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Cour se Out line

Tuesday 08:45
◮ Optimal control
◮ Dynamic programming
◮ Bellman’s equation
◮ Value iteration
◮ Approximate DynP

Tuesday 09:45
◮ Model Predicitve Control
◮ Stability
◮ Terminal constraints
◮ Introduction to exercise

Wednesday 08:45
◮ Exercise summary
◮ MPC with terminal cost
◮ MPC without terminal cost
◮ Adaptive horizon
◮ Receding horizon estimation

Wednesday 09:45
◮ Dual Decomposition
◮ Distributed MPC
◮ Gradient methods
◮ Large-scale systems

Tuesday afternoon : Computer exercise

Conc lus ions of Lecture 1

◮ Dynamic programming — Off-line controller optimization

◮ Main limitation: Complexity of optimal value function

◮ Relaxed Dynamic Programming (with error bounds)

◮ Next: On-line optimization — Model Predictive Control

Lecture 2

◮ Model Predic itve Control

◮ Stability

◮ Stability from terminal constraints

◮ Introduction to exercise

Model Predicitive Control (Receding Horizon Control)
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At time t:

1. Measure the state x(t)

2. Use model to optimize trajectory for t+ 1, . . . , t+ N

3. Apply the optimization result u(t) to the system

4. After one sample, go to 1 to repeat the procedure

The History of MPC

◮ A.I. Propo i, Use of Linear Programming methods for
synthesizing sampled-data automatic systems, 1963
Automation and Remote Control

◮ Used industrially since 1970s, see for example
J. Richalet, Model predictive heuristic control —
application to industrial processes, Automatica, 1978.

◮ Many industrial products: DMC (Aspen Tech), IDCOM
(Adersa), RMPCT (Honeywell), SMCA (Setpoint Inc),
SMOC (Shell Global), 3dMPC (ABB), . . .

◮ Strong theory development since about 1980 (linear) and
1990 (nonlinear)

Why is MPC popul ar?

◮ Models support understanding

◮ Systematic multi-input-multi-output design

◮ MPC controllers can handle constraints

◮ Systematic treatment of nonlinearities

The General Problem

Consider a nonlinear discrete time system

x(t+ 1) = f (x(t),u(t)), x(0) = x0

with x(t) ∈ X , u(t) ∈ U . Find control law u = µ(x) minimizing

J∞(x0,u) =
∞
∑

t=0

{(x(t),u(t))

The minimal value is denoted V∞(x0).

For simplicity, we will assume that 0 ∈ X , 0 ∈ U , f (0, 0) = 0
and {(x,u) ≥ 0 with equality for x = 0, u = 0.

The MPC Cont rol Law

Consider

VN(x0) = inf
u,x

N−1
∑

t=0

{(x(t),u(t))

where infimum is taken over x(t) ∈ X , u(t) ∈ U satisfying
x(t+ 1) = f (x(t),u(t)) and x(0) = x0.

The MPC control law

µN(x) := argmin
u
{VN−1( f (x,u)) + {(x,u)}

gives the cost

V µN
∞ (x0) =

∞
∑

t=0

{
(

xµN (t),µN(xµN (t))
)

Notice that V1 ≤ V2 ≤ . . . ≤ VN ≤ . . . ≤ V∞ ≤ V
µN
∞
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Example 1 — Doub le Integrator

VN(x0) = inf
u,x

N−1
∑

t=0

(px(t)p2 + u(t)2)

x(t+ 1) =

[

1 1

0 1

]

x(t) +

[

0

1

]

u(t) x(0) = x0 =

[

1

0

]
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Example 1 — Doub le Integrator

VN(x0) = inf
u,x

N−1
∑

t=0

(px(t)p2 + 1000u(t)2)

x(t+ 1) =

[

1 1

0 1

]

x(t) +

[

0

1

]

u(t) x(0) = x0 =

[

1

0

]
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Longer horizon required. Why?

Major Issues of MPC Theory

◮ Can we guarantee stability?

◮ Can we guarantee performance?

◮ What prediction horizon is needed?

Lecture 2

◮ Model Predicitve Control

◮ Stabilit y

◮ Stability from terminal constraints

◮ Introduction to exercise

Example 2 — Things can go bad

inf
u,x

N−1
∑

t=0

(px(t)p2 + u(t)2)

x(t+ 1) =

[

1 1

0 1

]

x(t) +

[

0

1

]

u(t)
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Marginally unstable for N ≤ 2.

inf
u,x

N−1
∑

t=0

(px(t)p2 + u(t)2)

x(t+ 1) =

[

1 1

0 1

]

x(t) +

[

−2
1

]

u(t)
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Exponentially unstable for 3 ≤ N ≤ 5!

Long hor izon need not help!

For the system
{

x1(t+ 1) = u(t)

x2(t+ 1) = −2x1(t) + u(t)

the cost function

N−1
∑

t=0

x2(t)
2

is minimized by the control law u(t) = 2x1(t), which gives the
unstable dynamcs

x1(t+ 1) = 2x1(t)

The transfer function from u to x2 has an unstable zero at z = 2!

The effect of uns table zeros

Consider and input-output map Y(z) = G(z)U(z) where G(z)
has a real unstable zero at z = a. If U is a step, the step
response y(0), y(1), y(2), . . ., with Zeta-transform Y(z), satisfies

0 = Y(a) =
∞
∑

t=0

y(t)a−t

so y(t) must take both positive and negative values. Moreover,
this must happen before the exponential decaying a−t becomes
dominating.

Hence an unstable zero implies that the response to control
action initially goes in the “wrong” direction. The time constant
of the unstable zero puts a bound on how fast the feedback
loop can become.

Bike example

A (linearized) torque balance for a bicycle can be approximated
as

J
d2θ

dt2
= m�{θ +

mV0{

b

(

V0β + a
dβ

dt

)
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Klein’s Bicyc le with Rear Wheel Steering

Richard Klein at UIUC has built several UnRidable Bicycles
(URBs). We have versions in Lund

Transfer function

P(s) =
am{V0
bJ

−s+
V0

a

s2 −
m�{

J

Pole at p =

√

m�{

J
( 3 rad/s

RHP zero at z =
V0

a

Pole independent of velocity but zero proportional to velocity.
There is a velocity such that z = p and the system is
uncontrollable. The system is difficult to control robustly if z/p is
in the range of 0.25 to 4.

UCSB Version

Example 2 — Things can go bad

inf
u,x

N−1
∑

t=0

(px(t)p2 + u(t)2)

x(t+ 1) =

[

1 1

0 1

]

x(t) +

[

0

1

]

u(t)
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No finite unstable zero.

inf
u,x

N−1
∑

t=0

(px(t)p2 + u(t)2)

x(t+ 1) =

[

1 1

0 1

]

x(t) +

[

−2
1

]

u(t)
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Unstable zero at z = 1.5.

Lecture 2

◮ Model Predicitve Control

◮ Stability

◮ Stabilit y from terminal constrain ts

◮ Introduction to exercise

MPC with Equi libr ium Terminal Cons traint

JN(x0,u) =

N−1
∑

t=0

{(x(t),u(t)) VN(x0) = inf
u,x
JN(x0,u)

subject to x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t),u(t)),
x(0) = x0 and the terminal constraint x(N) = 0.

µN(x) := argminu{VN−1( f (x,u)) + {(x,u)}

The terminal constraint gives VN(x) ≤ VN−1(x).

x

t
0 1 2 3 4 5 6 7

MPC with Equi libr ium Terminal Cons traint

JN(x0,u) =
N−1
∑

t=0

{(x(t),u(t)) VN(x0) = inf
u,x
JN(x0,u)

subject to x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t),u(t)),
x(0) = x0 and the terminal constraint x(N) = 0.

µN(x) := argminu{VN−1( f (x,u)) + {(x,u)}

The terminal constraint gives VN(x) ≤ VN−1(x). Hence

VN(x) = {(x,µN(x)) + VN−1( f (x,µN(x)))

≥ {(x,µN(x)) + VN( f (x,µN(x)))

so VN is a Lyapunov function that proves stability!
Moreover V∞ ≤ V

µN
∞ ≤ VN .

Lecture 2

◮ Model Predicitve Control

◮ Stability

◮ Stability from terminal constraints

◮ Introdu ction to exercise

Cont rol of a Quadrupl e Tank

u1 u2

y1 y2

y3 y4

γ 1

1− γ 1

γ 2

1− γ 2 The transfer matrix from (u1,u2) to
(y1, y2)

























γ 1c1
1+ sT1

(1− γ 2)c1
(1+ sT1)(1+ sT3)

(1− γ 1)c2
(1+ sT2)(1+ sT4)

γ 2c2
1+ sT2

























has unstable zero if and only if

0 ≤ γ 1 + γ 2 < 1

Is there a step response with
wrong direction?
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Lab material

can be found on www.control.lth.se/disc-summer-school/

Cour se Out line

Tuesday 08:45
◮ Optimal control
◮ Dynamic programming
◮ Bellman’s equation
◮ Value iteration
◮ Approximate DynP

Tuesday 09:45
◮ Model Predicitve Control
◮ Stability
◮ Terminal constraints
◮ Introduction to exercise

Wednesday 08:45
◮ Exercise summary
◮ MPC with terminal cost
◮ MPC without terminal cost
◮ Adaptive horizon
◮ Receding horizon estimation

Wednesday 09:45
◮ Dual Decomposition
◮ Distributed MPC
◮ Gradient methods
◮ Large-scale systems

Tuesday afternoon : Computer exercise


