

The MPC Control Law

Define the MPC control law μ_N through the minimization

$$V_N(x_0) = \inf_{u,x} \sum_{t=0}^{N-1} \ell(x(t), u(t))$$

where infimum is taken over $x(t) \in X$, $u(t) \in U$ satisfying x(t+1) = f(x(t), u(t)) and $x(0) = x_0$.

Then

$$V_1 \leq V_2 \leq \ldots \leq V_N \leq \ldots \leq V_\infty \leq V_\infty^{\mu_N}$$

MPC with Equilibrium Terminal Constraint

Define the MPC control law μ_N through the minimization

$$\overline{V}_N(x_0) = \inf_{u,x} \sum_{t=0}^{N-1} \ell(x(t), u(t))$$

subject to $x(t) \in X$, $u(t) \in U$, x(t+1) = f(x(t), u(t)), $x(0) = x_0$ and the *terminal constraint* x(N) = 0.

Then \overline{V}_N is a Lyapunov function that proves stability! Moreover $V_{\infty} \leq V_{\infty}^{\mu_N} \leq \overline{V}_N \leq \ldots \leq \overline{V}_2 \leq \overline{V}_1$.

Can this idea be generalized?

Upper Bound on the Optimal Cost

Recall from Lecture 1 that if $W(x) \ge 0$ and a control law $\mu: X \to U$ is given such that

$$W(f(x,\mu(x)) + \ell(x,\mu(x)) \le W(x)$$

then W is a Lyapunov function for the closed loop system and the infinite horizon cost for the control law is bounded by W:

 $V^{\mu}_{\infty}(x) \leq W(x)$

Such a "control Lyapunov function" can be used to get performance guarantees in MPC.

Course Outline

Wednesday 08:45

Tuesdav summarv

Adaptive horizon

Dual Decomposition

Distributed MPC

Gradient methods

Wednesday 09:45

MPC with terminal cost

MPC without terminal cost

Receding horizon estimation

Tuesday 08:45

- Optimal control
 - Dynamic programming
 - Bellman's equation
 - Value iteration
 - Approximate DynP

Tuesday 09:45

- Model Predicitve Control
- Stability/feasibility
- Terminal constraints
- Introduction to exercise Large-scale systems

Wednesday afternoon: Computer exercise

Example 2 — Things can go bad

Lecture 3

- Tuesday summary
- MPC with terminal cost
- MPC without terminal cost
- Adaptive prediction horizon
- Reference tracking and estimation

MPC with Terminal cost

Assume that

$$W(f(x,\mu(x)) + \ell(x,\mu(x)) \le W(x)$$
 for all x

Define the MPC control law μ_N using the minimization

$$\overline{V}_N(x_0) = \inf_{u,x} \left[\sum_{t=0}^{N-1} \ell(x(t), u(t)) \underbrace{+W(x(N))}_{terminal \ cost} \right]$$

with $x(t) \in X$, $u(t) \in U$, x(t+1) = f(x(t), u(t)), $x(0) = x_0$. Then μ_N is stabilizing and $V_{\infty} \leq V_{\infty}^{\mu_N} \leq \overline{V}_N \leq \ldots \leq \overline{V}_2 \leq \overline{V}_1$. Each feasible trajectory $u(0), u(1), \ldots, u(N-2)$ can be prolonged by setting $u(N-1) = \mu(x(N-1))$ to get

$$J_{N-1}(x_0, u) = \sum_{t=0}^{N-2} \ell(x(t), u(t)) + W(x(N-1))$$

$$\geq \sum_{t=0}^{N-1} \ell(x(t), u(t)) + W(x(N)) = J_N(x_0, u)$$

Minimization gives

$$\overline{V}_{N-1}(x) \ge \overline{V}_N(x)$$

and stability follows as for the equilibrium constraint.

Next: If control Lyapunov function W is only valid near x = 0...

Dynamic Programming versus MPC

- Dynamic Programming (Explicit MPC)
 - Corresponds to MPC with N = 2 and accurate terminal cost
 - Heavy off-line computations and memory requirements
 - Extremely fast on-line

Model Predictive Control

- No off-line computations
- Heavy on-line computations
- Wide range of industrial applications exist

Assume existence of a function $W(x) \ge 0$, a control law $u = \mu(x)$ and a number $\epsilon > 0$ such that $W(x) \le \epsilon \Rightarrow W(f(x, \mu(x)) + \ell(x, \mu(x)) \le W(x).$

Define the MPC control law μ_N using the minimization

$$\overline{V}_N(x_0) = \inf_{u,x} \left[\sum_{t=0}^{N-1} \ell(x(t), u(t)) \underbrace{+W(x(N))}_{terminal \ cost} \right]$$

subject to $x(t) \in X$, $u(t) \in U$, x(t+1) = f(x(t), u(t)), $x(0) = x_0$ and the *terminal constraint* $W(x) \le \epsilon$.

Then μ_N is stabilizing and $V_{\infty} \leq V_{\infty}^{\mu_N} \leq \overline{V}_N \leq \ldots \leq \overline{V}_2 \leq \overline{V}_1$.

Lecture 3

- Tuesday summary
- MPC with terminal cost
- MPC without terminal cost
- Adaptive prediction horizon
- Reference tracking and estimation

When is MPC Stabilizing Without Terminal Cost?

Consider

$$V_N(x_0) = \inf_{u,x} \sum_{t=0}^{N-1} \ell(x(t), u(t))$$

where infimum is taken over $x(t) \in X$, $u(t) \in U$ satisfying x(t+1) = f(x(t), u(t)) and $x(0) = x_0$. The MPC control law

$$\mu_N(x) := \arg\min_{u} \{ V_{N-1}(f(x,u)) + \ell(x,u) \}$$

gives

$$V_N(x) = \ell(x, \mu_N(x)) + V_{N-1}(f(x, \mu_N(x)))$$

so V_N is a Lyapunov function provided that the right hand side is bigger than $V_N(f(x, \mu_N(x)))$.

Such comparisons (value iteration convergence) were done in the previous lecture.

Lecture 3

- Tuesday summary
- MPC with terminal cost
- MPC without terminal cost
- Adaptive prediction horizon
- Receding horizon estimation

Exponential stabilizability

Suppose there exist numbers C > 0 and $\sigma \in (0, 1)$ such that for every $x_0 \in X$ there exists a sequence $u(0), u(1), \ldots \in U$ with

$$\ell(x(t), u(t)) \le C\sigma^t \ell^*(x_0)$$
 for all $t \ge 0$

where $\ell^*(x_0) = \min_{v} \ell(x_0, v)$. This can be viewed as a condition of exponential stabilizability.

Then the MPC control law $\mu_N(x)$ is stabilizing provided that

$$N \ge 2\gamma \ln \gamma$$

where $\gamma = \frac{C}{1-\sigma}$.

[Grüne and Rantzer, TAC 53:9, 2009, Proposition 4.7]

Choice of Prediciton Horizon

- Should correspond to time constant of closed loop
- Fundamental bounds on achievable time constants
 - Unstable zeros
 - Time-delays
 - Input saturations
- Fast sampling, but long horizon:

Limit optimization to inputs that change more seldom.

Bounding Performance Versus Horizon

Computing V_N without terminal costs and \overline{V}_N with terminal costs/constraints as stated before gives

$$V_1 \le V_2 \le \ldots \le V_N \le \ldots \le V_\infty \le V_\infty^{\mu_N} \le \overline{V}_N \le \ldots \le \overline{V}_2 \le \overline{V}_1$$

In particular, the deviation between the MPC performance $V_{\infty}^{\mu_N}$ and the optimal cost V_{∞} is bounded above as

$$V^{\mu_N}_{\infty}(x) - V_{\infty}(x) \leq \overline{V}_N(x) - V_N(x)$$

where the right hand side is computed by solving two optimization problems with horizon N.

Increase N until the accuracy is sufficient!

Lecture 3

- Tuesday summary
- MPC with terminal cost
- MPC without terminal cost
- Adaptive prediction horizon
- Reference tracking and estimation

Receding Horizon Estimation

For dynamics with process noise w and measurement error v

$$\begin{aligned} x(t+1) &= f(x(t)) + w(t) \\ y(t) &= h(x(t)) + v(t) \end{aligned}$$

an "optimal" state estimate at time t can be defined as the solution to

$$\hat{x} = \arg\min_{x} \sum_{\tau=-\infty}^{t-1} \ell \big(x(\tau+1) - f(x(\tau)), y(\tau) - h(x(\tau)) \big)$$

(For linear dynamics and quadratic ℓ , a Kalman filter is optimal.)

A receding horizon estimate \hat{x}^N with horizon N is defined by

$$\hat{x}^{N} = \arg\min_{x} \sum_{\tau=t-N}^{t-1} \ell(x(\tau+1) - f(x(\tau)), y(\tau) - h(x(\tau)))$$

Compare a time-varying y(t) to a time-varying reference signal!

Control of a Quadruple Tank

The transfer matrix from (u_1, u_2) to (y_1, y_2)

$$\begin{cases} \frac{\gamma_1 c_1}{1+sT_1} & \frac{(1-\gamma_2)c_1}{(1+sT_1)(1+sT_3)} \\ \frac{(1-\gamma_1)c_2}{(1+sT_2)(1+sT_4)} & \frac{\gamma_2 c_2}{1+sT_2} \\ \end{cases} \\ \text{ has unstable zero if and only if } \\ 0 \leq \gamma_1 + \gamma_2 < 1 \end{cases}$$

Is there a step response with wrong direction?

Recall Bellman's equation

$$V_N(x) = \ell(x, \mu_N(x)) + V_{N-1}(f(x, \mu_N(x)))$$

With time-varying horizon

$$\overline{V}_{N(t)}(x(t)) \ge \ell(x(t), u(t)) + \overline{V}_{N(t+1)}(x(t+1))$$

as long as N(t + 1) is at least as big as N(t).

Summing both over t gives

$$\overline{V}_{N(0)}(x_0) \ge \sum_{t=0}^{\infty} \ell(x(t), u(t))$$

Reference Tracking and Anti-windup

Zero tracking error for a constant reference requires *integral action*. This can be achieved in many ways, for example

- 1. Penalize *input changes* u(t) u(t-1) rather than u(t).
- 2. Integrate the output error and penalize the integral.
- 3. Constant load disturbances on control inputs are assumed and estimated. The estimates are used for feedback.

Integral action *must be* combined with anti-windup:

- 1. Penalize $u(t) \bar{u}(t-1)$, where \bar{u} is "true" input, not "intended".
- 2. Stop integration of output error when the input saturates.

Do you see advantages/disadvantages with the two alternatives for multi-input-multi-output systems?

Lecture 3

- Tuesday summary
- MPC with terminal cost
- MPC without terminal cost
- Adaptive prediction horizon
- Reference tracking and estimation
- Introduction to exercise

Lab material

Lab Exercise

Course Outline

Wednesday 08:45

Tuesday summary

Adaptive horizon

Wednesday 09:45

MPC with terminal cost

MPC without terminal cost

Receding horizon estimation

Tuesday 08:45

- Optimal control
- Dynamic programming
- Bellman's equation
- Value iteration
- Approximate DynP

Tuesday 09:45

Model Predicitve Control Dual Decomposition

Introduction to exercise

- Stability/feasibility
- Terminal constraints
- Distributed MPC Gradient methods
- Large-scale systems

Wednesday afternoon: Computer exercise

4

% limit on delta u du_max = [inf inf]; du_min = [-inf -inf];

% limit absolute value of u u_max = [10-v1 10-v2]; $u_{min} = [-v1 - v2];$

% limit controlled outputs z_max = kc*[15-h1 15-h2 15-h3 15-h4]; z_min = -Inf*[1 1 1 1];