
fontinst
Font installation software for TEX

Alan Jeffrey Rowland McDonnell Lars Hellström
fontinst v1.9 · August 2009

tfm

afm

pl vplfd

vf pfa pfbtex

dvi

ps

fontinst

pltotf vptovf

latex

dvips

This manual describes the fontinst software for converting fonts from Adobe Font Metric format to forms readable by TEX. This
manual should be distributed with the fontinst software, which is available by anonymous FTP from ftp://ftp.tex.ac.uk/
tex-archive/fonts/utilities/fontinst, and on the various CD-ROMs containing material from the CTAN archives. Please
do not contact the author directly for copies.

If you would like to report a bug with fontinst, please mail fontinst@tug.org. The mail will be sent to the fontinst mailing

list. If you would like to be on the fontinst mailing list, see http://tug.org/mailman/listinfo/fontinst.

Contents

1 Introduction 7
1.1 Overview of the process . 8

2 Defining terms 9
2.1 What’s a font? . 9
2.2 Fonts and characters . 16
2.3 What are verbatim, typewriter, and monowidth fonts? . 18

3 Fontmaking commands 19
3.1 Install commands . 21
3.2 Transformation commands . 26
3.3 The \latinfamily command . 29
3.4 Reglyphing commands . 29
3.5 Miscellaneous settings . 32
3.6 Low-level conversion commands . 34
3.7 Other . 36

3

4 Mapmaking commands 36
4.1 Mapfile command reference . 36
4.2 Drivers . 37
4.3 Configuration commands . 38
4.4 Basic conversion commands . 42

5 General commands 43
5.1 Variables . 43
5.2 Argument types and expansion . 47
5.3 Integer expressions . 48
5.4 Conditionals and loops . 51
5.5 Other general commands . 55

6 Encoding files 57
6.1 Encoding commands . 58
6.2 Slot commands . 60
6.3 Other . 63

7 Metric files 64
7.1 Metric commands . 64
7.2 Glyph commands . 67
7.3 Kerning commands . 71
7.4 Other . 73

8 fontdoc commands 74
8.1 Comment commands . 74
8.2 Style control commands . 75

9 fontinst variables 75

4

10 Customisation 90

11 Notes on features new with v 1.9 91
11.1 Metric packages . 91
11.2 Word boundary ligatures and kerns . 93
11.3 Changing the names of glyphs . 94
11.4 Making map file fragments . 97
11.5 Tuning accent positions—an application of loops . 101
11.6 Font installation commands . 104
11.7 Bounding boxes . 109

5

6

1 Introduction

The purpose of fontinst is to make digital fonts, as they may be bought from a foundry or other supplier,
usable with (LA)TEX; in general, they are not directly so. An obvious problem can be that the font informa-
tion is not available in a format that TEX understands. A more subtle problem is that the fonts are often
organised in a way that is unsuitable for automatic typesetting. It is furthermore necessary to inform
(LA)TEX and related software about the existence of the new font, and the pieces of code needed to do this
are somewhat exotic.

Regarding the first problem, fontinst can bridge the gap between non-TEX and TEX-specific file formats,
but may need some help from other tools (pltotf, vptovf, ttf2afm, etc.) with conversions between
text and binary file formats. Regarding the last problem, fontinst can generate the necessary code, al-
though you may in some cases need to paste it into the right configuration file yourself. It is however
with respect to the second problem that fontinst shines, as the many minutiae of providing fonts for
(LA)TEX are automated to a very high degree, while still providing you as user with the power to fine-tune
every detail of the output. In addition, fontinst is available for every platform that has TEX.

The reason fontinst is so portable is simply that it is written in TEX, exploiting those features of the lan-
guage which does other things than typesetting. A drawback of this is the inability to work directly with
binary file formats, but an advantage is that users do not need to learn a separate command language
before they can configure the tool; fontinst only introduces a set of new TEX commands, not a new set of
syntax rules. Moreover, many encoding and metric files used with fontinst can also be typeset as LATEX
documents, yielding a rendering of their contents which might be more pleasing to the eye than the raw
code.

The main thing fontinst does is creating virtual fonts (vf’s). For this, it takes the approach that the
world is full of glyphs, and a subset of these are to be picked, perhaps tweaked, and finally wrapped
up as a new font for TEX to use. In the basic case where one merely wants to make a specific foundry-
supplied font available to TEX, what one does is to present only that font as glyphbase for fontinst, since
this means all glyphs in the resulting virtual font will come from that base font, only reorganised to

7

meet the requirements of (LA)TEX. It is however not uncommon to use several base fonts for forming a
single glyphbase, maybe because the foundry has arbitrarily decided to divide the basic font up into
separate “base”, “expert”, and “alternate” varieties that don’t match the needs of TEX, or maybe because
the foundry did not provide all the glyphs of standard TEX fonts and glyphs from some other font family
are used to fill in the gaps. Either way, since it’s you that’s doing the packaging, it is you that gets to say
what goes into the package.

In the process of creating some virtual fonts, many minor pieces of data are encounted that would be
needed when informing (LA)TEX and related software about these new fonts. Fontinst records this infor-
mation and provides for writing finished files in the most common formats, notably LATEX fd files and
dvips map files. One can even ask fontinst to have certain transformations performed on the base fonts,
to extend or tweak the repertoire of glyph shapes that are available.

1.1 Overview of the process

If you’re using fontinst, the usual steps you need to take to use an ordinary PostScript latin text font with
LATEX are these: Related com-

mands:
1. Gather afm files for the base fonts you want to make use of, and (optionally) give the afm files

appropriate names.

2. Use fontinst to produce 8r encoded pl files from these afm files. \transformfont

3. Use fontinst to create T1 and OT1 encoded pl and vpl files from the 8r encoded pl files (this \installfont
procedure will also create suitable fd files).

4. Use fontinst (its finstmsc.sty variety) to generate the mapfile entries needed for the above. \adddriver

5. Use pltotf to turn each pl file into a tfm file.

6. Use vptovf to turn each vpl file into a pair of vf and tfm files.

8

7. Move the tfm, vf, and fd files into the appropriate directories so LATEX can see them.

8. Tell your dvi driver about the new font (typically involves editing some configuration file or files,
possibly also running some helper command to update cached configuration information).

9. Test it. (The LATEX command \usefont lets you select a font by encoding, family, series, and shape.
The PlainTEX file testfont.tex provides an easy way of producing font tables.)

10. Perhaps write a package file to make selecting the new font a little easier.

The examples/basic/basicex.tex file contains examples of doing 2 and 3; in many cases, it is pos-
sible to use the \latinfamily command to do all of this. The examples/basic/basicex2.tex file
contains examples of doing 4.

2 Defining terms

The process of making fonts usable involves some rather technical issues, so in order to understand a
discussion of what is going on, it is necessary to first get the terminology straight. Feel free to skip parts
of this if you think you already know the material covered or for the moment want to concentrate on
other aspects of what fontinst does, but bear in mind that you may then have reason to return to this
section at a later time.

2.1 What’s a font?

Once upon a time, this question was easily answered: a font is a set of type in one size, style, etc. There
used to be no ambiguity, because a font was a collection of chunks of type metal kept in a drawer, one
drawer for each font.

These days, with digital typesetting, things are more complicated. What a font ‘is’ isn’t easy to pin down.
A typical use of a PostScript font with LATEX might use these elements:

9

• Type 1 printer font file

• Bitmap screen font file

• Adobe font metric file (afm file)

• TEX font metric file (tfm file)

• Virtual font file (vf file)

• font definition file (fd file)

Looked at from a particular point of view, each of these files ‘is’ the font. So what’s going on?

2.1.1 Type 1 printer font files

These files contain the information needed by your printer to draw the shapes of all the characters
in a font. They’re typically files with a pfa or pfb extension; on Macs they’re usually in files of type
‘LWFN’ and have icons that look like a laser printer. The information in all these formats is basically the
same: the only difference is in its representation. pfa stands for ‘printer font ASCII’, while pfb stands
for ‘printer font binary’. pfa files are pure PostScript code (though in parts highly convoluted) and can
typically be pasted into or copied from PostScript documents using a text editor if one feels like hack-
ing. Since pfa files contain a large chunk of hex-encoded binary data, they are however about twice the
size of the equivalent pfb, where text and binary data reside in separate sections of an overall binary file
format.

Printer font files are not used directly by TEX at all – TEX just prepares a dvi file that refers to the fonts
by name and the characters by number: TEX knows nothing about the shapes involved. The dvi driver
uses the printer font files when you ask it to print the dvi file. This means that you can produce a dvi
file which uses, say, Palatino, even if you do not have the Type 1 printer font file for this font on your
computer. You will need to find a computer that does have Palatino before you can print it or preview it,

10

though. (PdfTEX is different from TEX in this respect; since pdfTEX integrates most of the functionality of
a dvi driver, it may be unable to generate working pdf output if the some Type 1 printer font file is not
available.)

Dvi drivers generating pdf often require Type 1 fonts to be in pfb format, as that is very close to how the
data is stored in a pdf file.

2.1.2 Bitmap screen font files

These files contain a low-resolution bitmap for drawing a representation of the font on the screen of
your computer if ATM is not installed. In the TEX world, these files are only used for screen previews by
dvi drivers that use the windowing system for rendering text.

Technically, pk files are also bitmap font files, for use on screen or with a printer, but TEX systems tend
to be set up so that pk files are generated automatically when needed. (Of course, this requires that the
font is first available in some other format, usually mf or pfb.)

2.1.3 Adobe font metric files (afm files)

These files are text files which contain information about the size of each character in a font, kerning
and ligature information, and so on. They can’t be used by TEX directly, but the information they contain
is essential if you want to use a font with TEX. Fontinst can from an afm file create the necessary tfm
and vf files (well, really pl and vpl files, but see below) so you can use a font with TEX. Once you have
created all the files you need to use a font with TEX, you can remove the corresponding afm files from
your computer unless you have other software that needs them.

The job of turning an afm file into a set of tfm and vf files is one of the main uses for fontinst. Most of
this document is concerned with this process, so don’t worry if it seems a bit vague at the moment.

11

2.1.4 TrueType and OpenType font files

The TrueType format was created as an Apple–Microsoft collaboration to avoid being dependent on
Adobe’s font technologies. Later Adobe and Microsoft went on to define the OpenType format, which is
a development of TrueType. However, the three don’t always agree on the fine details of the format.

A TrueType font file is a collection of rather disparate tables, and can therefore contain scalable outline
fonts (like PostScript type 1), bitmap screen fonts, and font metrics all in one file; for software with
direct support for TrueType this tends to simplify font installation, but for TEX it rather adds a level of
complication. An advantage for TEX use is that the suppliers provide font metrics in a cross-platform
format (as opposed to rather obscure platform-specific formats, which could previously be the norm),
but they still have to undergo conversion before we can use them. TrueType is furthermore a “there is
more than one way to do it” format, so it sometimes happens that information which is present in the
font is ignored by some programs because that information happened to be in an unusal format. . .

Classical TrueType fonts have outlines defined in terms of quadratic Bezier curves. The main addition
in the OpenType specification was a second outline format (CFF/type 2) which uses cubic Bezier curves.
Both outline formats are directly supported in pdf and can (even if the driver doesn’t have built-in sup-
port for the format) with a thin wrapper be used in PostScript, but there is also a tradition of rather
converting to type 1 before using such fonts with TEX; the latter leads to a slight drop in quality.

2.1.5 TEX font metric files (tfm files)

These are binary data files in a format designed for use by TEX which contain (more-or-less) the same
information as afm files: the size of each character in a font (font metric data), kerning, and ligature
information.

When you select a font in TEX, you are telling TEX to typeset using a particular tfm file; from TEX’s point
of view, a tfm file (and nothing else) is a font. TEX itself doesn’t see printer font files, screen bitmaps, pk
files, vf files, or anything else to do with fonts: only tfm files.

12

TEX uses these tfmfiles to decide where to put characters when typesetting. From TEX’s point of view, tfm
files are fonts, even though they contain no information about the shape of letters, and are rarely needed
by anything except TEX. (Dvi drivers generally read tfm files so that they can keep track of exact glyph
widths and fine-tune positioning accordingly, but they would get by fairly well with only the information
in the printer fonts.)

2.1.6 Property list files (pl files)

pl files are human-readable text files which contain all the font metric, kerning, ligature, and other
information needed to create a tfm file. You can convert between the two file formats using tftopl and
pltotf, which are standard utilities in a TEX system.

2.1.7 Virtual font files (vf files)

These are binary data files in a format designed for use by TEX dvi drivers. Their main purpose in life is
to replace the raw font abstraction available in the printer with one more convenient for TEX. These files
are used by dvi driver software only.

Dvi drivers use vf files to work out what should really be printed when you ask for a particular character.
Technically they are like subroutine libraries for dvi drivers, with one subroutine for each character in
the virtual font: when the dvi driver sees a dvi command to set a character from a virtual font, it will
execute a sequence of dvi commands (the “mapcommands property” of this character) that it reads in
the vf file. You need not worry about the details of this, as fontinst deals with them for you. Creating
and using virtual fonts is what this document is about, so don’t worry if this doesn’t make sense yet.
(After all, how much do you need to know about the inner workings of dvi files to typeset and print TEX
documents?)

13

Each vf file has a tfm file with the same name. To use a virtual font, you select the tfm file as the font to
use in your document. When the dvi driver comes across this tfm file in the dvi file, it looks up the vf
file and uses that to decide what to do.

2.1.8 Virtual property list files (vpl files)

vpl files are human-readable text files which contain all the font metric, kerning, mapping, and other
information needed to create a vf and tfm pair.

vptovf will create a vf/tfm pair from a vpl file. vftovp will create a vpl from a vf/tfm pair. vftovp also
needs to be able to read all the tfm files that are referred to by a vf to recreate the vpl – it looks at the
checksums to verify that everything’s okay.

2.1.9 Font definition files (fd files)

These are files containing commands to tell LATEX which tfm files to associate with a request for a font
using LATEX’s font selection commands.

For example, here is a small and edited part of the fd file supplied with PSNFSS to allow you to use the
Adobe Times font in T1 encoding:

\ProvidesFile{t1ptm.fd}
[1997/02/11 Fontinst v1.6 font definitions for T1/ptm.]

\DeclareFontFamily{T1}{ptm}{}

\DeclareFontShape{T1}{ptm}{m}{n} {<-> ptmr8t}{}
\DeclareFontShape{T1}{ptm}{m}{it}{<-> ptmri8t}{}

14

...
\DeclareFontShape{T1}{ptm}{b}{n} {<-> ptmb8t}{}
\DeclareFontShape{T1}{ptm}{b}{it}{<-> ptmbi8t}{}
...

What this means is: when you use LATEX to select the font family ptm in T1 encoding in the medium
series (m) and normal shape (n), TEX uses the font ptmr8t.tfm. Similarly, if you select bold italic, TEX
uses ptmbi8t.tfm.

LATEX works out which fd file to load based on the current encoding and font family selected. If you’ve
selected T1 encoded ptm like this:

\fontencoding{T1}\fontfamily{ptm}\selectfont

LATEX loads the file t1ptm.fd (if it doesn’t exist, you’re in trouble). As you can see above, this file contains
information so that LATEX knows which tfm file to use. So if you ask for, say, T1/ptm/b/it (T1 encoded
Times-Roman, bold series, italic shape), you get the font ptmbi8t.

You can find more about fd files and LATEX’s font selection commands at CTAN: ftp://ftp.tex.ac.
uk/tex-archive/macros/latex/base/fntguide.tex and ftp://ftp.tex.ac.uk/tex-archive/
info/simple-nfss.tex are both useful.

2.1.10 Font mapping files (map files)

These are files telling dvi drivers which printer fonts correspond to specific TEX fonts (tfm files) – how
a specific TEX font should be mapped onto a font concept available in the dvi driver’s output format.
Unlike tfm, fd, and vf files, which tend to be found as soon as they’re in a suitable location (such as
the current directory), mapfiles typically need to be fully installed or selected through a command-line
option before any notice is taken of them.

15

The format of mapfiles varies from driver to driver, but a common format is that of dvips, where each line
is a separate entry (except lines that contain comments). The first word of an entry is the TEX font name,
the second word is the basic printer font name, and remaining words provide additional information
(e.g., the name of the file in which the font is stored).

The default in most TEX systems is that fonts are assumed to be mf fonts unless there is a specific map file
entry which says otherwise. Hence if you’re trying to use a new Type 1 font, but the dvi driver gives you
an error message that ‘somefile.mf not found’, then the problem is most likely with the mapfiles.

2.2 Fonts and characters

The term ‘character’ (or just ‘char’) is frequently used in discussions of fonts, but not always correctly,
and when getting into the details of what fontinst does it is necessary to keep the terminology straight.

Glyph A glyph is an image, often associated with one or several characters. Some examples of glyphs
are: ‘A’, ‘A’, ‘A ’, ‘B’, ‘F’, ‘f’, ‘fi’, ‘˜’. Fonts are collections of glyphs. Fontinst refers to glyphs by name.

Slot This is jargon for ‘a numbered position in a font’. (What is important is the number, and that this
number refers to a position in a font, but which font is usually specified separately.) For typeset-
ting, TEX identifies glyphs as “slot n in font f ”.

Character The modern definition is that a character is the smallest component of written language
that has semantic value. Speaking of a character, one refers to the abstract meaning, rather than a
specific shape.

Since fonts have often contained a unique glyph for each character and each usable glyph has
been assigned a particular slot, it is not uncommon (in particular in older terminology) to see
the three mixed up, usually so that one says ‘character’ where one of the other two would have
been more correct. The TEX-related font file formats is no exception, as you may see examples of
elsewhere in this document.

16

Encoding There are really two different encoding concepts that one encounters when using fontinst.
The differences are not great, and an encoding of one kind often corresponds to an encoding of
the other kind, but it is not merely a matter of translation.

A LATEX encoding is a mapping from characters (or more formally LATEX Internal Character Repre-
sentations) to slots. In the OT1 encoding, ‘ø’ (or more technically ‘\o’) maps to slot 28, whereas in
the T1 encoding it maps to slot 248. This kind of encoding affects what TEX is doing; dvi drivers
are not involved.

A font encoding (or encoding vector) is a mapping from slots to glyph names. This is the kind of
encoding that fontinst primarily deals with, and also the kind of encoding that dvi drivers make
use of. ot1.etx associates slot 28 with ‘oslash’, whereas t1.etx and EC.enc (one of several to
T1 corresponding encoding vectors that come with dvips) associates slot 28 with ‘fi’.

LATEX encodings occur in fontinst only as names and only in relation to fd files. It is unlikely that
you will need to create one of your own. The mappings defined by font encodings are on the other
hand of great importance and etx files are used to direct the generation of virtual fonts. Advanced
fontinst users may well find that they need to create new font encodings to achieve their goals.

fontinst creates vpl and pl files from afm or pl files to map any glyph or combination of glyphs in the
original font files to any slot in the output font file. There, isn’t that better? Off you go now. . .

The thing is that the average PostScript font comes in Adobe standard encoding, which, for example,
has the glyph dotless i ‘ı’ in slot 245. But TEX T1 encoding expects the glyph o dieresis ‘ö’ in that slot,
and wants dotless i in slot 25. So if you tried to use a raw PostScript font with TEX, any time you tried to
get an ‘ö’, you’d get a ‘ı’; and every time you tried to get a ‘ı’, you’d get a blank, because Adobe standard
encoding says that slot 25 is empty. The process of dealing with this problem is called ‘re-encoding’, and
is one thing fontinst helps with.

17

2.3 What are verbatim, typewriter, and monowidth fonts?

The verbatim, typewriter, and monowidth concepts are common sources of confusion for those who
use fontinst to install fonts with LATEX; in particular there are many misconceptions about the relation
between them. The official view (of which not much has actually been brought forward) is that these
concepts are really about three quite different things.

A font is a monowidth (monospaced, fixed-pitch) font if all glyphs in it have exactly the same width.
Some font formats make special provisions for such fonts; the most notable example is the afm format,
where a single CharWidth keyword specifies the width for all glyphs in the font. Fontinst responds to
this by including the command

\setint{monowidth}{1}

in the mtx file generated from an afm, but that is everything that is hard-wired into the program. That
a font is monowidth is however something that one should take note of when installing it for TEX, as it
means many of the glyphs in it have such a strange appearance that they are (pretty much) useless. The
endash is for example usually only half as long as the hyphen and the letters in ligature glyphs are only
half as wide as normal letters. Many of the etx and mtx files that come with fontinst contain special
commands to avoid making use of such degenerate glyphs.

That a font is a typewriter font really only means that it has a typewriterish look about it. The two most
familiar typewriter fonts are probably Computer Modern Typewriter (cmtt) and Courier. Both of these
fonts are monowidth, but there is no absolute rule about this. One of the standard TEX fonts is for exam-
ple Computer Modern Variable-width Typewriter (cmvtt), which is not a monowidth font, as Figure 1
shows.

The verbatim concept has very little to do with fonts at all; in LATEX it is considered to be a property of
the environment (verbatim, macrocode, etc.) rather than a property of the font. The connection there
is with fonts is that the encoding of the font must contain visible ASCII (as defined in Appendix C of
The TEXbook) as a subset for the text to be rendered correctly. The cmtt family is the only one amongst

18

cmtt: The quick brown fox jumps over the lazy dog.
cmvtt: The quick brown fox jumps over the lazy dog.

Figure 1: Two typewriter fonts

the original Computer Modern fonts which meets this criterion and that is the primary grounds for the
idea that these three concepts should be connected. Today that reason is at best a very weak one, as all
T1-encoded fonts also meet the criterion of containing visible ASCII as a subset.

A circumstance which has probably added to the confusion is that OT1 is usually claimed to be one
encoding. In reality the Computer Modern fonts that are declared in LATEX as being OT1 display as many
as five different encodings, as shown in Table 1. Since most monowidth fonts are only used for setting
verbatim text, there is some code in ot1.etx which automatically chooses a TEX TYPEWRITER TEXT
encoding for the font when the monowidth integer is set. The only reason for this is the guess that this is
what the user wanted.

3 Fontmaking commands

There are three main types of files that you may write to control what fontinst does: command files
(usually with suffix .tex), encoding definition files (suffix .etx), and metric files (suffix .mtx). Command
files directly tell fontinst to do things, whereas the purpose of an encoding or metric file is more to store
data, but all three file types are technically sequences of TEX commands that fontinst execute when
reading the file. Normal TEX syntax rules apply in all three file types, although a few commands may
behave in unfamiliar ways.

Within the command file category, it is possible to discern certain subcategories. Most command files
are written for one particular task, but some are common pieces that have been factored out from larger

19

TEX TEXT

TEX TEXT
WITHOUT

F-LIGATURES

TEX
TYPEWRITER

TEXT

non-italic

cmb10
cmbx5–12
cmbxsl10
cmdunh10
cmff10
cmfib8
cmr6–17

cmsl8–12
cmss8–17
cmssbx10
cmssdc10
cmssi8–17
cmssq8
cmssqi8
cmvtt10

cmcsc8–10
cmr5

cmsltt10
cmtcsc10
cmtt8–12

italic

cmbxti10
cmfi10
cmti7–12
cmu10

cmitt10

Table 1: “OT1-encoded” Computer Modern fonts, collected according to the actual font encoding

command files and are merely meant to be \input where appropriate. (csc2x.tex in the fontinst dis-
tribution is an example of this latter kind.) One may also distinguish between command files that are
made for use with fontinst.sty command definitions and command files that are made for use with
finstmsc.sty command definitions. This section documents the commands that are particular to the
former category, whereas the next section documents commands that are particular to the latter.

20

3.1 Install commands

The core fontmaking takes place within a block of “install commands”. (This name is a bit unfortunate
since nothing is actually installed; rather some files that need to be installed are generated.) Such blocks
have the structure

\installfonts
〈install commands〉
\endinstallfonts

The 〈install commands〉 describe the fonts, glyphs and encodings used to build fonts, whereas the pur-
pose of the delimiting \installfonts and \endinstallfonts are rather to organise the writing of fd
files.

\installfonts
\endinstallfonts

At \installfonts, fontinst’s internal list of fd files to generate are cleared. At \endinstallfonts, fd
files are written for those combinations of encoding and font family that appeared in the 〈install commands〉.
Note for hackers. \installfonts, \endinstallfonts, and the individual install commands between them also
cooperate in a rather complicated grouping scheme to cache glyphbases. This may interfere with non-fontinst
commands in the 〈install commands〉. If for example an assignment to some \tracing. . . parameter here does not
seem to have any effect, try making the assignment \global.

The most important 〈install command〉 is

\installfont{〈font-name〉}{〈metrics-list〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This produces a TEX virtual font called 〈font-name〉. The 〈metrics-list〉 and the 〈etx-list〉 determine this
font, whereas the other arguments specify how the fd file will declare it for LATEX. The 〈encoding〉,

21

〈family〉, 〈series〉, and 〈shape〉 are precisely the NFSS parameters. The 〈size〉 is either a shorthand de-
clared by \declaresize (see below), or is an fd size specification.

Like most fontinst lists, the elements in the 〈metrics-list〉 and 〈etx-list〉 are separated by commas (so-
called comma-separated lists). In their simplest form, the elements of these lists are file names (minus
suffixes): mtx files in the 〈metrics-list〉 and etx files in the 〈etx-list〉. First the mtx files are processed to
build up a glyphbase, i.e., store definitions of glyphs and their metric properties in memory, and then the
etx files are processed (several times) to select a set of glyphs and write the corresponding information
to a vpl file.

For example, to install the T1-encoded Times Roman font (using t1.etx and latin.mtx), you say:

\installfont{ptmr8t}{ptmr8r,latin}{t1}
{T1}{ptm}{m}{n}{}

To install a OT1-encoded Times Roman font, with a scaled version of Symbol for the Greek letters, you
say:

\installfont{zptmrsy}{ptmr8r,psyr scaled 1100,latin}{ot1}
{OT1}{ptm}{m}{n}{}

As the second example indicates, there is more to the list items than just file names. In the case of an
metrics list item, the syntax permits the two forms

〈filename〉〈optional modifiers〉
\metrics 〈metric commands〉

where an 〈optional modifier〉 is one of New feature
v1.923

22

␣scaled␣〈rawscale factor〉
␣suffix␣〈glyph name suffix〉
␣encoding␣〈etx〉
␣option␣〈string〉

A list item may contain several such modifiers, but most commonly it does not contain any. The
〈metric commands〉 are explicit metric commands, as described in Section 7; this latter feature is meant
for minor adjustments that you don’t want to bother creating a separate mtx file for.

The 〈filename〉 above primarily refers to a file 〈filename〉.mtx, but that need not always exist before
executing the above command. If there exists a pl, afm, or vpl file with the right name then that is first
converted to a corresponding mtx file. However, a special case occurs if there is an encoding modifier:
this forces conversion of a pl or vpl file even if an mtx file exists, and also forces using the specified
etx file when assigning glyph names to the slots of that file. Normally the choice of etx file for such
conversions to mtx is based on \declareencoding declarations.

The scaled modifier sets the rawscale variable for the processing of that file. This has the effect of
scaling all raw glyphs from that file to 〈rawscale factor〉 per milles of their previous size. The suffix
modified causes the 〈glyph name suffix〉 to be implicitly appended to all glyphs defined by this file. The
option modifier adds the 〈string〉 to the list of “options” for this file. The \ifoption command can be
used in the file to test whether a particular string has been supplied as an option.

Note for hackers. In general, fontinst commands process comma-separated list arguments by first splitting at com-
mas and then fully expanding each item, but this 〈metrics-list〉 argument is an exception. This is first fully expanded
(\edef) and then split into items. The difference is that a macro used in this 〈metrics-list〉 argument can expand to
several list items, whereas a macro used in an ordinary comma-separated list argument can only expand to (part
of) a single list item.

The \metrics list items do however constitute an exception within this exception. These list items are in their
entirety protected from the initial full expansion, so you don’t have to worry about peculiar fragility errors there.

The elements in the 〈etx-list〉 have fewer variants, but there is still a general syntax

23

〈filename〉〈optional modifiers〉

The 〈optional modifier〉s permitted are:

␣mtxasetx
␣option␣〈string〉

The option one is as for metric files. mtxasetx is probably only relevant for use with \installrawfont
(see below).

\installfontas{〈font-name〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉} New feature

v1.912

This install command adds an fd entry for the 〈font-name〉, but it doesn’t actually generate that font.
Usually that font was generated by a previous \installfont, and this is used to create additional en-
tries for the font.

\installrawfont{〈font-name〉}{〈metrics-list〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This is similar to \installfont except that it produces a TEX raw font as plfile rather than a virtual font.
Often a pl file with the specified name will already exist when this command is called, and that will then
be overwritten. These two pl files will typically be somewhat different. The normal reason for using
this command is that one wishes to “refine” the metrics of a font that was generated by transformation
commands.

For example, to install an 8r-encoded Times Roman raw font (using 8r.etx and 8r.mtx), you say:

\installrawfont{ptmr8r}{ptmr8r,8r}{8r}
{8r}{ptm}{m}{n}{}

24

(The files referred to are, in order, ptmr8r.pl, ptmr8r.mtx, 8r.mtx, and 8r.etx.)

The effect of a

〈filename〉␣mtxasetx New feature
v1.923

in the 〈etx-list〉 is not that 〈filename〉.etx is read, but that 〈filename〉.mtx is read. The interpretation
of the commands in this file is however not the customary, and almost the only thing paid attention to
is the correspondence between glyph names and slot numbers that is provided by the \setrawglyph
and \setscaledrawglyph commands; this correspondence is treated as if it was given by \setslot . . .
\endsetslot commands in an etx file. This is however only guaranteed to work with transformable
metric files.

The purpose of this feature is to simplify installation of fonts with very special encodings, such as “Ding-
bat” or “Pi” fonts. Instead of creating an etx file, which would probably only be useful with that particu-
lar font, one can make use of the fact that the interesting information is anyway available in the mtx file.
To install Zapf Dingbats in their default encoding, one can thus say

\installrawfont{pzdr}{pzdr}{pzdr mtxasetx}
{U}{pzd}{m}{n}{}

Unlike the case with\installfont, which actually creates a real (although virtual) font, \installrawfont
can only create the metrics for a font. The dvi driver will require some other kind of implementation of
this font, usually an entry in some map file (e.g. psfonts.map, in the case of dvips) that links the TEX
font name to e.g. a PostScript font name and file. (Many dvi drivers are configured in such a way that
they, without such a map file entry, will call Metafont with the font name and thereby raise a sequence
of error messages about a .mf that doesn’t exist. These results are often rather confusing.)

25

\installfamily{〈encoding〉}{〈family〉}{〈fd-commands〉}

This tells fontinst to write an fd file for the given combination of encoding and family, and clears the
internal list of entries to put in that file. \installfamily commands usually come first in each block of
〈install commands〉.
For example, if you intend to produce a T1-encoded Times family of fonts, you say:

\installfamily{T1}{ptm}{}

The 〈fd-commands〉 are executed every time a font in that family is loaded, for example to stop the
Courier font from being hyphenated you say:

\installfamily{T1}{pcr}{\hyphenchar\font=-1}

In more recent versions of fontinst, the \installfamily command is only necessary if you want the
〈fd-commands〉 argument to be nonempty, but it doesn’t hurt to make it explicit.

Note for hackers. The 〈fd-commands〉 argument is tokenized with the current catcodes and written to file without
expansion. In particular this means that spaces will be inserted after all control sequences whose names consists of
letters, which can be unexpected if you intend to make use of control sequences whose names contain @ characters.

One way around this is to use\fontinstcc and\normalcc to temporarily switch catcodes around the\installfamily
command.

3.2 Transformation commands

\transformfont{〈font-name〉}{〈transformed font〉}

This makes a raw transformed font, for example expanded, slanted, condensed or re-encoded. It is the

26

responsibility of the device driver to implement this transform. Each \transformfont command writes
out an mtx file and a raw pl file for 〈font-name〉.
The following commands are valid 〈transformed font〉s:

\fromafm{〈afm〉}
\fromany{〈whatever〉}
\frompl{〈pl〉}
\fromplgivenetx{〈pl〉}{〈etx〉}
\frommtx{〈mtx〉}

These read the metrics of the font which is about to be transformed from an external file. \fromafm,
\frompl, and \fromplgivenetx write out an mtx file corresponding to the afm or pl file. In addition,
\fromafm also writes out a raw pl file, containing just the glyph metrics but no kerning information.
\fromplgivenetx permits specifying which encoding file to use when associating glyph names to slots,
whereas \frompl tries to guess this from the CODINGSCHEME property of the pl file. \fromany looks for
a file in any of the formats (in the order mtx, pl, afm) and behaves as the first \from. . . for which it found
a file.

A 〈transformed font〉 may also be one of the following:

\scalefont{〈integer expression〉}{〈transformed font〉}
\xscalefont{〈integer expression〉}{〈transformed font〉}
\yscalefont{〈integer expression〉}{〈transformed font〉}
\slantfont{〈integer expression〉}{〈transformed font〉}

This applies a geometric transformation to the font metrics of 〈transformed font〉. The scale factor or
slant factor are given in units 1000 to the design size. Typical examples are 167 for slanted fonts (a slant
of 1

6) or 850 for condensed fonts (shrunk to 85% of their natural width).

The final case of a 〈transformed font〉 is:

27

\reencodefont{〈etx〉}{〈transformed font〉}

This rearranges the encoding vector of 〈transformed font〉 to match the encoding given by the etx file.

For example, to create an oblique, 8r-encoded version of Adobe Times called ptmro8r you say:

\transformfont{ptmro8r}{
\reencodefont{8r}{

\slantfont{167}{\fromafm{ptmr8a}}
}

}

This will create ptmr8a.mtx, ptmr8a.pl, ptmro8r.mtx and ptmro8r.pl, which can then be used as
raw fonts in \installfont commands. The equivalent transformation can also be achieved in two
steps:

\transformfont{ptmr8r}{\reencodefont{8r}{\fromafm{ptmr8a}}}
\transformfont{ptmro8r}{\slantfont{167}{\frommtx{ptmr8r}}}

This will create ptmr8a.mtx, ptmr8a.pl, ptmr8r.mtx, ptmr8r.pl, ptmro8r.mtx and ptmro8r.pl.

You will have to inform your device driver about the transformed font, using the syntax appropriate for
that driver. For example, in dvips you add a line to psfonts.map:

ptmro8r Times-Roman ".167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

See Section 4 and Subsection 11.4 for details on how to generate such lines automatically.

28

3.3 The \latinfamily command

\latinfamily{〈family〉}{〈commands〉}

This command is by itself an entire \installfonts . . . \endinstallfonts block, automatically doing
\transformfonts, \installfonts, and \installrawfonts depending on which base font metrics it
finds. It generates virtual fonts in the T1, OT1, and TS1 encodings.

There is really much to much about this command for it to be described in full here. Please see other
available documentation.

\fakenarrow{〈width factor〉}

This command makes \latinfamily fake ‘narrow’ fonts in the family it is working on, by x-scaling the
normal fonts. The 〈width factor〉 is the scale factor to use.

3.4 Reglyphing commands

“Reglyphing” is an mtx file transformation that changes glyph names but leaves the slot numbers and
metrics as they were; optionally it may drop some of the metric commands. See Subsection 11.3 for an
introduction to this.

Like installation commands, reglyphing commands are preferably placed in a block between two delim-
iter commands:

\reglyphfonts
〈reglyphing commands〉
\endreglyphfonts

The purpose of these delimiter commands is to delimit the scope in which the various declarations

29

made take effect. After \endreglyphfont, you’re back to the “clean” state that existed before the
\reglyphfont.

\reglyphfont{〈destination font〉}{〈source font〉}

This is the only command that actually does something; all the other commands simply set parameters
for the processing carried out here. What the command does is that it reads the 〈source font〉 (which
may be in mtx, pl, afm, or vpl format, but will be converted to mtx before it is read for reglyphing) and
writes each command back to the 〈destination font〉 (in mtx format only), but often with some subtle
modifications.

It should be observed that the “destination font” generated by this command is not a real font, but just
an mtx file. If that mtx file contains raw glyph defintions (\setscaledrawglyph commands) then these
will refer to the 〈source font〉, so that is all a dvi driver needs to be informed about.

\renameglyph{〈to〉}{〈from〉}
\renameglyphweighted{〈to〉}{〈from〉}{〈weight〉}
\killglyph{〈glyph〉}
\killglyphweighted{〈glyph〉}{〈weight〉}

The \renameglyph and \renameglyphweighted commands cause each reference to the glyph 〈from〉
in the source font to be replaced by a reference to the glyph 〈to〉 in the destination font. Thus if the
source font contains a command that sets a glyph with the name 〈from〉, then this will in the destination
font be changed to a command that sets a glyph with the name 〈to〉, but with the same metrics, slot, and
base font name as in the source font. Kerns are similarly adjusted to be for the 〈to〉 glyph.

There is also a “weight” associated with each command being copied from source font to destination
font, and if that weight is too small then the command will be omitted from the destination font.
The weight of a command is the sum of the weights of all glyphs mentioned in that command. A

30

glyph for which no settings have been made has weight 0. A glyph name which is the 〈from〉 of a
\renameglyphweighted or the 〈glyph〉 of a \killglyphweighted has the 〈weight〉 specified there. A
〈from〉 glyph of a \renameglyph gets the weight stored in the renameweight integer variable (by default
1) and the 〈glyph〉 of a \killglyph gets the weight stored in the killweight integer variable (by default
−10). It is this large negative weight that makes \killglyph “kill” glyphs.

The weight condition for keeping a command is given by the \iftokeep command, which is regarded
as a fontinst command variable (see Section 9). The default definition is to keep things with non-
negative weight (typically everything that doesn’t involve a glyph that has been killed), but for example
csckrn2x.tex redefines it to only keep things with positive weight (typically everything involving at
least one glyph that has been renamed and not any that has been killed).

\offmtxcommand{〈command〉}
\onmtxcommand{〈command〉}

Turning a command ‘off’ using \offmtxcommand means no such commands are to be copied to a des-
tination font by \reglyphfont. Turning it back ‘on’ using \onmtxcommand restores it to normal, i.e.,
whether it is copied depends on the weight of the command.

Note for hackers. \offmtxcommand and \onmtxcommand are wrappers around the general-purpose \offcommand
and \oncommand commands (see Subsection 5.1). The wrapping makes the general commands to act on a fam-
ily of internal macros, namely those which are used by \reglyphfont as definitions of the transformable metric
commands.

31

3.5 Miscellaneous settings

\substitutesilent{〈to〉}{〈from〉}
\substitutenoisy{〈to〉}{〈from〉}

This declares a LATEX font substitution, that the series or shape 〈to〉 should be substituted if necessary
by the series or shape 〈from〉. Font substitutions happen at \endinstallfonts time, and cause font
declarations using sub or ssub to be added to the fd files being written.

\substitutenoisymeans that a warning will be given when the substitution is made by LATEX. \substitutesilent
means that LATEX should not warn when the font substitution is made.

For example, to say that the series bx can be replaced by the series b (a request for series bx selects a font
with actual series b), you say:

\substitutesilent{bx}{b}

To say that the shape ui can be replaced by the shape it (a request for shape ui selects a font with actual
shape it), you say:

\substitutenoisy{ui}{it}

The following weight substitutions are standard:

\substitutesilent{bx}{b}
\substitutesilent{b}{bx}
\substitutesilent{b}{sb}
\substitutesilent{b}{db}
\substitutesilent{m}{mb}
\substitutesilent{m}{l}

32

The following shape substitutions are standard:

\substitutenoisy{ui}{it}
\substitutesilent{it}{sl}
\substitutesilent{sl}{it}

In order to disable a default substitution, use the 〈from〉 for both arguments.

The \installfontas command should be considered as an alternative to using font substitution, as it
gives much finer control over what fd entries will be made.

\declaresize{〈size〉}{〈fd-size-range〉}

This declares a new size shorthand, and gives the fd size specifications for it. For example, fontinst.
sty declares the following sizes:

\declaresize{}{<->}
\declaresize{5}{<5>}
\declaresize{6}{<6>}
\declaresize{7}{<7>}
\declaresize{8}{<8>}
\declaresize{9}{<9>}
\declaresize{10}{<10>}
\declaresize{11}{<10.95>}
\declaresize{12}{<12>}
\declaresize{14}{<14.4>}
\declaresize{17}{<17.28>}
\declaresize{20}{<20.74>}
\declaresize{25}{<24.88>}

33

The first of these is what gives an empty 〈size〉 argument for the font installation commands the meaning
“all sizes”.

\declareencoding{〈string〉}{〈etx〉}

This declares which etx file corresponds to which CODINGSCHEME string, and is used when reading met-
rics in pl format. For example, fontinst.sty declares the following encoding strings:

\declareencoding{TEX TEXT}{ot1}
\declareencoding{TEX TEXT WITHOUT F-LIGATURES}{ot1}
\declareencoding{TEX TYPEWRITER TEXT}{ot1tt}
\declareencoding{TEX MATH ITALIC}{oml}
\declareencoding{TEX MATH SYMBOLS}{oms}
\declareencoding{TEX MATH EXTENSION}{omx}
\declareencoding{EXTENDED TEX FONT ENCODING - LATIN}{t1}
\declareencoding{TEX TEXT COMPANION SYMBOLS 1---TS1}{ts1}
\declareencoding{TEXBASE1ENCODING}{8r}
\declareencoding{TEX TYPEWRITER AND WINDOWS ANSI}{8y}

3.6 Low-level conversion commands

The following commands are the low-level commands which carry out various conversions. There’s
usually no need to bother about them unless you are hacking fontinst, but you may see them in the
header comments of files fontinst generates, so here’s a description of what they do and when they are
used.

34

\afmtomtx{〈afmfile〉}{〈mtxfile〉}
\generalpltomtx{〈plfile〉}{〈mtxfile〉}{〈plsuffix〉}{〈opt-enc〉}

These handle importing font metric data to the fontinst native mtx format.

\afmtomtx converts metrics inafm format. It uses theminimumkern integer variable and the\slanteditalcorr
and \uprightitalcorr command variables.

\generalpltomtx converts metrics in pl or vpl format. If the 〈opt-enc〉 string expression is nonempty
then that is taken as the name of an etx file that assigns glyph names to the slots in the font.

\mtxtomtx{〈source MTX〉}{〈destination MTX〉}

This is the heart of the \transformfont command. It makes use of the x-scale, y-scale, and
slant-scale integer variables, and the etx-name string variable.

\mtxtopl{〈mtxfile〉}{〈plfile〉}

This converts mtx metrics to pl format; more precisely it generates CHARACTER property lists for
\setrawglyph and \setscaledrawglyph commands. Kerning information is ignored.

The command is used immediately after an \afmtomtx or \mtxtomtx. The invariant is that if there can
be some \setrawglyph or \setscaledrawglyph command which refers to a glyph in some font, then
there must also be a pl file with metrics for that font.

\etxtovpl{〈encoding list〉}{〈vplfile〉}
\etxtopl{〈encoding list〉}{〈plfile〉}

These are the cores of \installfont and \installrawfont respectively. They don’t really convert
files—it’s more like generating a vpl or pl under the control of the etx.

35

3.7 Other

The following commands also belong in this section, but don’t belong to any of the major groups.

\recordtransforms{〈filename〉}
\endrecordtransforms

See Subsection 11.4 for an explanation of how these are used.

\NOFILES

This command switches off file generation, and causes fontinst to only generate empty files. It only
affects the user level commands, so it is primarily of use when debugging commands that build on
these, such as for example the \latinfamily command.

4 Mapmaking commands

The commands described in this section are for use with command files that input finstmsc.sty.

4.1 Mapfile command reference

For an introduction to making map file entries, see Subsection 11.4.

\adddriver{〈driver name〉}{〈fragment file name〉}

This opens the file 〈fragment file name〉 for writing mapfile entries to. The 〈driver name〉 selects the

36

format of these entries. Note that if the 〈fragment file name〉 does not include a suffix, it will get the
suffix tex, which is probably not what you want.

\makemapentry{〈TEX font name〉}

This causes a mapfile entry for the specified font to be written to all files currently open for receiving
mapfile entries. These commands are usually automatically generated by fontinst.

\donedrivers

This closes all files open for receiving mapfile entries.

4.2 Drivers

The 〈driver name〉s that may be used with \adddriver are:

dvips

The dvips driver. The mapfiles generated are useful also with pdfTEX, but one does not always use the
exact same file for both; sometimes they require different settings.

dvipdfm

The dvipdfm dvi-to-pdf driver. Not much tested, but appears to work.

pltotf New feature
v1.915

37

Not really a dvi driver. The file that is generated is a shell script of pltotf commands for converting
precisely those pl files which are needed to tfm files (fontinst generally generates also a bunch of pl files
that in the end turn out to be unnecessary). The TFMfileprefix variable can be used to specify a path
to the directory where these files should be placed.

debug

Not a dvi driver either, but for each base font a report on the information that was available. Useful if
you need to write the driver file yourself.

Note for hackers. Creating a new driver 〈foo〉 is mostly a matter of suitably defining the \make_〈foo〉 command.

4.3 Configuration commands

The following commands configure the generation of mapfile entries, mostly with respect to how various
pieces of information are deduced from other pieces.

\AssumeAMSBSYY
\AssumeBaKoMa
\AssumeMetafont

These commands change what the map file writer does when it needs to know the PostScript name for
a font but only knows the TEX name. This usually happen when the metrics came from a pl file.

\AssumeAMSBSYY tells it to uppercase the TEX name and use that as PostScript name; this is correct for
the AMS/Blue Sky/Y&Y conversions of the Computer Modern fonts.

\AssumeBaKoMa tells it to lowercase the TEX name and use that as PostScript name; this is correct for the
BaKoMa conversions of the Computer Modern fonts.

38

\AssumeMetafont tells it to ignore base fonts for which no PostScript name is known, on the assump-
tion that they are mf fonts.

\AssumeLWFN

This commands changes what the map file writer does when it needs to know the name of the file in
which a PostScript font is stored. The file name is constructed from the PostScript font name using the
5+3+3+·· · convention used in (Classic) Mac OS.

By default fontinst uses as PostScript font file name the TEX name of the font (i.e., the name of the source
afm or whatever file) and appends to that the contents of the PSfontsuffix string.

For fonts which fit neither of these schemes, one can give individual specifications using the command

\specifypsfont{〈PS font name〉}{〈actions〉}

Note that the font is here identified using its PostScript font name, not the TEX font name.

An 〈action〉 is one of1

\download{〈file〉}
\fulldownload{〈file〉} New feature

v1.928

where 〈file〉 is a file to download (‘download’ typically means “include in the generated PostScript output
or equivalent”). The difference between \download and \fulldownload have to do with how partial
downloading (subsetting) of fonts should be handled. \download means use the driver’s defaults (often
settable via command line options) for this. \fulldownloadmeans don’t subset: always include the full
font, if fontinst knows how to express this in a map file entry for this particular driver.

1Additional actions can be added in the future, if there is a need for them. It is not a problem if not all driver can support an
action, since all actions typically default to \download.

39

If FooBar-Regular is a non-subsettable font, then you may specify this to fontinst through a command
like

\specifypsfont{FooBar-Regular}{\fulldownload{foobar.pfb}}

To specify that the PDF “base 14” fonts do not require downloading, one would say

\specifypsfont{Courier}{}
\specifypsfont{Courier-Bold}{}
\specifypsfont{Courier-BoldOblique}{}
\specifypsfont{Courier-Oblique}{}
\specifypsfont{Helvetica}{}
\specifypsfont{Helvetica-Bold}{}
\specifypsfont{Helvetica-BoldOblique}{}
\specifypsfont{Helvetica-Oblique}{}
\specifypsfont{Times-Roman}{}
\specifypsfont{Times-Bold}{}
\specifypsfont{Times-Italic}{}
\specifypsfont{Times-BoldItalic}{}
\specifypsfont{Symbol}{}
\specifypsfont{ZapfDingbats}{}

When more than one action appears in the 〈actions〉 argument, then it is usually the last that actually
creates the font, whereas the others contain resources needed by the last.

\declarepsencoding{〈etx〉}{〈postscript name〉}{〈action〉}

This command specifies how reencoding using a particular etx file should be performed by the driver.
The 〈postscript name〉 is the PostScript name of the encoding vector used, whereas the 〈action〉 is the

40

action (as above) that the driver needs to perform to make the encoding known to whatever it is that it
is serving (often a PostScript interpreter).

Usually the right thing to do is to \download an enc file, but there is also an action

\encodingdownload{〈file〉} New feature
v1.931

which tries to express the fact that the 〈file〉 contains an encoding vector. In the case of dvips this is
only necessary if (i) the font is being subsetted and (ii) the 〈file〉 name is nonstandard (does not end with
enc).

\providepsencoding{〈etx〉}{〈postscript name〉}{〈action〉} New feature
v1.931

This command is the same as \declarepsencoding, except that it doesn’t do anything if an encoding
has already been declared for this 〈etx〉. It is used for autogenerated encoding declarations, so that these
will not override one issued by the user.

\storemapdata{〈TEX font name〉}{〈source〉}{〈transforms〉}

This records information about how the font named 〈TEX font name〉 was generated. Such commands
are usually found in the file of recorded transforms. If a font is encountered for which no information has
been stored, then the corresponding mtx file will be sourced, looking for a \storemapdata command
there.

A 〈source〉 is one of

41

\fromafm{〈afm name〉}{〈PS name〉}
\frompl{〈pl name〉}
\frommtx{〈mtx name〉}
\fromvpl

Note that several of them have a different syntax and meaning than they do in fontmaking command
files.

A 〈transform〉 is one of

\reencodefont{〈etx〉}
\reglyphfont
\transformfont{〈x-scale〉}{〈slant-scale〉}

Note that all of these have a different meaning than they do in fontmaking command files.

\debugvalue{〈name〉}

This adds a value to the list of those that are reported by the debug driver. Example:

\debugvalue{PS_font_file}

4.4 Basic conversion commands

Some of the basic “convert an X file to a Y file” commands in fontinst are not useful as part of a font-
making run, and are available only in finstmsc.sty to conserve some memory.

\enctoetx{〈encfile〉}{〈etxfile〉}

This reads the file 〈encfile〉.enc which should be simple PostScript code defining a PostScript encod-

42

ing vector and generates a corresponding rudimentary fontinst encoding file 〈etxfile〉.etx. It’s a basic
“import encoding to fontinst” command.

\etxtoenc{〈etxfiles〉}{〈encfile〉} New feature
v1.911

This does the opposite of \enctoetx; the information in the etx files that is converted is the correspon-
dence between slots and glyph names. The 〈etxfiles〉 argument is a comma-separated list of encoding New feature

v1.927files which are superimposed to generate the PostScript encoding. The first \setslot for a particular
slot is the one which decides which glyph will be placed there.

\etxtocmap{〈etxfile〉}{〈cmapfile〉} New feature
v1.928

This reads an etx file and generates a corresponding ToUnicode CMap file; the information that is con-
verted is the map from slot numbers to \Unicode code points.

5 General commands

This section describes commands and mechanisms that are the same in all file types. Commands that
are particular for one type of file are described in subsequent sections.

5.1 Variables

Many (but not all) of the activities fontinst perform can be understood as either “setting variables” or
“formatting and writing to file data stored in some variable”. The accessing of variables is an important
aspect of how fontinst works.

43

Variables come in different types and variables of different types live in different namespaces; \int{foo},
\str{foo}, and \dim{foo} refer to three different variables which are all named foo. Variables are ei-
ther set or not set. Unless the contrary is stated explicitly, each variable defaults to not being set. It is an
error to access the value of a variable that has not been set. Fontinst variable assignments are as a rule
local, i.e., will be undone when the enclosing TEX group is ended. Most command file commands that
cause files to be read will begin a group before reading the file(s) and end the group at some point after
having read them.

Taking string variables as an example, there are three commands for changing a string variable:

\setstr{〈name〉}{〈string expression〉}
\resetstr{〈name〉}{〈string expression〉}
\unsetstr{〈name〉}

The \resetstr command unconditionally sets the string variable 〈name〉 to the full expansion of the
〈string expression〉. The \unsetstr command unconditionally renders the string variable 〈name〉 unset.
If the the string variable 〈name〉 is currently unset then the \setstr command will set it to the full
expansion of the 〈string expression〉, but if it already is set then \setstr does nothing.

This pattern with three commands, one \set. . . which only sets unset variables, one \reset. . . which
sets variables regardless of whether they have been set or not, and one \unset. . . which unsets variables
is recurring in fontinst. Variables are most commonly set using some \set. . . command; this has the
effect that the first command to try to set a variable is the one which actually sets it.

If \set. . . is the command for setting the value of a variable, the command for getting that value has the
same name without the set part, e.g., \setint–\int, \setglyph–\glyph, etc. (Notable exceptions are
\setkern, where the “get” command is called \kerning, and \setcommand, where no separate “get”
command is needed.) There are typically also conditionals for testing whether variables are set, and
these take the form \ifis. . .{〈name〉}\then.

44

\setdim{〈dim〉}{〈dimension〉}
\setint{〈int〉}{〈integer expression〉}
\setstr{〈str〉}{〈string expression〉}

If the dimension variable 〈dim〉 is currently undefined, it is defined to be the current value of 〈dimension〉.
If the integer variable 〈int〉 is currently undefined, it is defined to be the current value of 〈integer expression〉.
If the string variable 〈str〉 is currently undefined, it is defined to be the current value of 〈string expression〉.

\setcommand{〈command〉}〈parameter text〉{〈replacement text〉}

If the command 〈command〉 is currently undefined, it is defined to grab parameters as specified by the
〈parameter text〉 and then expand to the 〈replacement text〉. This uses the same syntax for parameters
as the TEX \def command.

Number of parameters 〈parameter text〉
0 (empty)
1 #1
2 #1#2
3 #1#2#3

and so on.

Some examples:

\setcommand\lc#1#2{#2}
\setcommand\lc#1#2{#1small}

With the first definition, \lc{A}{a} expands to a, but with the second it expands to Asmall.

45

\resetdim{〈dim〉}{〈dimension〉}
\resetint{〈int〉}{〈integer expression〉}
\resetstr{〈str〉}{〈string expression〉}

The dimension variable 〈dim〉 is defined to be the current value of 〈dimension〉.
The integer variable 〈int〉 is defined to be the current value of 〈integer expression〉.
The string variable 〈str〉 is defined to be the current value of the 〈string expression〉. (\resetstr mostly
boils down to a TEX \edef command.)

\resetcommand{〈command〉}〈parameter text〉{〈replacement text〉}

The command 〈command〉 is defined to grab parameters as specified by the 〈parameter text〉 and then
expand to the 〈replacement text〉. This is a synonym for the TEX \def command.

\unsetdim{〈dim〉}
\unsetint{〈int〉}
\unsetstr{〈str〉}
\unsetcommand{〈command〉}

Makes 〈dim〉, 〈int〉, 〈str〉, or 〈command〉 an undefined dimension, integer, string or command.

\offcommand{〈command〉}
\oncommand{〈command〉} New feature

v1.900

\offcommand turns off a command, i.e., it redefines it to do nothing (while still taking the same number
of arguments). \oncommand turns a command back on, i.e., it restores the definition the command had
before a previous \offcommand. Using \offcommand on a command that is already off or \oncommand
on a command that is not off has no effect.

46

5.2 Argument types and expansion

Most arguments of fontinst commands belong to one of the following six categories:

• integer expressions,

• string expressions,

• comma-separated lists of string expressions,

• dimensions,

• commands (i.e., a single TEX control sequence), and

• code (zero or more commands in sequence, each of which may have arguments of its own).

Integer expressions are explained in Subsection 5.3 below.

The most common form of a string expression is simply a sequence of character tokens, but any bal-
anced text which expands to such a sequence of tokens is legal. Several of the standard etx files use
macros in string expressions to make glyph names to some extent configurable. Besides such custom
macros, the following fontinst commands may be used to access variable values inside a string expres-
sion

\strint{〈int〉}
\str{〈str〉}
\dim{〈dim〉}

Incidentally, these 〈int〉, 〈str〉, and 〈dim〉 are themselves string expressions (for the names of integer,
string, and dimen respectively variables).

Dimensions are simply TEX 〈dimen〉s; their use is rather limited. Fontinst does not provide for any sort
of “dimen expressions”. Most actual lengths are expressed as integer expressions, in AFM units (1/1000
of the font size).

47

Common to integer expressions, string expressions, and dimensions is that these argument types get
expanded during evaluation (in the case of string expressions, this expansion is the evaluation), which
means one can use macros in arguments of these types. Command arguments do not get expanded—
they are mainly used with commands that modify the definitions of other commands.

Comma-separated lists of string expressions are first split at commas (without prior expansion) and
each element is then treated as a string expression (i.e., gets expanded). (As remarked elsewhere, the
〈metrics-list〉 argument of \installfont is not properly a comma-separated list of string expressions,
even though it may look like one.)

Code arguments are generally expanded, but one should not make any presumptions about when this
will happen, and similarly not assume that code placed in such an argument will only be executed once.
It is typically safe to use a macro in a code argument if the definition of that macro stays the same
throughout, but one should otherwise not use any other commands in code arguments than those ex-
plicitly documented as legal there.

Finally, there are command arguments which do not fall into any of these categories. For these, one
cannot give any rules: they might get expanded, but it could also happen that they won’t.

5.3 Integer expressions

The integer expressions provide a user-friendly syntax for TEX arithmetic. They are used to manipulate
any integers, including glyph dimensions (which are given in AFM units, that is 1000 to the design size).
TEX pl fonts have their dimensions converted to AFM units automatically.

The integer expressions are:

〈number〉

Returns the value of a TEX 〈number〉 (as explained in The TEXbook). Typical examples of this kind of

48

integer expression are 0, 1000, 538, -20, "9C, ’177, etc.

\int{〈int〉}

Returns the value of the integer variable 〈int〉.

\width{〈glyph〉}
\height{〈glyph〉}
\depth{〈glyph〉}
\italic{〈glyph〉}

Returns the width, height, depth, or italic correction of the glyph variable 〈glyph〉.

\kerning{〈left〉}{〈right〉}

Returns the kerning between the 〈left〉 and 〈right〉 glyphs. Unlike other types of variable accesses, where
it is an error to access something that has not been explicitly set, this command returns 0 if no kern has
been set between the two glyphs.

49

\neg{〈integer expression〉}
\add{〈integer expression〉}{〈integer expression〉}
\sub{〈integer expression〉}{〈integer expression〉}
\max{〈integer expression〉}{〈integer expression〉}
\min{〈integer expression〉}{〈integer expression〉}
\mul{〈integer expression〉}{〈integer expression〉}
\div{〈integer expression〉}{〈integer expression〉}
\scale{〈integer expression〉}{〈integer expression〉}
\half{〈integer expression〉}
\otherhalf{〈integer expression〉}

These commands evaluate their argument(s) and perform some arithmetic operations on the result(s).

\neg returns the negation of the 〈integer expression〉.
\add returns the sum of the two 〈integer expression〉s.

\sub returns the first 〈integer expression〉 minus the second.

\max returns the maximum of the two 〈integer expression〉s.

\min returns the minimum of the two 〈integer expression〉s.

\mul returns the product of the two 〈integer expression〉s.

\div returns the first 〈integer expression〉 divided by the second.

\scale returns the first 〈integer expression〉 times the second, divided by 1000. \scale does better
rounding than the corresponding combination of \mul and \div.

\half returns half the 〈integer expression〉. It does better rounding than\scale{〈integer expression〉}{500}
or \div{〈integer expression〉}{2}.

\otherhalf returns the “other half” of the 〈integer expression〉, i.e., the sum of \half something and
\otherhalf the same thing is that thing back.

50

5.4 Conditionals and loops

Fontinst has a rather extensive family of conditionals (\ifs), and as of late also some convenient loop
commands. The most common forms of a fontinst conditional are

\if. . . 〈argument(s)〉\then 〈then branch〉 \Fi
\if. . . 〈argument(s)〉\then 〈then branch〉 \Else 〈else branch〉 \Fi

i.e., fontinst uses PlainTEX style conditionals (with else and fi control sequences) rather than LATEX style
conditionals (with separate arguments for the two branches). Every \if. . . command can be thought of
as testing some condition. If the condition is true then the 〈then branch〉 will be executed, but not the
〈else branch〉 (if there is one). If the condition is false then the 〈then branch〉 will not be executed, but if
there is an 〈else branch〉 then that will be executed. Conditionals may be nested (i.e., occur in the then
or else branch).

Note for hackers. The \then is not just syntactic sugar, but a functional part of those conditionals which take
arguments. Its purpose is to look like an \if to TEX when the conditional occurs in a skipped branch of another
conditional.

The most common conditionals are those which test if a variable is set.

\ifisint{〈int〉}\then
\ifisdim{〈dim〉}\then
\ifisstr{〈str〉}\then
\ifiscommand{〈command〉}\then

These cause the following 〈then branch〉 to be executed if the specified variable is set, and the 〈else branch〉
to be executed if the variable is not set. The 〈int〉, 〈dim〉, and 〈str〉 are string expressions for the names of
an integer, dimension, and string respectively variable. The 〈command〉 is the actual control sequence
(command variable) that should be tested.

51

\ifisglyph{〈glyph〉}\then

This similarly tests if a glyph (also a variable of a kind) is set in the current glyph base. The glyph name
〈glyph〉 is a string expression.

\ifareglyphs{〈glyph list〉}\then New feature
v1.917

This command tests whether all the glyphs in the 〈glyph list〉 (a comma-separated list of string expres-
sions) are set in the current glyph base. If one of the glyphs is not set then the condition is false.

\ifnumber{〈integer expression〉}〈rel〉{〈integer expression〉}\then New feature
v1.900

The 〈rel〉 is one of <, =, and >. This command evaluates the two 〈integer expression〉s and then tests
whether the specified relation holds between their values.

\ifiskern{〈glyph1〉}{〈glyph2〉}\then New feature
v1.900

This tests whether a kern has been set with 〈glyph1〉 on the left and 〈glyph2〉 on the right (both arguments
are string expressions). This is almost the negation of

\ifnumber{\kerning{〈glyph1〉}{〈glyph2〉}}={0}\then

but \ifiskern can distinguish the case that an zero kern has been set (true) from the case that no such
kern has been set (false), which \kerning can not. It is however unlikely that this distinction would ever
be of use in a practical situation.

\ifoption{〈string〉}\then New feature
v1.924

52

Test whether 〈string〉 (a string expression) is among the current list of options. This list is by default
empty, elements are added using option modifiers (cf. the description of \installfont), and the list
is cleared for each new file for which one can specify options.

\Else \Fi New feature
v1.909

For fontinst, these two control sequences are precisely the same as the TEX primitives \else and \fi,
but things are a bit more complicated in fontdoc. The mechanism in fontdoc that allows it to present
both branches of the conditional in the typeset output requires that \Else and \Fi generate typeset
output. See also the \showbranches fontdoc command.

Note for hackers. Before \Else and \Fi were introduced, the TEX primitives \else and \fi were used instead for
fontinst conditionals. Back then, fontdoc defined all conditionals to expand to \iftrue.

It used to be the case that all conditionals would be fully expandable (which in particular would have made it
possible to use them in string expressions), but that is no longer the case.

The fontdoc formatter for visible branches treats an \Else immediately followed by an ‘if’ as an ‘else
if’, i.e., it assumes the entire else branch consists of the conditional begun at that ‘if’ and leaves out
one level of indentation. When that is not the case, you will upon typesetting get a LATEX error about
\begin{IfBranchDummy} and \end{IfBranch}. In that case you need to help the formatter by plac-
ing something between the \Else and the ‘if’; as it turns out leaving an empty line there is sufficient
(although just a single newline is not).

\for(〈name〉){〈start〉}{〈stop〉}{〈step〉} 〈body〉 \endfor(〈name〉) New feature
v1.901

will cause the 〈body〉 code to be repeated some number of times. How many depends on the values of
〈start〉, 〈stop〉, and 〈step〉, which are integer expressions.

As a precaution, the 〈body〉 is not allowed to contain any empty lines (\par tokens). If you want to have
the visual separation (for sakes of legibility or otherwise), put a % somewhere on the line—that makes it

53

nonempty.

〈name〉 should consist of character tokens only. It is used as the name of an integer variable, which
will serve as loop variable. This variable gets reset to the value of 〈start〉 before the first repetition of
〈body code〉. After each repetition but the last, it is incremented by 〈step〉. 〈body〉 gets repeated if the
value of 〈name〉 has not gotten past that of 〈stop〉. To get past means to be bigger if 〈step〉 is positive and
to be smaller if 〈step〉 is negative. In the case that 〈step〉 is zero, the entire construction above will be
equivalent to

\resetint{〈name〉}{〈start〉}
〈body〉

\for . . . \endfor constructions can be nested. 〈name〉 is used by \for to identify its matching \endfor,
so they need to be identical in \for and \endfor. Note that the delimiters around the 〈name〉 are
parentheses, not braces.

\foreach(〈name〉){〈csep-list〉} 〈body〉 \endfor(〈name〉) New feature
v1.901

will cause the 〈body〉 code to be repeated one time for each item in the 〈csep-list〉. 〈csep-list〉 is a comma-
separated list of string expressions.

As a precaution, the 〈body〉 is not allowed to contain any empty lines (\par tokens). If you want to have
the visual separation (for sakes of legibility or otherwise), put a % somewhere on the line—that makes it
nonempty.

〈name〉 should consist of character tokens only. It is used as the name of a string variable, which will
serve as loop variable. Before each repetition of the 〈body code〉, the loop variable will get reset to the
next item in the 〈csep-list〉.
\foreach. . . \endfor constructions can be nested. 〈name〉 is used by \foreach to identify its matching
\endfor, so they need to be identical in \foreach and \endfor. Note that the delimiters around the
〈name〉 are parentheses, not braces.

54

5.5 Other general commands

\needsfontinstversion{〈version〉}

This issues a warning if the current version of the fontinst package is less than 〈version〉.

\needsTeXextension{〈extension tests〉}{〈who〉} New feature
v1.914

The \needsTeXextension command issues a warning if fontinst is not being run on one of the listed
extensions of TEX. This can be used to protect files that make use of features not present in base TEX. As
〈who〉 is preferably used the file name in which the command occurs; it should be the answer to “who is
issuing this warning?”

An extension test is one of:

\eTeX{〈version number〉}
\pdfTeX{〈version number〉}{〈revision〉}

Multiple tests in sequence are OR’ed together. If you rather need to AND them, then use separate
\needsTeXextension commands.

Note for hackers. At present there is no test for Omega. This is really a shame, because the extended character codes
(outside the 0–255 range) provided by Omega is the existing extension that would be most useful for fontinst, but
Omega documentation does not give any indication of how such a test should be implemented. Code contributions
are welcome.

\fontinstcc
\normalcc New feature

v1.915

\fontinstcc switches to the catcodes used in e.g. fontinst.sty: _ and @ are letters, space and newline

55

are ignored, and ~ is a space. \normalcc switches back to normal catcodes.

\begincomment 〈text〉 \endcomment New feature
v1.900

This hides the 〈text〉 from fontinst processing, but allows it to show up when the file is typeset with font-
doc.

\fontinsterror{〈subsystem〉}{〈error〉}{〈help〉}
\fontinstwarning{〈subsystem〉}{〈warning〉}
\fontinstwarningnoline{〈subsystem〉}{〈warning〉}
\fontinstinfo{〈subsystem〉}{〈info〉}

New feature
v1.906

General commands to convey information to the user, based on LATEX’s\PackageError, \PackageWarning,
etc.

\messagebreak New feature
v1.906

Used to start a new line in an 〈error〉, 〈help〉, 〈warning〉, or 〈info〉 message.

Finally, there are two PlainTEX commands which should be mentioned:

\input 〈file name〉
\bye

\input followed by a 〈file name〉 (without braces around) is the recommended way of inputting a font-
inst command file, or the fontinst package itself (fontinst.sty, finstmsc.sty, etc.). This is the only
way to make things work regardless of whether the underlying format is LATEX, PlainTEX, or even a raw
IniTEX.

\bye is the command to use to terminate a fontinst command file.

56

6 Encoding files

An encoding file (or .etx file) is a TEX document with the structure:

\relax
〈ignored material〉
\encoding
〈encoding commands〉
\endencoding
〈ignored material〉

This describes the encoding of a font, using the 〈encoding commands〉.
Since the encoding file ignores any material between \relax and \encoding, an encoding file can also
be a LATEX document. The structure is then

\relax
\documentclass{article} % Or some other class
\usepackage{fontdoc}
〈LATEX preamble〉
\begin{document}
〈LATEX text〉
\encoding
〈encoding commands〉
\endencoding
〈LATEX text〉
\end{document}

See also the descriptions in Writing ETX format font encoding specifications (encspecs.tex).

57

6.1 Encoding commands

The 〈encoding commands〉 are:

\nextslot{〈integer expression〉}

Sets the number of the next slot. If there is no \nextslot command, the number is the successor of the
previous slot. Immediately after \encoding, the next slot number is 0.

\skipslots{〈integer expressions〉} New feature
v1.8

Advances the number of the next slot.

\setslot{〈glyph〉} 〈slot commands〉 \endsetslot

Assigns 〈glyph〉 to the current slot. The 〈slot commands〉 can be used to specify additional behaviour for
the slot, and typically also contains comments about the glyph.

\setleftboundary{〈glyph〉} 〈slot commands〉 \endsetleftboundary New feature
v1.9

Makes the beginning of a word (left boundary) behave like the right side of 〈glyph〉 with respect to kern-
ing. \ligature commands in the 〈slot commands〉 create beginning of word ligatures.

\setrightboundary{〈glyph〉} New feature
v1.9

Makes the end of a word (right boundary) behave like the left side of 〈glyph〉 with respect to kerning and
ligatures. The current slot position is left empty.

58

\inputetx{〈file〉}

Inputs the 〈encoding commands〉 of 〈file〉.etx.

\setfontdimen{〈fontdimen no.〉}{〈integer variable〉} New feature
v1.917

Sets up a correspondence between a font dimension and an integer variable. When generating a font,
the font dimension value is taken from the integer variable. When converting a font from pl or vpl
format, the fontdimen value will be recorded as a \setint command for the variable.

\ifdirect New feature
v1.924

Encoding files set up a correspondence between slot numbers and glyph names, which can be used in
two different ways. In the direct mode, encoding files map slot numbers to glyph names. In the inverse
mode, glyph names are mapped to slot numbers. The inverse mapping can in general be one-to-many,
and when precisely one target slot is needed fontinst chooses that arbitrarily. The \ifdirect condi-
tional can be used to disambiguate the inverse mapping, by conditionalising all undesired \setslots
on that the file is being interpreted in the direct mode. For example:

\ifdirect
\setslot{hyphen}

\comment{Soft hyphen slot}
\endsetslot

\Else
\skipslots{1}

\Fi

Currently the only case in which encoding files are being read in the inverse mode is when reencoding
fonts.

59

\setslotcomment{〈text〉}
\resetslotcomment{〈text〉}
\unsetslotcomment

New feature
v1.8

These commands can be used to specify an automatic \comment text for all slots. They are ignored by
fontinst, but interpreted by fontdoc.

\useexamplefont{〈font〉} New feature
v1.8

This command is ignored by fontinst. In fontdoc it sets the font that is used by the \slotexample com-
mand. The 〈font〉 argument has the same syntax for a font as the TEX primitive \font.

6.2 Slot commands

The 〈slot commands〉 are:

\comment{〈text〉}

A comment, which is ignored by fontinst, but typeset as a separate paragraph by fontdoc.

\label{〈text〉} New feature
v1.917

A reference label (like in LATEX), which records the slot number and glyph name. Ignored by fontinst.

\ligature{〈ligtype〉}{〈glyph1〉}{〈glyph2〉}

\ligature declares a ligature of type 〈ligtype〉, which will take effect if the current glyph is immediately

60

followed by 〈glyph1〉 when TEX is constructing a list of horizontal material. This ligature will then replace
the two glyphs by the third glyph 〈glyph2〉. For example:

\setslot{ff}
\comment{The ‘ff’ ligature.}
\ligature{LIG}{i}{ffi}
\ligature{LIG}{l}{ffl}

\endsetslot

declares one ligature ff∗i−→ ffi and one ligature ff∗l−→ ffl.

The eight 〈ligtype〉s are the names of the underlying pl properties, i.e.,:

LIG /LIG /LIG> LIG/ LIG/> /LIG/ /LIG/> /LIG/»

The basic LIG may be immediately preceded or followed by a slash, and then immediately followed by >
characters not exceeding the number of slashes. The slashes specify retention of the left or right original
glyph; the > signs specify passing over that many glyphs of the result without further ligature or kern
processing.

\Ligature{〈ligtype〉}{〈glyph〉}{〈glyph〉}
\oddligature{〈note〉}{〈ligtype〉}{〈glyph〉}{〈glyph〉} New feature

v1.918

The \Ligature command is by default a synonym of \ligature (but fontdoc may typeset them dif-
ferently). The \oddligature command is by default ignored by fontinst. See encspecs.tex for an
explanation of the semantic differences.

\makerightboundary{〈glyph〉}

This makes the current slot the end of word (right boundary) marker with respect to ligatures and kern-
ing, i.e., TEX will kern and ligature as if there was an invisible occurrence of this character after the last

61

character of every word. All kerns and ligatures with 〈glyph〉 as the right part will apply for this slot.

It is preferable to use \setrightboundary to control end of word behaviour if you have an empty slot
to spare.

\Unicode{〈code point〉}{〈name〉}
\charseq{〈\Unicode commands〉}

These commands declare a Unicode character or character sequence as possible interpretations of what
is in this slot. They are ignored when making fonts, but fontdoc give them a prominent role in encoding
specifications and to \etxtocmap they are the primary properties of the slot.

\usedas{〈type〉}{〈control sequence〉} New feature
Obsolete?!

This command declares a TEX control sequence for this slot, with the type taken from:

char accent mathord
mathbin mathrel mathopen
mathclose mathpunct mathvariable
mathaccent mathdelim

There is currently no code in fontinst which makes any use of this command. It might in principle be
possible to autogenerate LATEX output encoding definition (〈enc〉enc.def) files and math symbol decla-
rations from this information.

\nextlarger{〈glyph〉}

Math font property: makes 〈glyph〉 the NEXTLARGER entry of the current slot.

62

\varchar 〈varchar commands〉 \endvarchar

Math font property: sets the VARCHAR entry for the current slot, using the 〈varchar commands〉. The
possible 〈varchar commands〉 are:

\vartop{〈glyph〉}
\varmid{〈glyph〉}
\varbot{〈glyph〉}
\varrep{〈glyph〉}

Sets the top, middle, bottom, or repeated 〈glyph〉 of the VARCHAR.

6.3 Other

\ifisinslot{〈glyph〉}{〈slot〉}\then New feature
v1.9

During vpl/pl generation, this conditional tests whether glyph 〈glyph〉 (a string expression) is put in the
slot 〈slot〉 (an integer expression). Since encoding files are normally read several times in that context,
the exact behaviour of this command is a bit uncertain. It was intended to support collecting additional
information about the fonts being generated, but at the time of writing this is probably only of academic
interest.

\declarepsencoding{〈etx-name〉}{〈PS-encoding-name〉}{〈action〉} New feature
v1.931

This command is placed in etx files generated by \enctoetx, and has the same syntax as in a mapmak-
ing command file (see Subsection 4.3). It records information about the source encoding file to assist
the map file writer, but is mostly ignored by main fontinst.

63

7 Metric files

A metric file (or mtx file) is a TEX document with the structure:

\relax
ignored material
\metrics
〈metric commands〉
\endmetrics
ignored material

This describes the glyphs in a font, using the 〈metric commands〉. Like encoding files, metric files can
simultaneously be LATEX documents.

Metric files are usually either hand-crafted or transformable. The transformable metric files typically en-
code the metrics of one particular font and are automatically generated. Hand-crafted metric files (such
as latin.mtx) typically do not contain much explicit metric data, instead the code there makes use of
metrics previously specified by other files to construct new glyphs or adjust metrics to meet special con-
ditions. Whereas transformable metric files tend to be mere lists of metric data, the hand-crafted metric
files are more like programs.

7.1 Metric commands

The 〈metric commands〉 are as follows. All glyph name arguments are string expressions.

\setglyph{〈name〉} 〈glyph commands〉 \endsetglyph

If the glyph called 〈name〉 is undefined, it is built using the 〈glyph commands〉, for example:

64

\setglyph{IJ}
\glyph{I}{1000}
\glyph{J}{1000}

\endsetglyph

\setglyph{Asmall}
\glyph{A}{850}

\endsetglyph

The 〈glyph commands〉 are not executed if the glyph has already been set.

\resetglyph{〈name〉} 〈glyph commands〉 \endresetglyph

This builds a glyph using the 〈glyph commands〉, and defines (at \endresetglyph) 〈name〉 to be that
glyph, regardless of whether that glyph was already defined.

\unsetglyph{〈name〉}

Makes the glyph called 〈name〉 undefined.

\setrawglyph{〈name〉}{〈font〉}{〈dimen〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

\setscaledrawglyph{〈name〉}{〈font〉}{〈dimen〉}{〈scale〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

These commands will usually be generated automatically from an afm or pl file. If the glyph 〈name〉 is
undefined, then this sets it to be that which is found in slot 〈slot〉 of font 〈font〉. The 〈width〉, 〈height〉,
〈depth〉, and 〈italic〉 are saved away as the width, height, depth and italic correction respectively of the
glyph.

65

The 〈scale〉 is a scaling factor which has been applied to the font to give it the specified metrics. If the
integer variable rawscale is set, another scaling by that amount will be applied to the glyph (this is how
the scaled keyword in \installfont metrics-lists take effect).

The 〈dimen〉 is the nominal design size of the 〈font〉, usually 10pt; this information isn’t really needed for
anything, but the vf format requires it to be specified and match what is in 〈font〉.tfm, so a dvi driver
is allowed to error out on us if we don’t get this value right.

\setnotglyph{〈name〉}{〈font〉}{〈dimen〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

\setscalednotglyph{〈name〉}{〈font〉}{〈dimen〉}{〈scale〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

These set a glyph called 〈name〉-not (if that wasn’t set already) to have the specified width, height, depth,
and italic correction but be invisible in print.

Such commands are usually generated automatically from an afm file, when a glyph is present in
the 〈font〉 but is not in the default encoding. They take the same arguments as \setrawglyph and
\setscaledrawglyph respectively (although the 〈slot〉 will normally be -1), because reencoding a font
can turn \setrawglyph commands into \setnotglyph commands and vice versa.

\inputmtx{〈file〉}

Inputs the 〈metric commands〉 of 〈file〉.mtx.

\usemtxpackage{〈package list〉}
\ProvidesMtxPackage{〈package name〉} New feature

v1.9

\usemtxpackage behaves like \inputmtx, but it will only input a file if no \ProvidesMtxPackage for

66

that file has been issued. By putting a \ProvidesMtxPackage in an mtx file one can use it in several
places without having to worry about it being sourced more than once.

Note for hackers. \ProvidesMtxPackage declarations make local assignments, so the package is forgotten when
the current group ends. In particular, the settings made with \ProvidesMtxPackage are forgotten when the current
glyph base is flushed.

7.2 Glyph commands

The 〈glyph commands〉 add material to the glyph currently being constructed in a\setglyph . . . \endsetglyph
or \resetglyph . . . \endresetglyph. They are:

\glyph{〈glyph〉}{〈integer expression〉}

Sets the named glyph 〈glyph〉 at the given scale, with 1000 as the natural size. This:

• Advances the current glyph width.

• Sets the current glyph height to be at least the height of the named glyph, adjusted for the current
vertical offset.

• Sets the current glyph depth to be at least the depth of the named glyph, adjusted for the current
vertical offset.

• Sets the current glyph italic correction to be the same as the set glyph.

The named glyph must have already been defined, otherwise an error will occur. For example:

\setglyph{fi}
\glyph{f}{1000}
\glyph{i}{1000}

\endsetglyph

67

\glyphrule{〈integer expression〉}{〈integer expression〉}

Sets a rule of the given width and height, for example:

\setglyph{underline}
\glyphrule{333}{40}

\endsetglyph

\glyphspecial{〈string expression〉}

Sets a driver-dependent \special, for example:

\setglyph{crest}
\glyphspecial{Filename: crest.eps}

\endsetglyph

\glyphwarning{〈string expression〉}

Sets a warning \special, and produces a warning message each time the glyph is used, for example:

\setglyph{missingglyph}
\glyphrule{500}{500}
\glyphwarning{Missing glyph ‘missingglyph’}

\endsetglyph

\movert{〈integer expression〉}

Moves right by the given amount, and advances the current glyph width, for example:

68

\setglyph{Asmall}
\movert{50}
\glyph{A}{700}
\movert{50}

\endsetglyph

\moveup{〈integer expression〉}

Moves up by the given amount, and advances the current vertical offset. Each glyph should always end
at vertical offset zero, for example:

\setglyph{onehalf}
\moveup{500}
\glyph{one}{700}
\moveup{-500}
\glyph{slash}{1000}
\moveup{-200}
\glyph{two}{700}
\moveup{200}

\endsetglyph

\push 〈glyph commands〉 \pop

Performs the 〈glyph commands〉, but at the \pop the current position and glyph width are restored to
what they were at the \push, for example:

\setglyph{aacute}
\push

\movert{\half{\sub{\width{a}}{\width{acute}}}}

69

\glyph{acute}{1000}
\pop
\glyph{a}{1000}

\endsetglyph

\glyphpcc{〈glyph〉}{〈integer expression〉}{〈integer expression〉}

This is generated from PCC instructions in an afm file, and is syntactic sugar for:

\push
\movert{〈first integer expression〉}
\moveup{〈second integer expression〉}
\glyph{〈glyph〉}{1000}
\pop

\resetwidth{〈integer expression〉}
\resetheight{〈integer expression〉}
\resetdepth{〈integer expression〉}
\resetitalic{〈integer expression〉}

Sets the width, height, depth, or italic correction of the current glyph.

\samesize{〈glyph〉}

Sets the dimensions of the current glyph to be the same as 〈glyph〉.

Inside a \setglyph definition of 〈glyph〉, you can use expressions such as \width{〈glyph〉} to refer to
the glyph defined so far. For example, a display summation sign can be defined to be a text summation∑

scaled 120% with 0.5 pt extra height and depth using:

70

\setglyph{summationdisplay}
\glyph{summationtext}{1200}
\resetheight{\add{\height{summationdisplay}}{50}}
\resetdepth{\add{\depth{summationdisplay}}{50}}

\endsetglyph

Within a \resetglyph, these expressions will refer to the previous definition of the glyph. For example,
you can add sidebearings to the letter ‘A’ with:

\resetglyph{A}
\movert{25}
\glyph{A}{1000}
\movert{25}

\endresetglyph

7.3 Kerning commands

The kerning commands may be used anywhere in a metrics file.

\setkern{〈glyph〉}{〈glyph〉}{〈integer expression〉}

This sets a kern between the two glyphs, scaled by the current value of rawscale, unless such a kern
already has been set.

\resetkern{〈glyph〉}{〈glyph〉}{〈integer expression〉} New feature
v1.9

\resetkernunconditionally sets a kern between the two glyphs, scaled by the current value ofrawscale.

71

\setleftkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}
\setrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}

Sets the amount by which the first glyph should mimic how the second glyph kerns on the left or right,
for example:

\setleftkerning{Asmall}{A}{850}
\setrightkerning{Asmall}{A}{850}
\setleftkerning{IJ}{I}{1000}
\setrightkerning{IJ}{J}{1000}

The commands work by copying kerning pairs containing the first glyph. As the names indicates, these
commands do not override kerning pairs previously set.

\setleftrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉} New feature
v1.8

Sets the amount by which the first glyph should mimic how the second glyph kerns on both sides, for
example:

\setleftrightkerning{Asmall}{A}{850}

This command is equivalent to doing first a \setleftkerning and then a \setrightkerning.

\noleftkerning{〈glyph〉}
\norightkerning{〈glyph〉}
\noleftrightkerning{〈glyph〉}

New feature
v1.906

Removes all kerning on the specified side(s) of the 〈glyph〉.

72

\unsetkerns{〈left glyph list〉}{〈right glyph list〉} New feature
v1.9

Removes all kerns with one glyph in the 〈left glyph list〉 on the left and one glyph in the 〈right glyph list〉
on the right.

7.4 Other

\aliased{〈font’s name〉}{〈alias name〉} New feature
v1.915

This command, which syntactically counts as a 〈string expression〉, is meant to be used in glyph name
arguments of commands one may find in metric files. It was added to support combining mapfile entry
generation with a custom form of reglyphing that has been developed for the T2 bundle (Cyrillic font
support). This does however not necessarily mean that the T2 bundle has been updated to take advan-
tage of this feature.

The basic problem is that cyrillic fonts display a much greater variation in how the glyphs are named
than latin fonts do.2 This complicates writing files similar to latin.mtx, so the author of the T2 bundle
took the route to regularize the glyph names at the afm to mtx conversion step. Since TEX does not
know anything about glyph names, this makes no difference for the virtual fonts that are built. The
glyph names do however make a difference for base fonts that are reencoded, since PostScript encoding
vectors list explicit glyph names that have to be the same as in the font. Fontinst’s choice of encoding
vector for a mapfile entry is based on which etx file was used in the reencoding, and hence the glyph
names used when reencoding must match those actually used in the font, or problems will follow.

The \aliased command can be used to preserve the information necessary for such reencodings. If a
glyph name is specified as for example

2The Adobe guidelines have not been as prevailing here as in the latin range, but this isn’t entirely surprising when they give
opaque suggestions such as using the name afii10018 for U+0411 (CYRILLIC CAPITAL LETTER BE). The suggestion made some
sense though; AFII (Association for Font Information Interchange) maintained a glyph registry.

73

\aliased{afii10018}{CYRB}

then fontinst will behave as if the glyph name is CYRB (i.e., the 〈alias name〉) for all purposes except reen-
coding, where instead fontinst behaves as if the glyph name is the 〈font’s name〉 afii10018. This makes
it possible to use etx files when reencoding which can be correctly translated to the right encoding
vectors.

\providepsencoding{〈etx〉}{〈postscript name〉}{〈action〉} New feature
v1.931

If this command occurs in an mtx file then it was placed there by a \declarepsencoding in an etx file
that was used to reencode this mtx. It is meant for consumption by the mapfile writer, and is ignored by
main fontinst.

8 fontdoc commands

The following commands are defined by fontdoc but are unknown to fontinst.

8.1 Comment commands

\plaindiv
\plainint
\plainmax
\plainmin
\plainneg

These are the LATEX definitions of \div, \int, \max, \min, and \neg respectively. They are provided
under these names because fontinst uses the normal names for integer expression constructions.

74

\slotexample New feature
v1.8

This typesets the character in the current slot from the example font (cf. \useexamplefont).

\macroparameter{〈digit〉} New feature
v1.916

This can be used in integer and string expressions. It typesets as #n, where ‘n’ is the 〈digit〉.

\textunicode{〈code point〉}{〈name〉} New feature
v1.918

This generates a reference to a particular Unicode character, for use within a \comment or similar.

8.2 Style control commands

\showbranches New feature
v1.909

The is the main switch that turns on displaying both branches of fontinst conditionals. If you use this
command in an encoding or metrics file, you must use \Else and \Fi to delimit the conditionals in
that file. If you do not use this command in an encoding or metrics file, then the conditionals will not
generate any typeset material and neither will their 〈else branch〉es.

9 fontinst variables

The following is a list of the fontinst variables that are accessible for the user through the \set. . . ,
\reset. . . , \unset. . . , etc. commands. You may of course set or use other variables in the mtx and

75

etx files you write yourself, as does for example the standard mtx file latin.mtx, but all variables that
fontinst commands implicitly use or set are listed below.

acccapheight (integer denoting length)

Description The height of accented full capitals.
Set by mtx files.
Used by Some etx and mtx files.

address (string)

Description Snailmail address put in BibTEX-style file header of automatically generated enc
files. No address field is written unless the address string is set. Quotes are not automati-
cally inserted around the address string.

Set by etx files.
Used by The etx-to-enc converter.

afm-name (string)

Description Name of source font. Internal variable.
Set by \from. . . commands.
Used by The \transformfont, \installfont, \installrawfont, and \reglyphfont com-

mands.

ascender (integer denoting length)

Description The ascender height of the font.
Set by mtx files. The afm-to-mtx converter usually writes \setint commands for this integer.
Used by Some mtx and etx files.

author (string)

Description Author name(s) put in BibTEX-style file header of automatically generated enc files.
See the macro \ref_to_sourcefile for more details.

76

Set by etx files.
Used by The etx-to-enc converter. When not set, the value "See file 〈etx name〉" is used in-

stead.

\autoinstallfamily (command)

Description Command called by the font installation commands, as

\autoinstallfamily{〈encoding〉}{〈family〉}
when they are asked to install a font with a combination of 〈encoding〉 and 〈family〉 that has
not been seen before (there was no explicit \installfamily).

Set by Explicit commands. Defaults to calling \installfamily.
Used by Font installation commands.

axisheight (integer denoting length)

Description Math formula parameter σ22.
Set by mtx files.
Used by Some etx and mtx files.

baselineskip (integer denoting length)

Description The font designer’s recommendation for natural length of the TEX parameter\baselineskip.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing1 (integer denoting length)

Description Math formula parameter ξ9.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing2 (integer denoting length)

77

Description Math formula parameter ξ10.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing3 (integer denoting length)

Description Math formula parameter ξ11.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing4 (integer denoting length)

Description Math formula parameter ξ12.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing5 (integer denoting length)

Description Math formula parameter ξ13.
Set by mtx files.
Used by Some etx and mtx files.

capheight (integer denoting length)

Description The height of the font’s full capitals.
Set by mtx files. The afm-to-mtx converter usually writes \setint commands for this variable.
Used by Some mtx and etx files.

cmapname (string)

Description The name given to the CMap generated from an etx file.
Set by etx files.
Used by The etx-to-CMap converter. When not set, the value fontinst-〈cmap file name〉 is

used instead.

78

codingscheme (string)

Description The codingscheme name.
Set by etx files.
Used by The (v)pl writer. When not set, the value UNKNOWN is used instead.

defaultrulethickness (integer denoting length)

Description Math formula parameter ξ8.
Set by mtx files.
Used by Some etx and mtx files.

delim1 (integer denoting length)

Description Math formula parameter σ20.
Set by mtx files.
Used by Some etx and mtx files.

delim2 (integer denoting length)

Description Math formula parameter σ21.
Set by mtx files.
Used by Some etx and mtx files.

denom1 (integer denoting length)

Description Math formula parameter σ11.
Set by mtx files.
Used by Some etx and mtx files.

denom2 (integer denoting length)

Description Math formula parameter σ12.
Set by mtx files.

79

Used by Some etx and mtx files.

descender (integer denoting length)

Description The depth of lower case letters with descenders.
Set by mtx files.
Used by Some etx and mtx files.

descender_neg (integer denoting length)

Description The vertical position of the descender line of the font, i.e., the negative of the font’s
descender depth.

Set by mtx files. The afm-to-mtx converter usually writes \setint commands for this variable.
Used by Some mtx and etx files.

designsize (dimension)

Description The design size of the font.
Set by mtx files. The (v)pl-to-mtx converter usually writes \setdim commands for this variable.
Used by The (v)pl writer. The design size defaults to 10pt if this variable is not set.
Note The value of this variable has no effect on how the font is declared to LATEX.

designunits (dimension denoting a real number)

Description The design size of a font expressed in the design unit used in a (v)pl file.
Set by mtx files. The (v)pl-to-mtx converter usually writes \setdim commands for this variable.
Used by Nothing. If this variable is set, but to any value other than 1pt, then some metrics are

most likely wrong.

digitwidth (integer denoting length)

Description The median width of the digits in the font.
Set by mtx files.
Used by Some etx and mtx files.

80

email (string)

Description Email address put in BibTEX-style file header of automatically generated enc files.
See the macro \ref_to_sourcefile for more details.

Set by etx files.
Used by The etx-to-enc converter. When not set, the value "See file 〈etx name〉" is used in-

stead.

encodingname (string)

Description The name by which the encoding in question is made known to a Postscript inter-
preter.

Set by etx files.
Used by The etx-to-enc converter. When not set, the value fontinst-autoenc-〈etx name〉 is

used instead.

etx-name (string)

Description Name of etx file. Internal variable in \transformfont.
Set by The \reencodefont command.
Used by The \mtxtomtx command.

extraspace (integer denoting length)

Description The natural width of extra interword glue at the end of a sentence.
Set by mtx files.
Used by Some etx and mtx files.

fontdimen(n) (integer)

Description Family of semi-internal variables that store the values to use for font dimension n. It
is preferred that the newer \setfontdimen interface is used for setting these values.

Set by etx files.

81

Used by The (v)pl writer.

\iftokeep (macro)

Description \iftokeep #1\then, where #1 will be a 〈number〉, behaves like a switch and decides
whether a glyph is kept or not while reglyphing.

Set by Explicit commands. Defaults to

\iftokeep #1\then 7→ \ifnum -1<#1

Used by The \reglyphfont command.

interword (integer denoting length)

Description The natural width of interword glue (spaces).
Set by mtx files.
Used by Some etx and mtx files.

italicslant (integer denoting factor)

Description The italic slant of a font.
Set by mtx files generated from afm or (v)pl files. mtx files generated by \transformfont. Lo-

cally in theafm-to-mtx converter for possible use in\uprightitalcorror\slanteditalcorr.
Used by mtx files (latin.mtx and the like). etx files (for determining fontdimen(1)).

killweight (integer)

Description Weight for glyphs that are killed.
Set by Explicit commands. Defaults to −10 if not set.
Used by The \killglyph command; indirectly the \reglyphfont command.

letterspacing (integer denoting length)

Description Extra width added to all glyphs of a font.

82

Set by mtx (preferred) or etx files.
Used by The (v)pl writer. Defaults to 0 if not set.

maxdepth (integer denoting length)

Description The maximal depth over all slots in the font.
Set by mtx files.
Used by Some etx and mtx files.

maxdepth_neg (integer denoting length)

Description The negative of the maximal depth of a glyph in the font.
Set by mtx files. The afm-to-mtx converter usually writes \setint commands for this variable.
Used by Some etx and mtx files.

maxheight (integer denoting length)

Description The maximal height of a glyph in the font.
Set by mtx files. The afm-to-mtx converter usually writes \setint commands for this variable.
Used by Some etx and mtx files.

minimumkern (integer denoting length)

Description Kerns whose size in absolute value is less than or equal to this variable are ignored.
Set by Command files or mtx files.
Used by The afm-to-mtx converter and the (v)pl file generator. When not set, the value 0 is used

instead.

monowidth (flag integer)

Description Set if this font is monowidth, unset otherwise.
Set by mtx files. The afm-to-mtx converter writes a \setint command for this variable if the afm

specifies IsFixedPitch true.
Used by Some mtx files (latin.mtx and the like), etx files.

83

num1 (integer denoting length)

Description Math formula parameter σ8.
Set by mtx files.
Used by Some etx and mtx files.

num2 (integer denoting length)

Description Math formula parameter σ9.
Set by mtx files.
Used by Some etx and mtx files.

num3 (integer denoting length)

Description Math formula parameter σ10.
Set by mtx files.
Used by Some etx and mtx files.

quad (integer denoting length)

Description The quad width of the font, normally approximately equal to the font size and/or the
width of an ‘M’.

Set by mtx files.
Used by Some etx and mtx files.
Note It is the quad width in the symbol math font (family 2) that TEX uses as reference when trans-

lating mus to ordinary lengths. Hence that quad can be considered a math font designer’s
scaling factor for mu.

PSfontsuffix (string)

Description Suffix added to font names to form name of file to download to include font.
Set by Explicit commands in mapmaking command files. Defaults to ‘.pfa’.
Used by The map file fragments writer.

84

rawscale (integer denoting factor)

Description Scaling factor applied to raw glyphs.
Set by The \installfont command (scaled clauses in argument #2). Unset for metric files

listed without a scaled clause.
Used by The\setrawglyph, \setnotglyph, \setscaledrawglyph, \setscalednotglyph, \set-

kern, and \resetkern commands.

renameweight (integer)

Description Weight for glyphs that are renamed.
Set by Explicit commands. Defaults to 1 if not set.
Used by The \renameglyph command; indirectly the \reglyphfont command.

requireglyphs (flag integer)

Description Set if warnings are to be generated for glyphs listed in etx files but not present in the
glyph base.

Set by Explicit commands. By default not set.
Used by The (v)pl file generator.

rightboundary (string)

Description The name of a glyph with the property that kerns on the left may be intended as right
word boundary kerns.

Set by mtx files. The (v)pl-to-mtx converter can write \setstr commands for this variable.
Used by Some mtx files.

shrinkword (integer denoting length)

Description The (finite) shrink component of interword glue.
Set by mtx files.
Used by Some etx and mtx files.

85

slant-scale (integer denoting factor)

Description Factor to slant by. Internal variable in \transformfont.
Set by The \slantfont, \xscalefont, and \scalefont commands.
Used by The \mtxtomtx command.

\SlantAmount (macro expanding to an integer expression)

Description Slant factor used for faking oblique shape.
Set by Explicit commands. Defaults to 167.
Used by The \latinfamily command.

\slanteditalcorr (macro expanding to an integer expression)

Description The integer expression used to calculate a guess for the italic correction of glyphs in
a font with positive slant. It has the syntax

\slanteditalcorr{〈width〉}{〈left〉}{〈right〉}{〈bottom〉}{〈top〉}
where 〈width〉 is the glyph’s advance width, and the remaining arguments are coordinates of
sides of the glyph’s bounding box. The italicslant integer provides the italic slant of the
font.

Set by Explicit commands in fontinst command files. Defaults to

max{0,right −width}.

Used by The afm-to-mtx converter.

stretchword (integer denoting length)

Description The (finite) stretch component of interword glue.
Set by mtx files.
Used by Some etx and mtx files.

sub1 (integer denoting length)

86

Description Math formula parameter σ16.
Set by mtx files.
Used by Some etx and mtx files.

sub2 (integer denoting length)

Description Math formula parameter σ17.
Set by mtx files.
Used by Some etx and mtx files.

subdrop (integer denoting length)

Description Math formula parameter σ19.
Set by mtx files.
Used by Some etx and mtx files.

sup1 (integer denoting length)

Description Math formula parameter σ13.
Set by mtx files.
Used by Some etx and mtx files.

sup2 (integer denoting length)

Description Math formula parameter σ14.
Set by mtx files.
Used by Some etx and mtx files.

sup3 (integer denoting length)

Description Math formula parameter σ15.
Set by mtx files.
Used by Some etx and mtx files.

87

supdrop (integer denoting length)

Description Math formula parameter σ18.
Set by mtx files.
Used by Some etx and mtx files.

TFMfileprefix (string)

Description Prefix (typically a path) added to names of TFM files.
Set by Explicit commands in mapmaking command files. By default not set, which is equivalent

to being empty.
Used by The pltotf “map file fragments writer”.

underlinethickness (integer denoting length)

Description The recommended thickness of an underlining rule.
Set by mtx files. The afm-to-mtx converter usually writes \setint commands for this variable.
Used by Some mtx files (latin.mtx and the like).

\uprightitalcorr (macro expanding to an integer expression)

Description The integer expression used to calculate a guess for the italic correction of glyphs in
a font with non-positive slant. It has the syntax

\uprightitalcorr{〈width〉}{〈left〉}{〈right〉}{〈bottom〉}{〈top〉}
where 〈width〉 is the glyph’s advance width, and the remaining arguments are coordinates of
sides of the glyph’s bounding box. The italicslant integer provides the italic slant of the
font.

Set by Explicit commands in fontinst command files. Defaults to 0.
Used by The afm-to-mtx converter.

version (string)

88

Description Version number put in BibTEX-style file header of automatically generated enc files.
See the macro \ref_to_sourcefile for more details.

Set by etx files.
Used by The etx-to-enc converter. When not set, the value "See file 〈etx name〉" is used in-

stead.

verticalstem (integer denoting length)

Description The dominant width of vertical stems (usually the width of stems of lower case let-
ters).

Set by mtx files. The afm-to-mtx converter writes \setint commands for this variable if the afm
file specifies StdVW.

Used by Currently nothing.

warningspecials (switch)

Description Controls whether \glyphwarning commands will generate vpl SPECIALs. Defaults
to ‘true’.

Set by Explicit commands (\warningspecialstrue and \warningspecialsfalse).
Used by The (v)pl file generator.

x-scale (integer denoting factor)

Description Horizontal scaling factor. Internal variable in \transformfont.
Set by The \xscalefont and \scalefont commands.
Used by The \mtxtomtx command.

xheight (integer denoting length)

Description The x-height of the font.
Set by mtx files. The afm-to-mtx and (v)pl-to-mtx converters usually write \setint commands

for this variable.

89

Used by mtx files, and etx files (for determining fontdimen(5)).

y-scale (integer denoting factor)

Description Vertical scaling factor. Internal variable in \transformfont.
Set by The \yscalefont and \scalefont commands.
Used by The \mtxtomtx command.

〈glyph〉-spacing (integer denoting length)

Description Glyph-specific override for letterspacing; extra width added to the glyph 〈glyph〉
as part of the process of writing a vpl file.

Set by etx or mtx files.
Used by The (v)pl writer. Defaults to 0 if not set.

Besides these, the\latinfamily command provides a whole range of helper macros (\latin_weights,
\latin_widths, \latin_shapes, etc.) that are often used somewhat like variables. That subject does
however deserve to be treated separately.

10 Customisation

The fontinst package reads a file fontinst.rc if it exists. This can contain your own customisations.
The catcodes that are in force when this file is read are the same as those selected by \fontinstcc.

Similarly finstmsc.sty reads finstmsc.rc and the fontdoc package reads fontdoc.cfg.

You can create a fontinst format by running iniTEX on fontinst.sty then saying \dump.

90

11 Notes on features new with v 1.9

The following notes are copied from fisource.tex; they were written to explain new fontinst features
to old fontinst users.

11.1 Metric packages

Fontinst has traditionally come with a collection of mtx files that complement the mtx files generated
from base font metrics, in that they build glyphs that may be missing from the base fonts or in some
other way needs to be improved. The most well-known of these is the latin.mtx file; other examples
include textcomp.mtx, mathit.mtx, and latinsc.mtx. A problem with these is however that they
cannot produce optimal results for all fonts simply because there are irregular differences in how fonts
are set up by the foundries. Most glyphs come out all right, but there are usually a few for which the
parameters used are more or less wrong. Therefore most high quality font installations are made with
modified versions of these files, where the parameters have been tuned to the specific font design.

Modifying in particular latin.mtx is however not an entirely easy task, because this is a rather large file
(with plenty of archaic pieces of code in curious places). Doing it once is no big problem, but if one has
to do it several times (maybe because some errors are discovered in the original latin.mtx) then it is
probably no fun anymore. Furthermore, if one has two or three modified copies of this file because one
has made high quality installations of that many different fonts then even a trivial bugfix might start to
feel like entirely too much work.

If one has to make modifications then it is usually easier to deal with several small files (many of which
can be used unchanged) than one big file. Thus it would be better if these big files were split up into
several smaller ones. The main problem with splitting up something like latin.mtx is that there are
some commands which are defined at the top and which are then used in almost all sections of the file.
One must make certain that these commands are always loaded, which makes the metric files somewhat
harder to use (especially if the one who tries to use them is not the one who wrote them).

91

One strategy is to include all definitions needed for a metric file in it. This has the slight disadvantage
that the commands will have to be defined several times. What is worse however, is that the command
definitions will appear in several files, so if one finds a bug in one of them, one cannot simply correct this
bug in one place. As the number of files can soon become quite large, correcting such bugs can become
a boring procedure indeed.

Another strategy is to put all the command definitions in one file and then explicitly include it in the
〈file-list〉 argument of \installfont. This eliminates the repeated bug fixing problem, but requires the
user to do something that the computer can actually do just as well.

A third strategy is to put the command definitions in one or several files and then in each metric file
the user explicitly mentions load the command definitions needed for that particular file. Metric pack-
ages uses an improved version of this strategy, since they also make it possible for fontinst to remember
which packages (i.e., sets of command definitions) that have already been loaded, so that they are not
unnecessarily loaded again. The newlatin.mtx file is an alternative to latin.mtx that implements this
strategy. Most of the actual code is located in the following metric packages:

ltcmds.mtx Defines some common commands used by the other files.
llbuild.mtx Builds the latin lower case alphabet (unaccented letters are ‘unfakable’,

the rest are constructed if not present in the base fonts).
lubuild.mtx Builds the latin upper case alphabet.
lsbuild.mtx Builds accented letters in the latin smallcaps alphabet, but only if there

are unaccented letters to build them from in the base fonts.
lsfake.mtx Fakes a latin smallcaps alphabet by shrinking the upper case alphabet,

but only if the glyph had not already been manufactured.
lsmisc.mtx Make some miscellaneous smallcaps glyphs (mostly “smallcaps f-

ligatures”).
ltpunct.mtx Makes digits, punctuation marks, and other symbols (mostly by marking

as “unfakable”).

92

All of these are easy to use as components of equivalents of a modified latin.mtx files, and all depen-
dencies of one package upon another are handled via explicit \usemtxpackage commands.

11.2 Word boundary ligatures and kerns

One of the new features added in TEX 3 was that of ligatures and kerns with word boundaries. Fontinst
has had an interface for making such ligatures and kerns, but it has been completely redesigned in v 1.9
and the old interface (setting the integer boundarychar) is no longer recognized by fontinst. Files which
use the old interface can still be processed with cfntinst.sty, though.

Before considering the new commands, it is suitable to make a distinction between proper glyphs and
pseudoglyphs. A proper glyph has been set using one of the commands \setrawglyph, \setglyph,
and \resetglyph. A pseudoglyph is any name used in the context of a glyph name which does
not denote a proper glyph. If a pseudoglyph g-not was set using the \setnotglyph command,
then \ifisglyph{g-not}\then will evaluate to true, but something can be a pseudoglyph even if an
\ifisglyph test evaluates to false. The interesting point about pseudoglyphs when considering word
boundaries however, is that a pseudoglyph can have ligatures and kerns.

Kerns and ligatures at the left word boundary (beginning of word) are specified using the commands
\setleftboundary and \endsetleftboundary, which are syntactically identical to \setslot and
\endsetslot respectively. One important difference is however that the argument to \setslot must
be a proper glyph, while the argument to \setleftboundarymay be any glyph, hence any pseudoglyph
will do just fine.

\ligature commands between \setleftboundary and \endsetleftboundary will generate begin-
ning of word ligatures. Kerns on the right of the glyph specified in \setleftboundary will become
beginning of word kerns.

Kerns and ligatures at the right word boundary (end of word) are trickier, due to the asymmetrical na-
ture of the ligkern table in a pl file. What a font can do is to specify that the right word boundary, for

93

purposes of kerning and ligatures, should be interpreted as character n. By including a kern or ligature
with character n on the right, that kern or ligature will be used at the end of a word, but it will also be
used each time the next character is character n. Because of this, one usually wants the slot n, which the
right word boundary is interpreted as being, to be empty whenever the encoding allows this.

The command

\setrightboundary{〈glyph〉}
will mark the current slot as used to denote the right word boundary, and leave the slot empty, increasing
the current slot number by one just like a \setslot . . . \endsetslot block does. Kerns on the left of
〈glyph〉 will be end of word kerns and \ligature commands with 〈glyph〉 as the second argument will
be for the end of a word.

The command

\makerightboundary{〈glyph〉}
is similar to \setrightboundary, but it is a slot command which may only be used between a \setslot
and the matching \endsetslot. Like \setrightboundary, it marks the current slot as used to de-
note the right word boundary, but the glyph specified in the enclosing \setslot will be written to
that slot. Ligatures for the glyph specified by the \setslot and ligatures for the glyph specified by
the \makerightboundary will both be for this single slot. Kerns on the right of the \setslot glyph and
the \makerightboundary glyph will similarly both be for this single slot. The idea is that the \setslot
glyph should be used when making a kern or ligature for that glyph, while the \makerightboundary
glyph should be used when making a kern or ligature for the end of a word. Fontinst will warn you if
these two uses of the slot directly contradict each other.

11.3 Changing the names of glyphs

Sometimes, primarily when making a virtual font from more than one raw font and two of the raw fonts
contain different glyphs with the same name, it becomes necessary to change the names of some glyphs

94

to make some sense out of it. The main source of this kind of trouble is the “caps and small caps” (SC)
and “oldstyle figures” (OsF) fonts within many commercial font families. The typical problem is that
what is typographically different glyphs—such as the lowercase ‘a’ (a, for fontinst) and the smallcaps ‘A’
(Asmall, for fontinst)—are given the same name by the foundry.

One way to get round this is to say for example

\setglyph{Asmall} \glyph{a}{1000} \endsetglyph
\setleftrightkerning{Asmall}{a}{1000}
\unsetglyph{a}
\noleftrightkerning{a}

and continuing like that for all the duplicate glyph names. This is however a rather prolix method and if
the number of glyphs is large then it is usually simpler to use the \reglyphfont command.

To reglyph one or several fonts, one writes

\reglyphfonts
〈reglyphing commands〉

\endreglyphfonts

There are two types of reglyphing commands: the \reglyphfont command, and the commands that
modify what \reglyphfont will do to the fonts it operates on. The syntax of \reglyphfont is

\reglyphfont{〈destination font〉}{〈source font〉}
The 〈source font〉 font here is the name (suffix not included, of course) of the font metric file one wants to
change the glyph names in. This font metric file can be in any of the formats mtx, pl, afm, and vpl, and
it will be converted to mtx format if it isn’t already in that format (this happens just as for files listed in
the second argument of \installfont). 〈destination font〉 (which must be different from 〈source font〉)
will be taken as the name for a new .mtx file that will be generated. The destination font can differ from
the source font only in two ways: the names of some glyphs in the source font might be changed, and
some of the commands from the source font might not have been copied to the destination font. To

95

what extent the fonts are different is determined by what modifying commands have been executed;
when no modifying commands have been executed, the source and destination font are equal.

The modifying reglyphing commands are

\renameglyph{〈to〉}{〈from〉}
\renameglyphweighted{〈to〉}{〈from〉}{〈weight〉}
\killglyph{〈glyph〉}
\killglyphweighted{〈glyph〉}{〈weight〉}
\offmtxcommand{〈command〉}
\onmtxcommand{〈command〉}

\renameglyph simply declares that occurrences of the glyph name 〈from〉 should be replaced by the
glyph name 〈to〉. To each glyph name is also assigned a weight, which is used by a mechanism which
conditions copying of commands from the source font to the destination font by the set of glyphs that
command mentions. The details of this mechanism are however somewhat tricky, so those interested in
the full generality should read the comments in the source of fontinst. Here it needs only be noted that
if one applies \killglyph to a glyph name, then (under most circumstances) commands that refer to
that glyph name will not be copied to the destination font.

\offmtxcommand and \onmtxcommand also control whether commands are copied to the destination
font, but they look at the actual command rather than the glyphs it refers to. For example, after the
command

\offmtxcommand{\setkern}

no \setkern commands will be copied. By using \offmtxcommand, it is possible to achieve effects sim-
ilar to those of the files kernoff.mtx and glyphoff.mtx—the difference is that with \offmtxcommand,
it happens at an earlier stage of the font generation. As expected, \onmtxcommand undoes the effect of
\offmtxcommand.

A special rule pertains to the \setrawglyph, \setnotglyph, \setscaledrawglyph, and \setscaled-
notglyph commands, since \transformfont doesn’t care what something was in the source font when

96

it generates the transformed font. To turn these commands off while reglyphing, you use \offmtx-
command on \setscaledrawglyph.

The effects of modifying reglyphing commands are delimited by \reglyphfonts and\endreglyphfonts,
which starts and ends a group respectively.

As we expect the most common reglyphing operation will be to go from SC glyph names to expert glyph
names, there is a file csc2x.tex in the fontinst distribution which contains the modifying reglyphing
commands needed for setting up that conversion. Thus you can write for example

\reglyphfonts
\input csc2x
\reglyphfont{padrcx8r}{padrc8r}
\reglyphfont{padscx8r}{padsc8r}

\endreglyphfonts

to alter the glyph names in the SC fonts in the Adobe Garamond (pad) family. Note that the names of
the destination fonts here really are rather arbitrary, since they will only exist as .mtx files, and thus
only need to work within your local file system. In particular, all the \setrawglyph commands in the
destination font files still refer to the source font, so it is that font which the drivers need to know about.

11.4 Making map file fragments

A map file fragment is the lines3 of a map file that the corresponding driver would need for handling
some set of fonts. When told to, fontinst can (in a fairly automatic way) create the map file fragment
which is needed for the set of raw fonts fontinst has (i) installed directly (using \installrawfont) or
(ii) used as a base font for some installed virtual font (generated by \installfont). Fontinst does not
support the map file syntaxes of every existing driver, but the system is designed to be extendable and

3Not in general an entire map file, hence the word fragment.

97

contributions that extend its capabilities are welcome. Nor can fontinst examine your TEX system and
determine every piece of information needed to make the correct map file fragments, but you can tell
it roughly how your installation looks, it can make guesses which work most of the time, and you can
specify most things explicitly if the guesses turn out to be wrong. Should the available options for con-
figuring the process turn out to be inadequate for your needs, then please write to the fontinst mailing
list about this—there is probably a way to improve the system so that your needs can be met.

Now what does one have to do to use this map file fragment writer, then? First you need to tell fontinst
to record the information the map file fragment writer needs. You do this by giving the command

\recordtransforms{whatever.tex}

at the beginning of the run. Here whatever.tex is the name of a file that will be created, so you can
use some other name if you like. After that you do all the calls to \transformfont, \installfont,
\installrawfont, \latinfamily, etc. you need to make the fonts you want. When you’re done, you
give the command

\endrecordtransforms

and end the run (say \bye). The file whatever.tex will now contain the information about which fonts
were used and what needs to be done with them.

The second step is to actually run the map file fragment writer. Observe that it is located in the file
finstmsc.sty, not fontinst.sty! The commands you need to give it can be so few that you can
type them in at TEX’s * prompt, but if you are writing a command file then it should typically have the
following structure (comments not necessary, of course):

\input finstmsc.sty % Input command definitions
〈general settings〉 % See below
\adddriver{〈driver name〉}{〈output file〉} % Open output file
\input whatever.tex % Writes to output file(s)
\donedrivers % Close output file(s), tidy up
\bye % Quit

98

The \adddriver command gives the order “write map file entries for the 〈driver name〉 dvi driver to the
file 〈output file〉.” The plan is that it should be possible to use the name of just about any major driver
(dvips, xdvi,4 pdftex,5 OzTeX, etc.) here and get suitable map file entries for that driver as output, but
for the moment only the dvips and dvipdfm6 drivers are supported.

You may also use debug or pltotf for 〈driver name〉. The debug “dvi driver” file simply contains all the
available information about each font (hence it should come handy for debugging code writing entries
for real drivers) in a format that should be easy to interpret for a human. It could be the right choice if
you’re going to write the map file manually, as the combined effects of several font transformations are
not always easy to compute manually. The file generated for the pltotf “driver” is actually a shell script
consisting of a sequence of pltotf commands. These commands perform the pl to tfm conversion for
precisely those fonts that are actually needed (fontinst usually generates pl files also for a number of
fonts at intermediate stages of transformation, and many of these need not be converted to tfm files).
The TFMfileprefix string can be used to add a directory path to the tfm file names, perhaps saving the
step of moving them to their proper location later.

The file whatever.tex in the above example contains the commands (\makemapentry commands)
that actually cause entries to be written to the output file. It also contains a number of \storemapdata
commands—these describe how some given font was made. If some metric file you have used contains
\setrawglyph commands that were not automatically generated by fontinst, then there might not be a
\storemapdata for the font they refer to in whatever.tex, so you will have to include such a command
yourself somewhere. This can for example be done in the 〈general settings〉 part of the above example
file.

4Or does that use the same map file as dvips? I heard somewhere that it did. /LH
5pdfTEX can read the map files generated for dvips, but a separate driver is desirable because the formats are not completely

identical.
6Whose support I made very much to illustrate that you don’t have to be a big and ancient driver like dvips to have supporting

code put into fontinst. (The fact that I just happened to have printed out the documentation and that is was easy to read also
helped, of course.) Note, however, that there won’t be any support for a driver unless someone sits down and writes the code for
it! Don’t assume I will. /LH

99

Another class of things that will typically appear in the 〈general settings〉 part above is commands that
will inform the routines actually writing output about your TEX system, about the set of fonts you are
using on this run, or about something else that might be useful. Some such commands are of a general
nature and affect what assumptions fontinst will make in certain conditions when no specific informa-
tion is available. For the moment there commands are:

\AssumeMetafont Assume all fonts with pl metrics are bitmaps generated by Metafont, and therefore
make no entries for them.

\AssumeAMSBSYY Assume all fonts with pl metrics have their TEX names in all upper case as postscript
names—just like the Computer Modern fonts in the AMS/Blue Sky/Y&Y distribution.

\AssumeBaKoMa Assume all fonts with pl metrics have their TEX names in all lower case as postscript
names—just like the Computer Modern fonts in the BaKoMa distribution.

Otherwise the default action of the routine for finding out the postscript name of a font simply is to
observe that it hasn’t got a clue about what the right value is when the metrics were taken from a pl file,
and therefore it writes ‘??????’ for the postscript name.

\AssumeLWFN Assume postscript fonts for which nothing else has been specified are stored in files
which are named according to the MacOS scheme for LWFNs.

Otherwise the default action is to use the name of the afm or pl from which the metrics were originally
taken, and add the file suffix stored in the string PSfontsuffix. The default value of this string is .pfa,
but it can be changed using \resetstr.

If neither the default nor the LWFN scheme produce correct results then you may use the more specific
\specifypsfont command, which describes exactly which file (or files, if any) a given font is stored in.
The syntax of this command is

\specifypsfont{〈PS font name〉}{〈actions〉}
where the 〈actions〉 is a sequence of “action commands”. Currently the only such command is

100

\download{〈file〉}
which instructs the map file writer to include in any entry using that PS font and “instruction” that the
specified file should be downloaded. Some examples are

\specifypsfont{Times-Roman}{}
\specifypsfont{Shareware-Cyrillic-Regular}{\download{fcyr.gsf}}
\specifypsfont{zmnl8ac6}{%

\download{MinionMM.pfb}\download{zmnl8ac6.pro}%
}

Many dvi drivers (for example dvips) have more than one style of font downloading (e.g., partial and
full downloading). This interface could be extended to control also such finer details (for example by
adding a \fulldownload command to force full download of a font), but requests for this has so far
been scarce.

Finally, there is the \declarepsencoding command which is used to link etx files to postscript encod-
ings. If no postscript encoding has been linked to a given etx file then fontinst will automatically create
a postscript encoding (.enc) file for that encoding, and use this file for all reencoding commands. The
8r encoding is predeclared, and it doesn’t matter if an encoding is undeclared if you never use it to reen-
code fonts, but there is potentially a problem with not having declared encodings you have installed
and use for reencoding, as you may then find yourself having two files with identical names that define
encodings that do not have the same name (as far as postscript is concerned).

11.5 Tuning accent positions—an application of loops

The accent placements made by latin.mtx certainly aren’t perfect for all fonts, and the only way to
find out where they should be put is through trying in text the accented letters you get for a couple of

101

values for the position parameter and deciding which one works best. Since to try one parameter value
you need to (i) edit it into an mtx file, (ii) run fontinst, (iii) run vptovf, (iv) run TEX on some test text,
and (v) print that text, trying one parameter value can take annoyingly much time. Repeating the same
procedure ten times to test ten values is not something one does without being bored (unless one scripts
it, of course), but it is possible to try ten parameter values in a single virtual font, and without doing very
much typing.

Say you’re not too happy with how latin.mtx positions the accent in the ohungarumlaut glyph:

\setglyph{ohungarumlaut}
\topaccent{o}{hungarumlaut}{500}

\endsetglyph

The 500 is the horizontal position (in thousandths of the width of the o) that the centre of hungarumlaut
in the glyph constructed will have, so that is the position parameter value that you want to change.
Create an mtx file containing the code

\for(pos){250}{750}{50}
\setglyph{ohungarumlaut\strint{pos}}

\topaccent{o}{hungarumlaut}{\int{pos}}
\endsetglyph
\setleftrightkerning{ohungarumlaut\strint{pos}}

{ohungarumlaut}{1000}
\endfor(pos)

This will set eleven glyphsohungarumlaut250, ohungarumlaut300, ohungarumlaut350, . . . , ohungarumlaut750,
each being an Hungarianly umlauted ‘o’ (i.e., an ‘ő’) but all having that umlaut in slightly different posi-
tions. In order to put them in a font, you also need to make an encoding that contains them. Therefore
create an etx file which contains the code

\relax\encoding
\nextslot{"C0}

102

\for(pos){250}{750}{50}
\setslot{ohungarumlaut\strint{pos}}
\endsetslot

\endfor(pos)
\endencoding

The command for installing this experiment font would be something like

\installfont{〈some name〉}{〈the normal list of metrics〉,〈the new mtx 〉}{ot1,〈the new etx 〉}
{OT1}. . .

The reason for including ot1 in the third argument above is that you’ll need letters other than ‘ő’ against
which you can compare the experimental glyphs. It would not have been possible to use t1 instead of
ot1 (even though that has more Hungarian letters) since that would set all slots in the font and leave
none for these experimental ohungarumlauts.

It is even possible to use a loop for making the test text. The LATEX macros

\newcount\slotcount
\newcommand\testtext[3]{%
\slotcount=#1\relax
\begin{description}%
\loop\item[\the\slotcount]#3%
\ifnum #2>\slotcount \advance \slotcount 1 \repeat
\end{description}%

}
\DeclareTextCompositeCommand{\H}{OT1}{o}{\char\slotcount}

will let you write

\testtext{〈first〉}{〈last〉}{〈text〉}

103

to get the text 〈text〉 typeset once for each slot from 〈first〉 to 〈last〉 inclusive, with \H{o} ranging through
the glyphs in this interval. Thus in this case \testtext{"C0}{"CA}{Erd\H{o}s}would be a trivial test.

11.6 Font installation commands

The \installfont, \installrawfont, and \installfontas commands have the respective syntaxes

\installfont{〈font-name〉}{〈metrics〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

\installrawfont{〈font-name〉}{〈metrics〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

\installfontas{〈font-name〉}{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}
The 〈font-name〉 argument and the last five arguments are common to all these commands. The first
argument is the name of a TEX font to install. The last five arguments are the NFSS attributes under
which that font will be declared to LATEX—encoding, family, series, shape, and size. It is worth observing
that encoding names are usually in upper case, whereas the family, series, and shape are usually in lower
case. The size argument is either a shorthand (declared using \declaresize) for a particular font size
(or range of font sizes), or an explicit list of font sizes or ranges of sizes, which is copied directly to the
font declaration. The most common case is to let the size argument be empty, as that is declared as a
shorthand for “any size”.

The \installfontas command does not itself create the font, it just makes a note that the specified
font declaration should be written to the proper FD file at \endinstallfonts. The \installfont
and \installrawfont commands do however produce the font, in the sense that they write a vpl and
pl respectively file for the font. It depends solely on the 〈metrics〉 and 〈etx-list〉 arguments what this
font will contain. Many features of these arguments are new with fontinst v 1.9; therefore the complete
syntaxes are described below.

104

Both arguments are comma-separated lists of basically file names (not including an extension). The files
listed in the 〈metrics〉 are font metric files which together build up a glyph base (definitions of glyphs and
metrics related to one or several glyphs), whereas the files listed in the 〈etx-list〉 are encoding definition
files that select a subset of the glyph base for turning into a TEX font. The font metrics can be in either
of the four formats mtx, pl, afm, and vpl, which are considered in that order. If the metrics are not
originally in mtx format then they will be converted to this format (a new file will be created) before they
are used. The encoding definitions must be in etx format. The files actually read will have a suffix .mtx,
.pl, .afm, .vpl, or .etx appended to the name given, depending on which format is expected.

Within each element of the comma-separated list, the actual file name is followed by zero or more mod-
ifier clauses. A 〈modifier clause〉 consists of a keyword followed by some number (usually one) of argu-
ments, separated by spaces. The whole thing looks a lot like the 〈rule specifications〉 of e.g. the \vrule
command, but here the spaces are mandatory. The currently defined 〈modifier clause〉s are

option 〈string〉 Available for metric and encoding files. This adds 〈string〉 to the list of options for
this file, which may affect what code the file executes. The file can then test, using the \ifoption
command, whether a specific string is one of the options it was given.

scaled 〈factor〉 Available for metric files. Causes the rawscale integer variable to be set to the
〈factor〉 (an integer expression) while the file is being read. This scales glyphs and kerns that are
added to the glyph base by the 〈factor〉.

suffix 〈suffix〉 Available for metric files. Causes 〈suffix〉 to be appended to every glyph name ap-
pearing in a glyph or kern that file adds to the glyph base. Thus “suffix /2” effectively changes
a

\setrawglyph{a}. . .

to a

\setrawglyph{a/2}. . .

105

encoding 〈etx-name〉 Available for metric files, and forces fontinst to only consider the pl and vpl
formats for this font. As these file formats do not contain glyph names, an etx file is used to
assign glyph names to the slots in the font. This etx file is usually selected according to the
CODINGSCHEME property of the pl or vpl (using the correspondences set up via the \declare-
encoding command), but that information is not always as one would want it (there are even
fonts for which it is quite wrong). An encoding clause bypasses this automatic mechanism, so
that the file 〈etx-name〉.etx is used instead.

mtxasetx This is available for files in the 〈etx-list〉. The actual function of a

〈file-name〉 mtxasetx

item in the 〈etx-list〉 is that the file 〈file-name〉.mtx is inputted (not 〈file-name〉.etx) and that the
correspondence between glyph names and slot numbers set up in \setrawglyph or \setscaled-
rawglyph commands in this file is treated as if it had been set up by \setslot commands in an
etx file. Provided the mtx file is transformable, the glyph base will be unaffected.

The purpose of this feature is to simplify quick and dirty installations of odd fonts for which no
suitable etx file is available. This can be useful in early stages of the design of a new font, but is
inferior to installation using proper etx files since one for example cannot specify any ligatures in
mtx files.

Furthermore there is a special exception for the 〈metrics〉: if the first token in one of the list items is
the control sequence \metrics, then the rest of that item is interpreted as explicit metric commands to
execute.

If the 〈metrics〉 of two subsequent \installfont or \installrawfont commands are identical then
the glyph bases will be identical as well. This creates an opportunity for optimization, which fontinst
makes use of by caching glyph bases from one installation command to the next so that the glyph base
does not have to be rebuilt in these cases. A side-effect of this caching is that local assignments made

106

between two font installation commands are cleared out with the glyph base, but \setint and similar
fontinst commands make global assignments when used in such positions.

Some examples might be in order. The first is an adaptation of an installation command frommfnt-0.59
by Matthias Clasen and Ulrik Vieth: the installation command for the 8-bit math font xma1000 (which
can be thought of as being to cmmi10 sort of as ecrm1000 is to cmr10). The first three encoding clauses
are more fine-tuning—without them, a few glyphs would get incorrect names—but the last two are
quite essential, as the msam10 and msbm10 fonts incorrectly claim to have the coding scheme TEX MATH
SYMBOLS.

\installfont{xma1000}{%
yma1000 encoding mcin,%
cmr10 encoding ot1upright,%
cmmi10,%
cmsy10 encoding omscal,%
msam10 encoding msam,%
msbm10 encoding msbm,%
mccmhax,mccmkern,mcmissing,%
cmsy10-base,cmsy10-extra%

}{mc}{MC}{cm}{m}{n}{<10->}

Also note the explicit LATEX size specification for the range “10 pt and up”.

The second example makes use of a suffix clause to combine the letters from one font with the digits
from another.

\installfont{msbrj8t}{msbr8r,msbrc8r suffix /2,latin}{digit2,t1}
{T1}{msbj}{m}{n}{}

In this case, the glyph base contains the glyphs of Monotype Sabon (SabonMT)—under names such as
A for ‘A’, a for ‘a’, and one for a lining digit one—as well as the glyphs of Monotype Sabon Small Caps

107

and Oldstyle Figures (SabonMT-SCOSF)—under names such as A/2 for ‘A’, a/2 for ‘A’, and one/2 for a
hanging digit one. The digit2.etx file simply makes the definition

\setcommand\digit#1{#1/2}

which causes t1.etx to put zero/2 in slot 48 (digit zero), one/2 in slot 49 etc., instead of as it normally
would zero in slot 48, one in slot 49 and so on. The net effect is that the digits in the generated msbrj8t
is from msbrc8r (SabonMT-SCOSF) but everything else is from msbr8r (SabonMT).

The third example makes use of an mtxasetx clause to install (with its default encoding) a font for which
creating an appropriate etx file seems not worth the trouble.

\installrawfont{psyr}{psyr,\metrics
\setint{xheight}{\height{alpha}}

}{txtfdmns,psyr mtxasetx}{U}{psy}{m}{n}{}

The effect of the second psyr is that psyr.mtx is read (in case there was no psyr.mtx then it is created
from (hopefully) psyr.afm) and the information in it will form the glyph base. Because of the \metrics
control sequence, the rest of that item will be interpreted as explicit metric commands modifying the
glyph base, and thus the \setint command can provide a value for the xheight variable (there doesn’t
seem to be such a value in the afm). Once the glyph base is completed, the \installrawfont starts
writing the file psyr.pl (that’s for the first psyr). The encoding of that font will, because of the psyr
mtxasetx, be the same as that used in psyr.mtx. Finally, the txtfdmns is for txtfdmns.etx, an etx
file which sets fontdimens 1–16 as for a T1 encoded font but does not set any slots. Since psyr.mtx
reinterpreted as an etx file sets slots but no fontdimens, these complement each other nicely.

108

11.7 Bounding boxes

Han The Thanh has created an implementation of bounding box support for fontinst, and it is a modified
form of that support is distributed with fontinst as the file bbox.sty. To load this, begin your command
file with

\input fontinst.sty
\input bbox.sty

The reason for not making it default is that keeping track of bounding boxes increases some of fontinst’s
memory requirements quite a lot.

One important characteristic of this implementation is that the dimensions of the bounding box are not
bundled into the same data structure (the \g-〈glyph〉 macros) as the glyph’s width, height, depth, and
italic correction are, but stored in a separate data structure (the \gb-〈glyph〉 macros). A glyph doesn’t
need to have its bounding box set, it is simply a piece of information that fontinst will store if you tell it
to and which you can later retrieve.

The bounding box will be stored as coordinates of the sides in the normal AFM coordinate system. The
commands for retrieving these coordinates are

Command Side
\bbtop{〈glyph〉} top (y-coordinate)
\bbbottom{〈glyph〉} bottom (y-coordinate)
\bbleft{〈glyph〉} left (x-coordinate)
\bbright{〈glyph〉} right (x-coordinate)

In Thanh’s implementation the command names were \ury, \lly, \llx, and \urx respectively in-
stead, but I think the former are easier to remember. If no bounding box has been set for a glyph

109

then the above commands will instead report the corresponding coordinate of the glyph’s TEX box (i.e.
\height{〈glyph〉}, \neg{\depth{〈glyph〉}}, 0, and \width{〈glyph〉} respectively).

The command for setting the bounding box of a glyph is

\setglyphbb{〈glyph〉}{〈left〉}{〈bottom〉}{〈right〉}{〈top〉}

Acknowledgements

We’d like to thank all of the fontinst α-testers, especially Karl Berry, Damian Cugley, Steve Grahthwohl,
Yannis Haralambous, Alan Hoenig, Rob Hutchings, Constantin Kahn, Peter Busk Laursen, Ciarán Ó
Duibhín, Hilmar Schlegel, Paul Thompson, Norman Walsh and John Wells, who made excellent bug-
catchers!

Thanks to Barry Smith, Frank Mittelbach, and especially Sebastian Rahtz for many useful email discus-
sions on how virtual fonts should interact with LATEX 2ε.

Thanks to Karl Berry and Damain Cugley for detailed comments on this documentation.

Thanks to David Carlisle for the use of his trig macros for calculating trigonometry.

110

