
1. Theory

In this section the theory behind the implementation of the MATLAB code will

be given. Figure 1 displays the bucket and the pile of gravel. We assume that

the end point of the bucket follow the curve Γ(t) = (x(t), y(t)) and that the angle
β follow the function β (t) (where t is the parametrization variable). We also
assume an infinite pile of gravel.

� Gravitational acceleration

ρgravel The density of the gravel

Table 1

Potential energy

The potential energy is the change of potential energy between the initial and

the final state of the bucket and the gravel. The potential energies of the initial

state of the bucket and the final state of the bucket and gravel are constant.

Hence, from a optimization point of view, the only potential energy that will be

interesting is the one for the initial state of the gravel. It is determined by the

following integral

EP = �

∫

y ⋅ dm = � ⋅ ρgravel

∫

Γ(t)
y(t)

(

y(t)

tanγ
− x(t)

)

dy(t)

Compression energy

A compression force is assumed to always be present and is pointing in the same

direction as the lower part of the bucket (this may not be the correct assumption
but it seems to be close enough). The compression force is determined using
Bekker’s relation

FC(t) =

(

kC

b
+ kϕ

)(

y(t)

tan γ
− x(t)

)n

= ktot

(

y(t)

tanγ
− x(t)

)n

Bisectris

α β

γ

Figure 1 A schematic view of the bucket and the pile of gravel. The angle α is the
angle of the rear of the bucket. The angle β is the angle between a horizontal line and
the bisectris of the bucket. The angle γ is the angle of the pile of gravel.

1

Hence the energy arising from the compression force will be

EC =

∫

Γ(t)
FC(t)ds =

ktot

∫

Γ(t)

(

y(t)

tanγ
− x(t)

)n
(

cos
(

β (t) −
α

2

)

dx(t) + sin
(

β (t) −
α

2

)

dy(t)
)

Discretization of the integrals

The total energy required to lift the bucket and the gravel from the initial state

to the final state will be

E = dEpotential + EC = [constant] − EP + EC

(where dEpotential denotes the change in potential energy). We would like to find
the minimal value of E under the constraint that the bucket is full in its fi-

nal state, that is the volume of the gravel within Γ(t) equals the bucket vol-
ume. To minimize over the integrals given in the previous parts, we will dis-

cretize the trajectory Γ(t). The discretized trajectories becomes x(t) = {x0 =
0, x1, . . . , xN−1, xN = ymax/ tan(π /2)}, y(t) = {y0 = 0, y1, . . . , yN−1, yN = ymax} and
β (t) = {β 0 =

α
2
, β 1, . . . , β N−1, β N =

π
2
}. But we will choose the discretization

of y(t) such that yk+1 − yk = ∆y for all k. Hence the values of yk are constant.
The decision variables of the optimization program will only be x1, x2, . . . xN−1
and β 1, β 2, . . . β N−1. Approximating the integral using the trapezoidal rule and
letting dxk =

xk+1−xk−1
2

, we get

EP (� ⋅ ρgravel

N−1
∑

k=1

yk

(

yk

tan (α /2)
− xk

)

∆y (1)

EC (ktot

N−1
∑

k=1

(

yk

tan (α /2)
− xk

)n
(

cos
(

β k −
α

2

) xk+1 − xk−1
2

+ sin
(

β k −
α

2

)

∆y
)

(2)

2. Implementation

A description of the MATLAB code will be given in this section. Only the callback

functions will be described. Before the description of the functions, a table of

common variable names used in the functions will be given

objective

In this function (1) and (2) are implemented. The implementation is straight
forward.

constraints and constraintsLimits

In these functions the constraints are realized. There are in total 4 different

kinds of constraints. These are

1. Gravel volume - bucket volume = 0, meaning that 0 ≤
∑

Xk∆y ≤ 0.

2. This constraint says that −dβmax ≤ β k+1 − β k ≤ dβmax. This constraint is
used to avoid the optimization routine to choose a β trajectory that changes
too fast. In the code dβmax is the parameter bucket.maxDTiltAngle.

2

xIn All decision variables (both x and β)

x The decision variables x1, . . . , xN−1

bucketTiltAngle The decision variables β 1, . . . , β N−1

y The constants y0, . . . , yN

b Equals β −α /2

X Equals
y

tan (β−α /2) − x

Y Denotes y1, . . . , yN−1

s The side length of the bucket

Table 2

3. This constraint says that the rear of the bucket is not allowed below the

ground. Hence 0 ≤ yk − s ⋅ sin (β k −α /2) < ∞ for k = 1, . . . ,N − 1.

4. This constraint says that the x trajectory should be increasing, that is

0 ≤ xk+1 − xk < ∞.

Also, constraintsLimits contain lower and upper bounds on the decision

variables, x and β . They are y
tanγ ≤ x ≤

ymax
tanγ and

α
2
≤ β ≤ π

2
and are found in

limits.lb and limits.ub, respectively.

gradient

The function should return the gradient of the cost function (that is objective).
The gradient is of course the sum of the gradients of (1) and (2). The gradient
of (1) is quite simple, but the gradient of (2) is more complicated.

jacobian and jacobianstructure

The function jacobian should return the jacobian of the constraints as a sparse

matrix. That is, if we call the returned value of jacobian for J and the returned

value of constraints for C, we should have that

J =

∇CT1
∇CT2
...

∇CTs

assuming that there are s constraints.

The function jacobianstructure should return the structure of jacobian as

a sparse matrix. In essence,

jacobianstructure = (jacobian ~= 0)

But this implementation should not be used for obvious reasons.

hessian and hessianstructure

The function hessian should return a weighted hessian of the cost function and

each hessian of the constraints. For the inputs sigma and lambda to hessian we

should have

hessian = sigma*H(objective) + sum(lambda(k)*H(constraints(k)))

The function hessianstructure should work similar as jacobianstructure.

3

3. What to do next

There are a few things that could be the next step in this approach

• Change parametrization of Γ(t).

• Make sure that the rear of the bucket does not go into the pile of gravel at
any point of the trajectory.

• Add more forces (for example breaking force) in order to make the energy
more realistic.

• Limitations/performance of the hydraulics etc when moving the bucket.

4

