

Nonlinear Control and Servo Systems

Lecture 2

Anders Robertsson

Nonlinear Control and Servo Systems

SIG

RVMQL

INA

Lecture 2

Anders Robertsson

Nonlinear Control and Servo Systems

Lecture 2

Anders Robertsson

To be able to

- prove local and global stability of an equilibrium point through Lyapunov's method
- show stability of a set (for example, a limit cycle) through invariant set theorems

To be able to

- prove local and global stability of an equilibrium point through Lyapunov's method
- show stability of a set (for example, a limit cycle) through invariant set theorems

- Slotine and Li: Chapter 3
- Lecture notes

2

(日)

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892.

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892.

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892.

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892.

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892.

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892.

Lyapunov's idea

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

Lyapunov's idea

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

If the total energy is dissipated, the system must be stable.

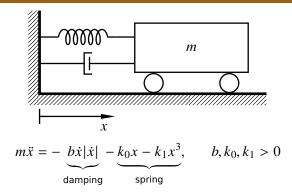
Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

A Motivating Example



The energy can be shown to be

$$V(x, \dot{x}) = m\dot{x}^2/2 + k_0 x^2/2 + k_1 x^4/4 > 0, \qquad V(0, 0) = 0$$

$$\frac{d}{dt}V(x, \dot{x}) = m\dot{x}\ddot{x} + k_0 x\dot{x} + k_1 x^3 \dot{x} = -b|\dot{x}|^3 < 0, \qquad \dot{x} \neq 0$$

10/21

An equilibrium point x = 0 of $\dot{x} = f(x)$ is

locally stable, if for every R > 0 there exists r > 0, such that

 $||x(0)|| < r \quad \Rightarrow \quad ||x(t)|| < R, \quad t \ge 0$

locally asymptotically stable, if locally stable and

$$||x(0)|| < r \implies \lim_{t \to \infty} x(t) = 0$$

globally asymptotically stable, if asymptotically stable for all $x(0) \in \mathbf{R}^n$.

An equilibrium point x = 0 of $\dot{x} = f(x)$ is

locally stable, if for every R > 0 there exists r > 0, such that

 $||x(0)|| < r \quad \Rightarrow \quad ||x(t)|| < R, \quad t \ge 0$

locally asymptotically stable, if locally stable and

$$||x(0)|| < r \implies \lim_{t \to \infty} x(t) = 0$$

globally asymptotically stable, if asymptotically stable for all $x(0) \in \mathbf{R}^n$.

An equilibrium point x = 0 of $\dot{x} = f(x)$ is

locally stable, if for every R > 0 there exists r > 0, such that

 $\|x(0)\| < r \quad \Rightarrow \quad \|x(t)\| < R, \quad t \ge 0$

locally asymptotically stable, if locally stable and

$$||x(0)|| < r \implies \lim_{t \to \infty} x(t) = 0$$

globally asymptotically stable, if asymptotically stable for all $x(0) \in \mathbf{R}^{n}$.

Lyapunov Theorem for Local Stability

Theorem

Let $\dot{x} = f(x)$, f(0) = 0, and $0 \in \Omega \subset \mathbf{R}^n$. Assume that $V : \Omega \to \mathbf{R}$ is a C^1 function. If

• V(0) = 0

•
$$V(x) > 0$$
, for all $x \in \Omega$, $x \neq 0$

•
$$\frac{d}{dt}V(x) \le 0$$
 along all trajectories in Ω

then x = 0 is locally stable. Furthermore, if also

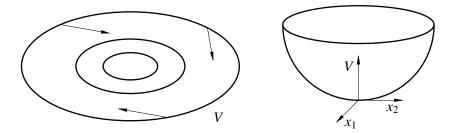
•
$$\frac{d}{dt}V(x) < 0$$
 for all $x \in \Omega$, $x \neq 0$

then x = 0 is locally asymptotically stable.

Proof: see p. 62.

A Lyapunov function fulfills $V(x_0) = 0$, V(x) > 0 for $x \in \Omega$, $x \neq x_0$, and

$$\dot{V}(x) = \frac{d}{dt}V(x) = \frac{dV}{dx}\dot{x} = \frac{dV}{dx}f(x) \le 0$$



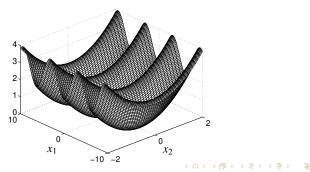
2 min exercise—Pendulum

Show that the origin is locally stable for a mathematical pendulum.

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -\frac{g}{\ell} \sin x_1$$

Use as a Lyapunov function candidate

 $V(x) = (1 - \cos x_1)g\ell + \ell^2 x_2^2/2$



Theorem Let $\dot{x} = f(x)$ and f(0) = 0. Assume that $V : \mathbf{R}^n \to \mathbf{R}$ is a C^1 function. If

- V(0) = 0
- V(x) > 0, for all $x \neq 0$
- $\dot{V}(x) < 0$ for all $x \neq 0$
- $V(x) \to \infty$ as $||x|| \to \infty$

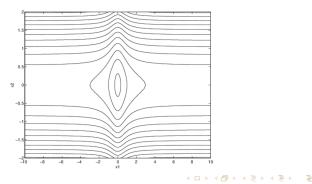
then x = 0 is globally asymptotically stable.

Radial Unboundedness is Necessary

If the condition $V(x) \to \infty$ as $||x|| \to \infty$ is not fulfilled, then global stability cannot be guaranteed.

Example Assume $V(x) = x_1^2/(1 + x_1^2) + x_2^2$ is a Lyapunov function for a system. Can have $||x|| \to \infty$ even if $\dot{V}(x) < 0$.

Contour plot V(x) = C:



A matrix M is **positive definite** if $x^T M x > 0$ for all $x \neq 0$. It is **positive semidefinite** if $x^T M x \ge 0$ for all x.

A symmetric matrix $M = M^T$ is positive definite if and only if its eigenvalues $\lambda_i > 0$. (semidefinite $\Leftrightarrow \lambda_i \ge 0$)

Note that if $M = M^T$ is positive definite, then the Lyapunov function candidate $V(x) = x^T M x$ fulfills V(0) = 0 and V(x) > 0 for all $x \neq 0$.

ヘロト 不得 トイヨト イヨト

A symmetric matrix $M = M^T$ satisfies the inequalities

$$\lambda_{\min}(M) \|x\|^2 \leq x^T M x \leq \lambda_{\max}(M) \|x\|^2$$

(To show it, use the factorization $M = U\Lambda U^*$, where U is a unitary matrix, ||Ux|| = ||x||, U^* is complex conjugate transpose, and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$.)

For any matrix M one also has

$$\|Mx\| \leq \lambda_{\max}^{1/2}(M^T M)\|x\|$$

Theorem The eigenvalues λ_i of A satisfy $\operatorname{Re} \lambda_i < 0$ if and only if: for every positive definite $Q = Q^T$ there exists a positive definite $P = P^T$ such that

$$PA + A^T P = -Q$$

Proof of $\exists Q, P \Rightarrow Re \lambda_i(A) < 0$: Consider $\dot{x} = Ax$ and the Lyapunov function candidate $V(x) = x^T P x$.

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x = -x^T Q x < 0, \quad \forall x \neq 0$$

 $\Rightarrow \quad \dot{x} = Ax \quad \text{asymptotically stable} \quad \Longleftrightarrow \quad \text{Re } \lambda_i < 0$ Proof of $\underline{\text{Re } \lambda_i(A) < 0 \Rightarrow \exists Q, P:}$ Choose $P = \int_0^\infty e^{A^T t} Q e^{At} dt$

Recall from Lecture 2:

Theorem Consider

 $\dot{x} = f(x)$

Assume that x = 0 is an equilibrium point and that

$$\dot{x} = Ax + g(x)$$

is a linearization.

- (1) If $\operatorname{Re} \lambda_i(A) < 0$ for all *i*, then x = 0 is locally asymptotically stable.
- (2) If there exists *i* such that $\lambda_i(A) > 0$, then x = 0 is unstable.

Proof of (1) in Lyapunov's Linearization Method

Lyapunov function candidate $V(x) = x^T P x$. V(0) = 0, V(x) > 0 for $x \neq 0$, and

$$\dot{V}(x) = x^T P f(x) + f^T(x) P x$$

= $x^T P [Ax + g(x)] + [x^T A + g^T(x)] P x$
= $x^T (PA + A^T P) x + 2x^T P g(x) = -x^T Q x + 2x^T P g(x)$

 $x^T Q x \ge \lambda_{\min}(Q) \|x\|^2$

and for all $\gamma > 0$ there exists r > 0 such that

$$\|g(x)\| < \gamma \|x\|, \qquad \forall \|x\| < r$$

Thus, choosing γ sufficiently small gives

$$\dot{V}(x) \le - \left(\lambda_{\min}(Q) - 2\gamma\lambda_{\max}(P)\right) \|x\|^2 < 0$$