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Cour se Out line

Tuesday 08:45
◮ Optimal control
◮ Dynamic programming
◮ Bellman’s equation
◮ Value iteration
◮ Approximate DynP

Tuesday 09:45
◮ Model Predicitve Control
◮ Stability/feasibility
◮ Terminal constraints
◮ Introduction to exercise

Wednesday 08:45
◮ Tuesday summary
◮ MPC with terminal cost
◮ MPC without terminal cost
◮ Adaptive horizon
◮ Receding horizon estimation

Wednesday 09:45
◮ Dual Decomposition
◮ Distributed MPC
◮ Gradient methods
◮ Large-scale systems

Wednesday afternoon : Computer exercise

The MPC Cont rol Law

Define the MPC control law µN through the minimization

VN(x0) = inf
u,x

N−1∑

t=0

{(x(t),u(t))

where infimum is taken over x(t) ∈ X , u(t) ∈ U satisfying
x(t+ 1) = f (x(t),u(t)) and x(0) = x0.

Then

V1 ≤ V2 ≤ . . . ≤ VN ≤ . . . ≤ V∞ ≤ V
µN
∞

Example 2 — Things can go bad

inf
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Marginally unstable for N ≤ 2.
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Exponentially unstable for 3 ≤ N ≤ 5!

MPC with Equi libr ium Terminal Cons traint

Define the MPC control law µN through the minimization

V N(x0) = inf
u,x

N−1∑

t=0

{(x(t),u(t))

subject to x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t),u(t)),
x(0) = x0 and the terminal constraint x(N) = 0.

Then V N is a Lyapunov function that proves stability!
Moreover V∞ ≤ V

µN
∞ ≤ V N ≤ . . . ≤ V 2 ≤ V 1.

Can this idea be generalized?
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Lecture 3

◮ Tuesday summary

◮ MPC wit h terminal cost

◮ MPC without terminal cost

◮ Adaptive prediction horizon

◮ Reference tracking and estimation

Upper Bound on the Opt imal Cost

Recall from Lecture 1 that if W(x) ≥ 0 and a control law
µ : X → U is given such that

W( f (x,µ(x)) + {(x,µ(x)) ≤ W(x)

then W is a Lyapunov function for the closed loop system and
the infinite horizon cost for the control law is bounded by W:

V µ
∞(x) ≤ W(x)

Such a “control Lyapunov function” can be used to get
performance guarantees in MPC.

MPC with Terminal cost

Assume that

W( f (x,µ(x)) + {(x,µ(x)) ≤ W(x) for all x

Define the MPC control law µN using the minimization

V N(x0) = inf
u,x

[
N−1∑

t=0

{(x(t),u(t)) +W(x(N))
︸ ︷︷ ︸

terminal cost

]

with x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t),u(t)), x(0) = x0.

Then µN is stabilizing and V∞ ≤ V
µN
∞ ≤ V N ≤ . . . ≤ V 2 ≤ V 1.
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Proof

Each feasible trajectory u(0),u(1), . . . ,u(N − 2) can be
prolonged by setting u(N − 1) = µ(x(N − 1)) to get

JN−1(x0,u) =
N−2∑

t=0

{(x(t),u(t)) +W(x(N − 1))

≥
N−1∑

t=0

{(x(t),u(t)) +W(x(N)) = JN(x0,u)

Minimization gives

V N−1(x) ≥ V N(x)

and stability follows as for the equilibrium constraint.

Next: If control Lyapunov function W is only valid near x = 0...

Terminal cost and terminal cons traint

Assume existence of a function W(x) ≥ 0, a control law
u = µ(x) and a number ǫ > 0 such that
W(x) ≤ ǫ[ W( f (x,µ(x)) + {(x,µ(x)) ≤ W(x).

Define the MPC control law µN using the minimization

V N(x0) = inf
u,x

[
N−1∑

t=0

{(x(t),u(t)) +W(x(N))
︸ ︷︷ ︸

terminal cost

]

subject to x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t),u(t)),
x(0) = x0 and the terminal constraint W(x) ≤ ǫ.

Then µN is stabilizing and V∞ ≤ V
µN
∞ ≤ V N ≤ . . . ≤ V 2 ≤ V 1.

Dynamic Progr amming versus MPC

◮ Dynamic Programming (Explicit MPC)
◮ Corresponds to MPC with N = 2 and accurate terminal cost
◮ Heavy off-line computations and memory requirements
◮ Extremely fast on-line

◮ Model Predictive Control
◮ No off-line computations
◮ Heavy on-line computations
◮ Wide range of industrial applications exist

Lecture 3

◮ Tuesday summary

◮ MPC with terminal cost

◮ MPC wit hou t terminal cost

◮ Adaptive prediction horizon

◮ Reference tracking and estimation

When is MPC Stabi lizing Without Terminal Cost?

Consider

VN(x0) = inf
u,x

N−1∑

t=0

{(x(t),u(t))

where infimum is taken over x(t) ∈ X , u(t) ∈ U satisfying
x(t+ 1) = f (x(t),u(t)) and x(0) = x0. The MPC control law

µN(x) := argmin
u
{VN−1( f (x,u)) + {(x,u)}

gives

VN(x) = {(x,µN(x)) + VN−1( f (x,µN(x)))

so VN is a Lyapunov function provided that the right hand side
is bigger than VN( f (x,µN(x))).

Such comparisons (value iteration convergence) were done in
the previous lecture.

Expone nt ial stabi lizabi li ty

Suppose there exist numbers C > 0 and σ ∈ (0, 1) such that for
every x0 ∈ X there exists a sequence u(0),u(1), . . . ∈ U with

{(x(t),u(t)) ≤ Cσ
t{∗(x0) for all t ≥ 0

where {∗(x0) = minv {(x0,v). This can be viewed as a condition
of exponential stabilizability.

Then the MPC control law µN(x) is stabilizing provided that

N ≥ 2γ lnγ

where γ = C
1−σ

.

[Grüne and Rantzer, TAC 53:9, 2009, Proposition 4.7]

Lecture 3

◮ Tuesday summary

◮ MPC with terminal cost

◮ MPC without terminal cost

◮ Adaptive predic tion ho rizon

◮ Receding horizon estimation

Choi ce of Prediciton Hor izon

◮ Should correspond to time constant of closed loop

◮ Fundamental bounds on achievable time constants
◮ Unstable zeros
◮ Time-delays
◮ Input saturations

◮ Fast sampling, but long horizon:
Limit optimization to inputs that change more seldom.
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Boundi ng Performance Versus Hor izon

Computing VN without terminal costs and V N with terminal
costs/constraints as stated before gives

V1 ≤ V2 ≤ . . . ≤ VN ≤ . . . ≤ V∞ ≤ V
µN
∞ ≤ V N ≤ . . . ≤ V 2 ≤ V 1

In particular, the deviation between the MPC performance V µN
∞

and the optimal cost V∞ is bounded above as

V µN
∞ (x) − V∞(x) ≤ V N(x) − VN(x)

where the right hand side is computed by solving two
optimization problems with horizon N.

Increase N until the accuracy is sufficient!

MPC with Adapt ive Hor izon

Recall Bellman’s equation

V N(x) = {(x,µN(x)) + V N−1( f (x,µN(x)))

With time-varying horizon

V N(t)(x(t)) ≥ {(x(t),u(t)) + V N(t+1)(x(t+ 1))

as long as N(t+ 1) is at least as big as N(t).

Summing both over t gives

V N(0)(x0) ≥
∞∑

t=0

{(x(t),u(t))

Lecture 3

◮ Tuesday summary

◮ MPC with terminal cost

◮ MPC without terminal cost

◮ Adaptive prediction horizon

◮ Reference track ing and estimation

Reference Track ing and Ant i-windup

Zero tracking error for a constant reference requires integral
action. This can be achieved in many ways, for example

1. Penalize input changes u(t) − u(t− 1) rather than u(t).

2. Integrate the output error and penalize the integral.

3. Constant load disturbances on control inputs are assumed and
estimated. The estimates are used for feedback.

Integral action must be combined with anti-windup:

1. Penalize u(t) − ū(t− 1), where ū is “true” input, not “intended”.

2. Stop integration of output error when the input saturates.

Do you see advantages/disadvantages with the two alternatives
for multi-input-multi-output systems?

Receding Hor izon Estimation

For dynamics with process noise w and measurement error v

x(t+ 1) = f (x(t)) +w(t)

y(t) = h(x(t)) + v(t)

an “optimal” state estimate at time t can be defined as the solution to

x̂ = argmin
x

t−1∑

τ=−∞

{
(
x(τ + 1) − f (x(τ )), y(τ ) − h(x(τ ))

)

(For linear dynamics and quadratic {, a Kalman filter is optimal.)

A receding horizon estimate x̂N with horizon N is defined by

x̂N = argmin
x

t−1∑

τ=t−N

{
(
x(τ + 1) − f (x(τ )), y(τ ) − h(x(τ ))

)

Compare a time-varying y(t) to a time-varying reference signal!
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◮ Tuesday summary

◮ MPC with terminal cost

◮ MPC without terminal cost

◮ Adaptive prediction horizon

◮ Reference tracking and estimation

◮ Introdu ction to exercise

Cont rol of a Quadrupl e Tank

u1 u2

y1 y2

y3 y4

γ 1

1− γ 1

γ 2

1− γ 2 The transfer matrix from (u1,u2) to
(y1, y2)
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has unstable zero if and only if

0 ≤ γ 1 + γ 2 < 1

Is there a step response with
wrong direction?

Lab material

can be found on www.control.lth.se/disc-summer-school/
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Lab Exercise

% limit on delta u

du_max = [inf inf];

du_min = [-inf -inf];

% limit absolute value of u

u_max = [10-v1 10-v2];

u_min = [-v1 -v2];

% limit controlled outputs

z_max = kc*[15-h1 15-h2 15-h3 15-h4];

z_min = -Inf*[1 1 1 1];
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