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Abstract

We study the notion of structured realizability for lin-
ear systems defined over graphs. A stabilizable and de-
tectable realization is structured if the state-space matri-
ces inherit the sparsity pattern of the adjacency matrix
of the associated graph. In this paper, we demonstrate
that not every structured transfer matrix has a struc-
tured realization and we reveal the practical meaning of
this fact. We also uncover a close connection between the
structured realizability of a plant and whether the plant
can be stabilized by a structured controller. In particu-
lar, we show that a structured stabilizing controller can
only exist when the plant admits a structured realiza-
tion. Finally, we give a parameterization of all struc-
tured stabilizing controllers and show that they always
have structured realizations.

1 Introduction

Linear time-invariant systems are typically represented
using transfer functions or state-space realizations. The
relationship between these representations is well under-
stood; every transfer function has a minimal state-space
realization and one can easily move between representa-
tions depending on the need.

In this paper, we address the question of whether this
relationship between representations still holds for sys-
tems defined over directed graphs. Consider the simple
two-node graph of Figure 1. For i = 1, 2, the node i rep-
resents a subsystem with inputs ui and outputs yi, and
the edge means that subsystem 1 can influence subsys-
tem 2 but not vice versa. The transfer matrix for any
such a system has the sparsity pattern S1.

For a state-space realization to make sense in this con-
text, every state should be associated with a subsystem,
which means that the state should be computable using
the information available to that subsystem. In the case
of S1, the states that determine y1 must only depend on
u1, while the states that determine y2 may depend on
both u1 and u2. Consider the following example, which
belongs to the graph constraint of Figure 1.
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G1 =

[ 1
s+1 0

1
s+1

1
s+2

]
=


−1 0 1 0
0 −2 0 1

1 0 0 0
1 1 0 0

 (1)

1 2 S1 =

[
1 0
1 1

]
Figure 1: A two-node graph and its adjacency matrix.

More generally, we say a system is S-realizable if it
has a stabilizable and detectable realization for which
A,B,C,D each have the sparsity of S. A more formal
definition is given in Section 3.3.

While this definition seems natural and one might ex-
pect every structured transfer function to have a corre-
sponding S-realization, it is not the case in general. For
example, G2 defined in (2) belongs to the graph con-
straint of Figure 2, but no S2-realization exists. A proof
is given in Appendix A. This example shows that there is
no immediate relation between the sparsity of a transfer
matrix and that of its state-space matrices.

Our main result is that S-realizability is necessary for
S-stabilizability; finding a stabilizing controller that has
the same S-structure as the plant. Non-realizable sys-
tems exist, but such systems cannot stabilize or be sta-
bilized by other structured systems.

The paper is organized as follows. In Section 2, we
cover some related work in the literature and in Section 3
we cover basic definitions and concepts touching on sys-
tems over graphs, realizability, and stabilizability. Our
main results are in Sections 4 and 5, which are followed
by concluding remarks in Section 6.

G2 =


0 0 0 0
0 0 0 0
1

s−1
1

s−1 0 0
1

s−1
1

s−1 0 0

 (2)

3

1 2

4

S2 =


1 0 0 0
0 1 0 0
1 1 1 0
1 1 0 1


Figure 2: A four-node graph and its adjacency matrix.
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2 Literature Review

There is a large body of work exploring control systems
defined over graphs. For a broad class of systems, syn-
thesizing an optimal controller can be reduced to solving
a convex optimization problem [5, 7, 9].

Several solution approaches have been reported. LMI
methods [1, 8, 12, 20] work directly with state-space re-
alizations for the plant and controller. Vectorization [10]
avoids the sparsity constraint by reshaping the transfer
matrix. Alternatively, one can solve a sequence of finite-
dimensional convex problems whose solutions converge
to the optimal structured controllers [7].

Surprisingly, the issue of structured realizability is not
addressed in any of the aforementioned works. Indeed,
the LMI methods assume that structured realizations for
the plant and controller always exist, while transfer func-
tion methods make no mention of state-space — so it’s
conceivable that a transfer function method might gen-
erate a controller which has no structured realization!

In this paper, we consider directed graphs with delay-
free links. Our framework is similar to that of Swigart
and Lall [15]. For many such problems, explicit state-
space solutions have been directly computed [3, 4, 6, 13,
14]. In these works, a structured realization is assumed
for the plant, and the optimal controller turns out to have
a structured realization as well. The topic of whether
such realizations should exist in general, or whether sub-
optimal structured stabilizing controllers should always
have structured realizations is not discussed.

To the best of our knowledge, the only existing work
dealing with structured realizability is the work of Vamsi
and Elia [16, 17]. In these papers, the authors provide
sufficient conditions for structured realizability, as well as
an LMI approach for controller synthesis that guarantees
realizability. However, they give no example of a prov-
ably non-realizable system, and the sufficient conditions
provided are potentially very restrictive.

In Section 1, we showed that structured realizability
is a meaningful concept by giving an example of a non-
realizable transfer function. In the sections that follow,
we provide some very general results; a parameterization
of all structured stabilizing controllers, and a proof that
S-realizability is necessary for S-stabilizability.

3 Preliminaries

3.1 Directed Graphs

A directed graph is a set of nodes V = {1, . . . , N} and
edges E ⊆ V × V. If (i, j) ∈ E , we say that there is an
edge from i to j, and we write i → j. We make several
assumptions regarding the graph.

A1) Self-loops: for all i ∈ V, i→ i.

A2) Transitive closure: if i→ j and j → k, then i→ k.

A3) There are no directed cycles of length 2 or greater.

These assumptions are natural, and will be further justi-
fied in Section 3.2. Given a graph satisfying the assump-
tions above, define the adjacency matrix S ∈ {0, 1}N×N

Sij =

{
1 j → i

0 otherwise

Under assumptions A1–A3, one can always relabel the
nodes such that S is lower-triangular with a full diago-
nal. Therefore, we will assume a lower-triangular S from
now on. See Figure 2 for an example of a graph and its
associated adjacency matrix.

3.2 Systems over Graphs

The systems considered in this paper are linear, time-
invariant, continuous-time, and rational. We denote the
set of proper rational transfer functions as Rp. If all the
poles of G ∈ Rp are contained in the open left-half plane,
G is stable, and we write G ∈ RH∞.

For systems defined over graphs, additional notation is
needed to keep track of the input and output partitions.

Definition 1 (Index sets). Suppose we have a graph S ∈
{0, 1}N×N . An index set k is a tuple (k1, . . . , kN ) of
nonnegative integers. We also define the set of nonempty
indices as Ωk = {i ∈ V | ki 6= 0}.

Definition 2. Suppose we have a graph S ∈ {0, 1}N×N
with associated index sets k and m, and F is a commu-
tative ring. We write A ∈ S(F, k,m) to mean that

A =

A11 · · · A1N

...
. . .

...
AN1 · · · ANN


If j → i, then Aij ∈ F ki×mj . Otherwise, Aij = 0. If k
and m are clear by context, we simply write A ∈ S(F ).

A plant G defined over the graph (V, E) is written in
its most general form as G ∈ S(Rp, k,m). Intuitively,
this means that if i→ j, then input ui affects output yj ,
and the associated transfer function is Gij . If there is no
edge from i to j, then Gij = 0.

We seek controllers that obey the same structure.
Namely, if i → j then the control signal uj may depend
on the measurement yi, and the associated transfer func-
tion is Kij . If there is no edge from i to j then Kij = 0.

We can now see why Assumptions A2–A3 make sense.
The graph (V, E) represents information flow; if a sub-
controller i shares what it knows with subcontroller j
along the link i → j and similarly for j → k, one would
expect subcontroller k to have access to the information
from subcontroller i as well. Directed cycles can also be
removed by treating all nodes involved as a single node.

Remark 3. Assumption A2 leads to a useful algebraic
property. If G1 ∈ S(Rp, k,m) and G2 ∈ S(Rp,m, p) then
G1G2 ∈ S(Rp, k, p). In other words, structured transfer
functions as defined above form an algebra.
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3.3 Structured Realizability

Structured realizability is a core concept in this paper.
Roughly speaking, we are interested in finding a state-
space realization for a structured plant comprised of ma-
trices that are also structured.

Definition 4 (Structured realizability). A transfer func-
tion G ∈ S(Rp, k,m) is said to be S(k,m)–realizable if
there exists an index set n and matrices A ∈ S(R, n, n),
B ∈ S(R, n,m), C ∈ S(R, k, n), and D ∈ S(R, k,m)
such that (A,B,C,D) is a stabilizable and detectable re-
alization for G. When m, and k are clear by context, we
will simply write that G is S-realizable.

Note that we allow the index set n to have zero-entries.
If a component of n is zero, it means that no state is
associated with that subsystem, and the corresponding
rows and columns of A collapse.

A key aspect of this definition is the requirement of
stabilizability and detectability. Indeed, we will see in
Section 4.1 that one can always construct a trivial real-
ization with the correct structure by introducing dupli-
cate (non-minimal) states.

3.4 Stabilizability

Throughout this paper, we use the conventional notion
of internal stability for feedback interconnections [2, 21].
If a plant G and controller K are connected in feedback
as in Figure 3, then K is stabilizing if and only if the map
(u1, u1) 7→ (y1, y2) is proper and stable. When dealing
with decentralized systems, there are other natural ways
to define stability. For a further discussion on this topic,
see Section 6. We now state the formal input-output
definition of stabilization.

Definition 5 (Stabilization). Suppose G ∈ Rk×m
p and

K ∈ Rm×k
p . We say that K stabilizes G if

(i) I −G(∞)K(∞) is invertible, and

(ii)

[
I −G
−K I

]−1

∈ RH∞

There is also a useful state-space characterization of
stabilization, which we state as a proposition.

Proposition 6. Suppose G ∈ Rk×m
p , K ∈ Rm×k

p have
realizations given by (A,B,C,D) and (AK , BK , CK , DK)
respectively. Then the following are equivalent.

(i) (C,A,B) and (CK , AK , BK) are stabilizable and
detectable, and K stabilizes G.

(ii) (I −DDK) is invertible, and Ā is Hurwitz, where

Ā =

[
A 0
0 AK

]
+

[
B 0
0 BK

] [
I −DK

−D I

]−1 [
0 CK

C 0

]
.

G

K

u1

y1

y2

u2

Figure 3: Feedback loop with inputs and outputs added
to the feedback path.

Proof. Proposition 6 is a standard result [2, 21], though
it is typically stated with the assumption that (C,A,B) is
stabilizable and detectable. To prove the converse, note
that if Ā is Hurwitz, then([

A 0
0 AK

]
,

[
B 0
0 BK

])
is stabilizable.

It follows from the PBH test that (A,B) is stabilizable
as well. A similar argument holds for detectability.

In this paper, we seek controllers that are both stabi-
lizing and have a particular structure. Therefore, we in-
troduce new terminology to indicate this more restricted
notion of stabilization.

Definition 7. Suppose G ∈ S(Rp, k,m). We say that G
is S-stabilizable if there exists K ∈ S(Rp,m, k) such that
K stabilizes G.

Note that these definitions are symmetric; K stabilizes
G if and only if G stabilizes K. The same symmetry
relationship holds for S-stabilization.

In the absence of structural constraints, it is well-
known that every G ∈ Rp can be stabilized. The main
thrust of this paper is to explain what happens when G is
structured, and we seek a controller that is S-stabilizing.
We will see in Sections 4–5 that not every G ∈ S is S-
stabilizable, and S-realizability plays an important role.

4 Simple Cases

For certain systems, finding a structured realization is
straightforward. In this section, we explore two such
cases that will be useful later: stable systems, and linear
chain structures.

4.1 Stable Systems

If the plant is stable, it can always be S-realized, regard-
less of the underlying graph. By duplicating states in a
way that guarantees the correct structure, the resulting
realization is always stabilizable and detectable since the
starting plant was stable. We give the construction in
the following lemma. A similar result appeared in [17].

Lemma 8. Suppose G ∈ S(RH∞, k,m). Then G is S-
realizable.

Proof. We may construct a realization for G as follows.
Separate G into its block-columns Gi for i = 1, . . . , N .
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Find minimal realizations

Gi =

[
Ai Bi

Ci Di

]
.

In general, Ai and Bi will be full, but Ci and Di will have
zero-rows corresponding to the zero-rows in Gi. Now
stack the columns side-by-side and obtain a joint realiza-
tion.[[

A1 B1

C1 D1

]
· · ·

[
AN BN

CN DN

]]
=

A1 B1

. . .
. . .

AN BN

C1 · · · CN D1 · · · DN

 (3)

The realization (3) has the desired structure because A
and B are block-diagonal, and C and D are in S(R).
Finally, the realization is stabilizable and detectable since
we started with a stable system and each Ai is stable.

In the case where G is not stable, the construction
method used in the proof of Lemma 8 still produces a
realization with the correct structure, but the realiza-
tion may fail to be stabilizable and detectable. This is a
consequence of the fact that realizing the block-columns
separately and then re-combining them may cause some
unstable poles to get duplicated. Indeed, this is precisely
what happens if we attempt to realize (2).

4.2 Chain Structures

Linear chain structures correspond to adjacency matrices
whose lower-triangular part is full. It turns out such
systems are always S-realizable.

Lemma 9. Suppose G ∈ S(Rp, k,m) and S has the full
lower-triangular sparsity pattern

S =

1 0
...

. . .

1 · · · 1


Then G is S-realizable.

Proof. Let (A,B,C,D) be a minimal realization of G.
We will sequentially construct a state transformation ma-
trix T such that (T−1AT, T−1B,CT,D) has the desired
sparsity pattern. Consider the simplest case, N = 2.
Partition the realization according to the block-structure[

G11 0
G21 G22

]
=

 A B1 B2

C1 D11 0
C2 D21 D22

 . (4)

Note that D must already have the correct sparsity pat-
tern. A realization for the zero-block G12 is

0 =

[
A B2

C1 0

]
. (5)

Let T1 be the transformation matrix that puts (5) into
Kalman canonical form. There are typically four blocks
in such a decomposition, but there will only be three in
this case since the system we are realizing is identically
zero and thus there can be no modes that are both con-
trollable and observable. Applying T1 to (4), we obtain

G =


Ac̄o 0 0 B11 0
A21 Ac̄ō 0 B21 0
A31 A32 Acō B31 Bcō

Cc̄o 0 0 D11 0
C21 C22 C23 D21 D22


This realization is block-lower-triangular, and we notice
that the index sets n may not be unique. For example,
the modes Ac̄ō can be part of either the A11 block or the
A22 block.

For the case where N > 2, put the first block of the
diagonal into G11 and lump the rest of the block-lower-
triangular structure into G22. Upon applying the T1

found from the N = 2 case, we are left with

G22 =

[
Acō Bcō

C23 D22

]
.

Apply this approach recursively by finding a T2 that puts
the first zero-block-row of G22 into Kalman canonical
form. Continuing in this manner eventually yields a real-
ization for G that has the desired sparsity pattern. Fur-
thermore, this realization is stabilizable and detectable
since it is minimal.

5 Main Results

Our main results draw the connection between S-
stabilizability and S-realizability. We will show that
S-stabilizable plants are always S-realizable, and S-
stabilizing controllers are always S-realizable. In other
words, if structured systems connected in feedback re-
sults in a an internally stable interconnection, then both
systems must be S-realizable.

The main result has two essential ingredients. In Sec-
tion 5.1, we assume the plant is S-realizable. We then
find a Youla-like parameterization of all S-stabilizing
controllers and show that all S-stabilizing controllers are
S-realizable. In Section 5.2, we assume instead that our
plant is S-stabilizable, but make no assumptions regard-
ing S-realizability. We then show that there must exist
a S-stabilizing controller that is also S-realizable. These
results are combined into one concise statement, which
we give in Corollary 14.

5.1 Parameterization of Stabilizing Controllers

In this subsection, we assume the plant is S-realizable,
and we give a characterization of all structured stabi-
lizing controllers. This parameterization is similar to the
classical work of Youla [19], and the unstructured version
is one of the pillars of classical H2/H∞ theory [21]. For
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the framework adopted herein, the sparsity constraint
imposed on the controller amounts to the same sparsity
constraint being imposed on the Youla parameter Q.

Similar parameterizations have appeared in the liter-
ature. Most notably, the work of Qi et.al. [7] treat the
lower-triangular case and other cases of interest. A more
general parameterization is provided in [11], where the
authors consider general quadratically invariant systems
in which the plant and controller may have different spar-
sity patterns.

Theorem 10. Suppose G ∈ S(Rp, k,m) is S-realizable,
with a structured realization given by (A,B,C,D).

(i) G is S-stabilizable if and only if (Cii, Aii, Bii) is
stabilizable and detectable for all i ∈ Ωn.

(ii) In this case, for i ∈ Ωn, choose Fi and Li such that
Aii + BiiFi and Aii + LiCii are Hurwitz. Define
Fd = diag{Fi}i∈Ωn and Ld = diag{Li}i∈Ωn . A
particular S-stabilizing controller is given by

K0 =

[
A + BFd + LdC + LdDFd −Ld

Fd 0

]

Proof. Suppose (Cii, Aii, Bii) is stabilizable and de-
tectable for all i ∈ Ω. By definition, there must exist Fi

and Li such that Aii+BiiFi and Aii+LiCii are Hurwitz.
Define Fd = diag{Fi}i∈Ωn and Ld = diag{Li}i∈Ωn .
Since A is block-lower-triangular, A+BFd and A+LdC
are also Hurwitz. It is straightforward to check that K0

defined in the theorem statement above is a stabilizing
controller with the correct structure.

Conversely, suppose G is stabilizable by some K ∈
S(Rp,m, k). Let S̄ be the adjacency matrix with
a full lower-triangular sparsity pattern. Then K ∈
S̄(Rp,m, k). By Lemma 9, K is S̄-realizable. Let
(AK , BK , CK , DK) be a stabilizable and detectable re-
alization for K structured according to S̄. By Propo-
sition 6, (I − DDK) must be invertible, and Ā must
be Hurwitz. Rearrange the columns and rows of Ā by
taking the first sub-blocks of each large block, then the
second sub-blocks, and so on. The resulting matrix is
block-lower-triangular, and has the same eigenvalues as
Ā. The blocks along the main diagonal are[

Aii 0
0 AKii

]
+

[
Bii 0
0 BKii

] [
I −DKii

−Dii I

]−1

×
[

0 CKii

Cii 0

]
for i ∈ Ωn (6)

Applying Proposition 6 once more, we conclude that
(Cii, Aii, Bii) is stabilizable and detectable.

The second result is a parameterization of all S-
stabilizing controllers for S-realizable plants.

Theorem 11. Suppose G ∈ S(Rp, k,m) is S-realizable,
with a structured realization given by (A,B,C,D). Let

J =

 A + BFd + LdC + LdDFd −Ld B + LdD

Fd 0 I
−(C + DFd) I −D


where Fd and Ld are defined as in Theorem 10. Also,
define Fl(J,Q) = J11 + J12Q(I − J22Q)−1J21.

(i) Every K ∈ S(Rp,m, k) that stabilizes G is parame-
terized by K = Fl(J,Q), where Q ∈ S(RH∞,m, k)
such that I + DQ(∞) is nonsingular.

(ii) Every stabilizing controller is S-realizable.

Proof. By the proof of Theorem 10, A + BFd and A +
LdC are Hurwitz. The classical parameterization of all
stabilizing controllers [21] is given by Fl(J,Q) where J is
defined in the theorem statement above, and Q ∈ RH∞
such that I +DQ(∞) is nonsingular. It remains to show
that K ∈ S if and only if Q ∈ S. This is a straightforward
consequence of Remark 3, and the fact that all subblocks
of J are in S.

We will now show that every stabilizing controller is
S-realizable. Note that Q ∈ S(RH∞,m, k), so we may
apply Lemma 8. Let (AQ, BQ, CQ, DQ) be a structured
realization for Q that is stabilizable and detectable. The
associated controller has a realization

Fl(J,Q) =

 Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 D̂


which can be computed using the Redheffer Star-Product
[21, §10]. For example, the Â and B̂ terms are:

Â11 = A + BFd + LdC + LdDFd

− (B + LdD)(I + DQD)−1(C + DFd)

Â12 = (B + LdD)(I + DQD)−1CQ

Â21 = −BQ(I + DDQ)−1(C + DFd)

Â22 = AQ −BQ(I + DDQ)−1DCQ

B̂1 = −Ld + (B + LdD)(I + DQD)−1DQ

B̂2 = BQ(I + DDQ)−1

Using Remark 3 and the fact that the realization for Q
is structured, it is straightforward to show that the Âij

and B̂i are each structured according to S. The same
is true of the Ĉi and D̂. Stabilizability can be verified
explicitly. For example, one can check that[

Â11 Â12

Â21 Â22

]
+

[
B̂1

B̂2

] [
C + DFd DCQ

]
=

[
A + BFd BCQ

0 AQ

]
which is clearly Hurwitz. A similar argument applies for
detectability. Finally, we can permute the states as we
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did in the proof of Theorem 11 to obtain a realization for
Fl(J,Q) for which all matrices are in S. This shows that
the controller is S-realizable, as required.

5.2 Stabilizable Systems are Realizable

In this subsection, we assume the plant is S-stabilizable,
but make no assumptions regarding S-realizability. In
this case, we show that one can always construct an S-
realizable controller.

Theorem 12. Suppose G ∈ S(Rp, k,m) is stabilized by
some K ∈ S(Rp,m, k). Then,

(i) G is stabilized by Kd = diag(K11, . . . ,KNN ).

(ii) Kd is S-realizable.

Proof. The proof is similar to the proof of Theorem 10.
G and K may not be S-realizable, so we embed their spar-
sity patterns in S̄ ⊃ S, the set of block-lower-triangular
transfer matrices. Apply Lemma 9 to find triangular re-
alizations, and the result follows from Proposition 6.

Theorem 12 provides a simple test for S-stabilizability;
stabilizing each subsystem individually must also globally
stabilize the system. Otherwise, no S-stabilizing con-
troller exists.

Corollary 13. Suppose G ∈ S(Rp, k,m). For i =
1, . . . , N , let Ki ∈ Rmi×ki

p be any controller that sta-
bilizes Gii. Define Kd = diag(K1, . . . ,KN ). Then G is
S-stabilizable if and only if Kd stabilizes G.

Proof. If Kd stabilizes G, then clearly G is S-
stabilizable, since Kd ∈ S. The converse follows from
Theorem 12.

The main result of this paper is that stabilizable plants
are always S-realizable. We state it below as a Corollary.

Corollary 14 (Main Result). Suppose G ∈ S(Rp, k,m)
is S-stabilizable. Then G is S-realizable, and every K ∈
S(Rp,m, k) that stabilizes G is S-realizable.

Proof. By Theorem 12, every S-stabilizable plant G
can be stabilized by an S-realizable controller Kd. Inter-
changing the roles of the plant and controller, Kd is an
S-realizable plant stabilized by G. By Theorem 11, G
must be S-realizable. Applying Theorem 11 once more
to G, we conclude that all stabilizing controllers must be
S-realizable.

Note that the converse of Corollary 14 is generally
false. One can construct an S-realizable plant that is
not S-stabilizable. Consider for example:

G =

[
1

s+1 0
1

s−1
1

s+1

]
=


−1 0 0 1 0
0 1 0 1 0
0 0 −1 0 1

1 0 0 0 0
0 1 1 0 0



If we realize G by clustering the unstable mode with A11,
i.e. using the index set n = (2, 1), it leads to an unde-
tectable (C11, A11). If we instead associate the unstable
mode with A22 by using n = (1, 2), it will lead to an un-
stabilizable (A22, B22). By Theorem 10, this plant is not
stabilizable by a lower-triangular controller. Of course,
non-structured stabilizing controllers exist since the re-
alization for G given above is minimal.

6 Concluding Remarks

The main contribution of this paper is to establish the
connection between the structured versions of stabiliz-
ability and realizability. In the context of structured con-
troller synthesis, it is a basic requirement that the plant
is S-stabilizable and that the controller is S-stabilizing.
By Corollary 14, it is necessary that the plant and con-
troller are both S-realizable. The counterexample (2)
causes no problems because as a plant, G2 would not be
S-stabilizable, and as a controller, G2 could not stabilize
any structured plant.

As mentioned in Section 2, the work of Vamsi and
Elia [17, 16] also addresses the issue of structured real-
izability. The underlying assumptions are different how-
ever. The authors assume discrete-time subsystems with
one-timestep delays along directed edges. In the work
herein, we assumed a delay-free network of continuous-
time systems. Some results, such as the counterexample
(2), are valid in either framework. However, the other
results in this paper do not immediately translate to
discrete-time.

In this paper, we adopted the classical definition of in-
ternal stability. This notion of stabilization is the weakest
one possible, since it does not guarantee that the signals
that travel between subsystems or between subcontrollers
remains bounded. It follows that Corollary 14 will remain
true even for stricter notions of stabilization. The work
of Yadav et.al. [18] explores other types of stability in
great detail.

While S-stabilizability guarantees S-realizability, the
question of how to explicitly construct a structured re-
alization is still open. Lemmas 8 and 9 provide con-
structions for the special cases of stable and triangular
systems respectively, but no universal method for con-
structing structured realizations is known.
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[11] S. Sabău and N. Martins. On the stabilization of LTI de-
centralized configurations under quadratically invariant
sparsity constraints. In Allerton Conference on Com-
munication, Control, and Computing, pages 1004–1010,
2010.

[12] C. W. Scherer. Structured finite-dimensional controller
design by convex optimization. Linear Algebra and its
Applications, 351-352:639–669, 2002.

[13] P. Shah and P. A. Parrilo. H2-optimal decentralized
control over posets: A state space solution for state-
feedback. In IEEE Conference on Decision and Control,
pages 6722–6727, 2010.

[14] J. Swigart. Optimal Controller Synthesis for Decentral-
ized Systems. PhD thesis, Stanford University, 2010.

[15] J. Swigart and S. Lall. A graph-theoretic approach to
distributed control over networks. In IEEE Conference
on Decision and Control, pages 5409–5414, 2009.

[16] A. S. M. Vamsi and N. Elia. Design of distributed con-
trollers realizable over arbitrary directed networks. In
IEEE Conference on Decision and Control, pages 4795–
4800, 2010.

[17] A. S. M. Vamsi and N. Elia. Optimal realizable net-
worked controllers for networked systems. In American
Control Conference, pages 336–341, 2011.

[18] V. Yadav, M. Salapaka, and P. Voulgaris. Architectures
for distributed controller with sub-controller communi-
cation uncertainty. IEEE Transactions on Automatic
Control, 55(8):1765–1780, aug. 2010.

[19] D. Youla, H. Jabr, and J. Bongiorno, J. Modern wiener-
hopf design of optimal controllers–Part II: The multi-

variable case. IEEE Transactions on Automatic Control,
21(3):319–338, 1976.

[20] D. Zelazo and M. Mesbahi. H2 analysis and synthesis
of networked dynamic systems. In American Control
Conference, pages 2966–2971, 2009.

[21] K. Zhou, J. Doyle, and K. Glover. Robust and optimal
control. Prentice-Hall, 1995.

A Proof of Counterexample

In this section, we provide a proof that the example (2)
of Figure 2 is not S2-realizable.

Proof. Suppose G2 has a stabilizable and detectable
realization in S2. Label the blocks of this realization as

A =


A11 0 0 0
0 A22 0 0

A31 A32 A33 0
A41 A42 0 A44

 .

and similarly for B and C. Expand C(sI − A)−1B and
equate with G2. The four equations corresponding to
each of the nonzero entries Gij are

[
Cij Cii

](
sI −

[
Ajj 0
Aij Aii

])−1 [
Bjj

Bij

]
=

1

s− 1
(7)

for (i, j) ∈
{

(3, 1), (3, 2), (4, 1), (4, 2)
}

. A minimal real-
ization for G2 is given by

G2 =


1 1 1 0 0

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0


Since we have assumed our realization to be stabilizable
and detectable, the eigenvalues of A must consist of the
unstable eigenvalue 1, together with some number of sta-
ble eigenvalues. Since A is block-lower-triangular, the
eigenvalue 1 must appear as an eigenvalue of exactly one
of the Aii for i = 1, . . . , 4. For (i, j) = (3, 1), we deduce
from (7) that the eigenvalue 1 is contained in either A11

or A33, but for (i, j) = (4, 2), we deduce that it is con-
tained in either A22 or A44. This contradiction implies
that no structured stabilizable and detectable realization
of G2 can exist.
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