt, ϕt:T−1)

Here, it is implied that the minimization is taken over
admissible policies, namely ϕst is a linear function of Lst
as explained in Section 3.3. Unlike the cost-to-go function,
the value function is deterministic. The original minimum
cost considered in the Introduction (2) is simply V0(x0).
The value function satisfies the Bellman equation

Vt(ζt) =

min
ϕt

(
E
∑
s∈U

[
ζst
ϕst

]T [
Qss Sss

SssT Rss

] [
ζst
ϕst

]
+ Vt+1(ζt+1)

)
(19)

Lemma 9. The Bellman equation (19) is satisfied by a
quadratic value function of the form:

Vt(ζt) =
∑
s∈U

E
(
ζst

TXs
t ζ
s
t

)
+ ct (20)

Proof. The proof uses induction proceeding backwards in
time. At t = T , the cost-to-go is simply the terminal cost
xTTQfxT , and the value function is the expected value of
this quantity. Decompose xT into its ζT coordinates. The
ζT coordinates are mutually independent by Corollary 6,
so we may write

VT (ζT) =
∑
s∈U

E
(
ζsT

TQssf ζ
s
T

)
Thus, (20) holds for t = T , by setting Xs

T = Qf for every
s ∈ U and cT = 0. Now suppose (20) holds for t + 1.
Equation (19) becomes:

Vt(ζt) = min
ϕt

(
E
∑
s∈U

[
ζst
ϕst

]T [
Qss Sss

SssT Rss

] [
ζst
ϕst

]

+ E
∑
s∈U

ζst+1
TXs

t+1ζ
s
t+1 + ct+1

)
(21)

Substitute the recursion for ζt+1 defined in (12), and take
advantage of the mutual independence of the ζt and ϕt
terms proved in Corollary 6. Finally, we obtain:

Vt(ζt) = min
ϕt

(
E
∑
r∈U

[
ζrt
ϕrt

]T
Γrt+1

[
ζrt
ϕrt

])
+ ct+1

+
∑
i∈V
wi→s

trace
(

(Xs
t+1){i},{i}Wi

)
(22)

where Γrt+1 is given by:

Γrt+1 =

[
Qrr Srr

SrrT Rrr

]
+ [Asr Bsr]

T
Xs
t+1 [Asr Bsr]

and s is the unique node in the information graph such
that r → s, see Proposition 1. Equation (22) can be decom-
posed into independent quadratic optimization problems,
one for each ϕrt :

ϕrt = arg min
ϕr

t

E
[
ζrt
ϕrt

]T
Γrt+1

[
ζrt
ϕrt

]
for all r ∈ U

The optimal cost is again a quadratic function, which
verifies our inductive hypothesis.

The optimal inputs found by solving the quadratic opti-
mization problems in Lemma 9 are given by ϕst = Ks

t ζ
s
t .

This policy is admissible by Corollary 5. Substituting the
optimal policy, and comparing both sides of the equation,
we obtain the desired recursion relation as well as the
optimal cost (13)–(16).

6.2 Proof of Theorem 8

Consider a node s ∈ U with wi → s. Thus the set sw is
nonempty, and sw = {i}. From (10),

xit =
∑
v3i

Isw,vζvt =
∑
v⊃s

Isw,vζvt (23)

The second equality follows because v 3 i implies that
v ⊃ s. Indeed, for any other j ∈ s, we must have dji = 0.
Thus, if v 3 i, then v 3 j as well. Rearranging (23) gives

Isw,sζst = xit −
∑
v⊃s
v 6=s

Isw,vζvt

Since sw and sw partition s, we may write ζst as

ζst = Is,swIsw,sζst + Is,swIsw,sζst .

= Is,swIsw,sζst + Is,sw

(
xit −

∑
v⊃s
v 6=s

Isw,vζvt

)

= Is,swη
(s)
t + Is,sw

(
xit −

∑
v⊃s
v 6=s

Isw,vwη
(v)
t

)
(24)

where we substituted the definition η
(s)
t = Isw,sζst in the

final step and used the fact that i ∈ vw, because v 6= s and
we can’t have both wi → v and wi → s.

We can now find state-space equations in terms of the new
ηt coordinates. The input ut is found by substituting (24)
into (15), and the ηt dynamics are found by substituting
(24) into (12) and multiplying on the left by Isw,s. Note
that the controller now depends on the state xt rather than
the disturbance wt.

REFERENCES

Ho, Y.C. and Chu, K.C. (1972). Team decision theory and
information structures in optimal control problems—
Part I. IEEE Transactions on Automatic Control, 17(1),
15–22.

Lamperski, A. and Doyle, J.C. (2012). Dynamic program-
ming solutions for decentralized state-feedback LQG
problems with communication delays. In American
Control Conference.

Qi, X., Salapaka, M., Voulgaris, P., and Khammash, M.
(2004). Structured optimal and robust control with
multiple criteria: a convex solution. IEEE Transactions
on Automatic Control, 49(10), 1623–1640.

Rantzer, A. (2006). Linear quadratic team theory revis-
ited. In American Control Conference, 1637–1641.

Rotkowitz, M. and Lall, S. (2006). A characterization
of convex problems in decentralized control. IEEE
Transactions on Automatic Control, 51(2), 274–286.

Shah, P. and Parrilo, P.A. (2010). H2-optimal decentral-
ized control over posets: A state space solution for state-
feedback. In IEEE Conference on Decision and Control,
6722–6727.

Swigart, J. (2010). Optimal Controller Synthesis for De-
centralized Systems. Ph.D. thesis, Stanford University.

Appendix A. PARTIAL NESTEDNESS

In this section, we discuss partial nestedness, a concept
first introduced by Ho and Chu (1972). Define the sets:

Iit = {xjτ : j ∈ V, 0 ≤ τ ≤ t− dij}
Comparing with (7), Iit is precisely the information that
uit has access to when making its decision.

Definition 10. A dynamical system (6) with information
structure (7) is partially nested if for every admissible set
of policies γit , whenever ujτ affects uit, then Ijτ ⊂ Iit .

The main result regarding partial nestedness is given in
the following lemma.

Lemma 11. (Ho and Chu (1972)). Given a partially nested
structure, the optimal control for each member exists, is
unique, and is linear.

In order to apply this result, we must first show that the
problems considered in this paper are of the correct type.

Lemma 12. The information structure described in (7) is
partially nested.

Proof. Suppose ujτ affects uit in the most direct manner
possible. Namely, ujτ directly affects xµτ+1, which affects a

sequence of other states until it reaches xkσ, and xkσ ∈ Iit .
Further suppose that x`ρ ∈ Ijτ .

ujτ affects xkσ directly =⇒ dkj ≤ σ − τ (A.1)

xkσ ∈ Iit =⇒ dik ≤ t− σ (A.2)

x`ρ ∈ Ijτ =⇒ dj` ≤ τ − ρ (A.3)

Adding (A.1)–(A.3) together and using the triangle in-
equality, we obtain di` ≤ t − ρ. Thus, x`ρ ∈ Iit . It follows

that Ijτ ⊂ Iit , as required.

If ujτ affects uit via a more complicated path, apply the
above argument to each consecutive pair of inputs along
the path to obtain the chain of inclusions Ijτ ⊂ · · · ⊂ Iit .

With partial nestedness established, Lemma 11 implies
that we have a unique linear optimal controller. In particu-
lar, the optimal γit are linear functions of Iit . Looking back
at (5), we conclude that xt and ut must be linear functions
of the noise history w−1:t−1, since wt cannot affect xt or ut
instantaneously. In general, individual components such as
uit will not be functions of the full noise history w−1:t−1.
This topic is discussed in detail in Section 3.

