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Dynamic Progr amming and Model
Predictive Cont rol

Anders Rantzer

Automatic Control LTH
Lund University

Sweden

Cour se Out line

Tuesday 08:45
◮ Optimal control
◮ Dynamic programming
◮ Bellman’s equation
◮ Value iteration
◮ Relaxed DynP

Tuesday 09:45
◮ Model Predicitve Control
◮ Stability
◮ Terminal constraints
◮ Introduction to exercise

Wednesday 08:45
◮ Tuesday summary
◮ MPC with terminal cost
◮ MPC without terminal cost
◮ Adaptive horizon
◮ Receding horizon estimation

Wednesday 09:45
◮ Dual Decomposition
◮ Distributed MPC
◮ Gradient methods
◮ Large-scale systems

Wednesday afternoon : Computer exercise

Opt imal Cont rol

Idea:
Formulate a control synthesis problem in terms of optimization

+ Gives systematic design procedure

+ Can be used on nonlinear models

+ Can capture limitations as constraints

– Hard to find suitable criterium?!

– Can be hard to find the optimal controller

The beginni ng

John Bernoulli: The bracistochrone problem 1696:

Let a particle slide along a frictionless curve. Find the curve
that takes the particle from A to B in shortest time
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Solved by John and James Bernoulli, Newton, l’Hospital

Example: Goddard’s Rocket Problem (1910)

How should one send a rocket as high up in the air as possible?

d

dt







v

h

m






=







u− D

m
− �

v

−γ u







h

m

where u = motor force, D(v,h) = air resistance, m = mass.

Maximize h(t f ) when 0 ≤ u ≤ umax and m(t f ) ≥ m1

Low v when air resistance is high. Burn fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/

Opt imal Cont rol

◮ The space race (Sputnik 1957)
◮ Putting satellites in orbit
◮ Trajectory planning for interplanetary travel
◮ Reentry into atmosphere
◮ Minimum time problems
◮ Pontryagin’s maximum principle, 1956
◮ Dynamic programming, Bellman 1957
◮ Vitalization of a classical field

Lecture 1

◮ Optimal control

◮ Dynamic Programming and Bellm an’s Equation

◮ Value iteration

◮ Relaxed Dynamic Programming

◮ Examples

Dynamic Progr amming, Richard E. Bellman 1957

T1 T1 + ǫ T

An optimal trajectory on the time
interval [T1,T ] must be optimal
also on each of the subintervals
[T1,T1 + ǫ] and [T1 + ǫ,T ].
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Example: Dijks tra’s Algor ithm

For each node, find the shortest path to the goal!
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Example: Dijks tra’s Algor ithm
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Example: Dijks tra’s Algor ithm
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Example: Dijks tra’s Algor ithm
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Example: Dijks tra’s Algor ithm
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Dynamic Progr amming in Discrete Time

Minimize
N−1∑

t=0

l(x(t),u(t))

subject to x(t+ 1) = f (x(t),u(t)) t = 0, 1, 2, . . . ,N − 1

x(0) = x0

Let VN(x0) denote the minimal value. The value function VN
satisfies the Bellman equation

VN(x) = min
u
[l(x,u) + VN−1( f (x,u))]

t = 0 t = 1 t = N − 1

Infini te hor izon Bellman equation

Minimize
∞∑

t=0

l(x(t),u(t))

subject to x(t+ 1) = f (x(t),u(t)) x(0) = x0

Let V∞(x0) denote the minimal value. The value function V∞
satisfies the Bellman equation

V∞(x) = min
u
[l(x,u) + V∞( f (x,u))]

t = 0 t = 1 t = ∞

Lecture 1

◮ Optimal control

◮ Dynamic Programming and Bellman’s Equation

◮ Value iteration

◮ Relaxed Dynamic Programming

◮ Examples
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Value iteration

Minimize
N−1∑

t=0

l(x(t),u(t))

subject to x(t+ 1) = f (x(t),u(t)) x(0) = x0 ∈ X

Recall that the value function VN satisfies the Bellman equation

VN(x) = min
u
[l(x,u) + VN−1( f (x,u))]

Starting from V−1(x) " 0 the iteration gives VN(x) with

0 ≤ V1(x) ≤ V2(x) ≤ V3(x) ⋅ ⋅ ⋅

lim
N→∞

VN(x) → V∞(x), N →∞

Often extremely complex when X = Rn. Useful for finite X .

Theorem: Value Iteration Convergence

Suppose the condition 0 ≤ V∞( f (x,u)) ≤ γ l(x,u) holds
uniformly for some γ < ∞ and that 0 ≤ ηV∞ ≤ V ∗

0 ≤ δ V∞.

Then the sequence defined iteratively by

V ∗
j+1(x) = min

u

[
V ∗
j ( f (x,u)) + l(x,u)

]
j ≥ 0

approaches V∞ according to the inequalities
[

1+
η − 1

(1+ γ −1) j

]

V∞(x) ≤ V ∗
j (x) ≤

[

1+
δ − 1

(1+ γ −1) j

]

V∞(x)

Proof idea

Use assumptions ηV∞ ≤ V ∗
0 and V∞( f (x,u)) ≤ γ l(x,u) to get

V ∗
1 (x) = min

u
[V0( f (x,u)) + l(x,u)]

≥ min
u
[ηV∞( f (x,u)) + l(x,u)]

≥ min
u
[η1V∞( f (x,u)) +η1l(x,u)]

= η1V∞(x)

for some η1 > η. The smaller γ is, the bigger η1 becomes.

Repeat the argument to get V ∗
k (x) ≥ ηkV∞(x), where

η < η1 < η2 < η3 < . . .

Convergence from above is obtained the same way.

Lecture 1

◮ Optimal control

◮ Dynamic Programming and Bellman’s Equation

◮ Value iteration

◮ Relaxed Dynamic Programming

◮ Examples

Who decides the pr ice of a Volvo?

Subcontractor

Subcontractor

Car manufacturer

Car dealer

Customer

Valuation by the customer
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Valuation by the car dealer
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Customers: Andersson, Pettersson and Lundström

The key: Simpl ified valuation

Exact value-iteration gives absurd complexity.

Every subcontractor of Volvo would have to modify his prices
when Andersson expands his garage.

Of course, pricing is not done like that.
Approximations are done in every step.
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Bounds on the Opt imal Cost

If

V (x) ≤ min
u
[V ( f (x,u)) + l(x,u)]

then V is a lower bound on the optimal cost.

Conversely, if

min
u
[V ( f (x,u)) + l(x,u)] ≤ V (x)

then V is an upper bound on the optimal cost.

Relaxed Value Iteration

Replace the Bellman equation by an inequality:

min
u
[V ( f (x,u)) + l(x,u)/α ] ≤ V (x) ≤ min

u
[V ( f (x,u)) +α l(x,u)]

where α > 1.

From the inequalities, it follows that

V ∗(x)/α ≤ V (x) ≤ αV ∗(x)

The recursive conditions become

min
u
[Vj( f (x,u)) + l(x,u)/α ] ≤ Vj+1(x) ≤ min

u
[Vj( f (x,u)) +α l(x,u)]

The interval for Vj+1(x) makes it possible to work with a simplified
parameterization of Vj .

Theorem: Relaxed Value Iteration Convergence

Suppose the condition 0 ≤ V∞( f (x,u)) ≤ γ l(x,u) holds
uniformly for some γ < ∞ and that 0 ≤ ηV∞ ≤ V ∗

0 ≤ δ V∞.

Then a sequence satsifying

min
u
[Vj( f (x,u)) + l(x,u)/α ] ≤ Vj+1(x) ≤ min

u
[Vj( f (x,u)) +α l(x,u)]

approaches the interval [α−1V∞,αV∞] according to the
inequalities
[

1+
η − 1

(1+ γ −1) j

]

α−1V∞ ≤ V ∗
j (x) ≤

[

1+
δ − 1

(1+ γ −1) j

]

αV∞(x)

Relaxed Dynamic Progr amming
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V k+1(x)

V k+1(x)

Vk+1(x)

min
u

{

Vk
(
f (x,u)

)
+ l(x,u)/α

}

︸ ︷︷ ︸

V k+1(x)

≤ Vk+1(x) ≤ min
u

{

Vk
(
f (x,u)

)
+α l(x,u)

}

︸ ︷︷ ︸

V k+1(x)
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Example: Switched vol tage converter

A step-down DC/DC converter.

LoadSwitch
+

Vin

R

C

x2 L

x1

Iload

◮ A linear system except for the switching actuator
◮ Objective: Keep output voltage constant.

Opt imize switches for cont inuous dynamics

x(t+ 1) = Φi jx(t) + Γi ju(t)

x(t+ 1) = Φ j jx(t) + Γ j ju(t)

i

j

Minimize
∑

t x(t)
TQi(t) j(t)x(t) + u(t)

TRi(t) j(t)u(t)

Two types of inputs, both affect the penalty

Example: Switched vol tage converter

LoadSwitch
+

Vin

R

C

x2 L
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Iload





ẋ1
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l(x) = qP(x1 − Vref)
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3 + qD(x2 − Iload)
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Example: Switched vol tage converter
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Example: Switched vol tage converter

50 100 150 200 250 300 350 400
0

0.5

V
ol

ta
ge

Simulation of switched power controller

50 100 150 200 250 300 350 400
−0.5

0

0.5

C
ur

re
nt

50 100 150 200 250 300 350 400
−1

0

1

Sample

S
w

itc
h 

si
gn

Iload =
{0.3A 0.1A − 0.2A 0.3A}

Example: Switched vol tage converter

Frequency weights in the cost function can be used to suppress
undesired harmonics. This increases state dimension, but has
no significant effect on computational complexity.
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More on Cont rol of DC-DC Converters Opt imal cont rol : 60 discrete states, 30 cont inuoous

120 edges 120$ 30 eigenvalues

0 0.5 1
0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Minimize
∑

t z(t)
TQi(t)u(t)z(t)

Continuous dynamics: z(t+ 1) = Ai(t)u(t)z(t) z(0) = z0 ∈ R30

Discrete jumps: i(t+ 1) = u(t) i(0) = i0

Four steps of appr oximate value iteration

After four iterations we have one 30$ 30 matrix Pi for each
node such that the following switch law is within a factor 3.81
from optimality:

{
Jump to node n if zT [ATinP

nAin + Qin]z < z
T [ATimP

mAim + Qim]z

Jump to node m else

Two versions of relaxed value iteration

min
u
[Vj( f (x,u)) + l(x,u)/α ] ≤ Vj+1(x) ≤ min

u
[Vj( f (x,u)) + l(x,u)]

Decentralized computations!

min
u
[Vj( f (x,u)) + l(x,u)/α ] ≤ Vj+1(x) ≤ min

u
[Vj+1( f (x,u)) + l(x,u)]

Global convergence!
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If simple appr oximation exists, we will find one!

Assume Vs is “simple” and satisfies

min
u
[V ∗( f (x,u)) + l(x,u)/α ] ≤ Vs(x) ≤ min

u

[

Vs( f (x,u)) + l(x,u)
]

Then V ∗/α < Vs < V ∗ and the following relaxed value iteration with
V0 = 0 is feasible in every step:

min
u
[Vk( f (x,u)) + l(x,u)/α ] ≤ Vk+1(x) ≤ min

u
[Vk+1( f (x,u)) + l(x,u)]

Moreover

V ∗(x)/α < lim sup
k→∞

Vk(x) < V
∗(x)

Conc lus ions of Lecture 1

◮ Dynamic programming — Off-line controller optimization

◮ Main limitation: Complexity of optimal value function

◮ Relaxed Dynamic Programming (with error bounds)

◮ Next: On-line optimization — Model Predictive Control

[Lincoln and Rantzer, Relaxing Dynamic Programming, TAC 51:8, 2006]

[Rantzer, Relaxing Dynamic Programming in Switching Systems,

IEE Proceeding on Control Theory and Applications, 153:5, 2006]
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