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Optimal Control

Idea:
Formulate a control synthesis problem in terms of optimization

+

Gives systematic design procedure
Can be used on nonlinear models
Can capture limitations as constraints

+ o+

Hard to find suitable criterium?!
Can be hard to find the optimal controller

Example: Goddard’'s Rocket Problem (1910)

How should one send a rocket as high up in the air as possible?
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where u = motor force, D (v, h) = air resistance, m = mass.

Maximize h(t;) when 0 < u < upqx and m(ts) > mq

Low v when air resistance is high. Burn fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/
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The beginning

John Bernoulli: The bracistochrone problem 1696:

Let a particle slide along a frictionless curve. Find the curve
that takes the particle from A to B in shortest time

A

Solved by John and James Bernoulli, Newton, I'Hospital

Optimal Control

» The space race (Sputnik 1957)

» Putting satellites in orbit

» Trajectory planning for interplanetary travel
» Reentry into atmosphere

» Minimum time problems

» Pontryagin’s maximum principle, 1956

» Dynamic programming, Bellman 1957

» Vitalization of a classical field

Dynamic Programming, Richard E. Bellman 1957
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An optimal trajectory on the time
interval [T, T] must be optimal
also on each of the subintervals
[Tl,Tl + E] and [T1 + G,T].




Example: Dijkstra’s Algorithm

For each node, find the shortest path to the goal!

Infini te horizon Bellman equation

Minimize il(x(t),u(t))
t=0

subject to x(t+1) = fx(t),u(t)) x(0) = xg

Let Vo (x0) denote the minimal value. The value function Vi,
satisfies the Bellman equation

Voo(x) = min [I(x,u) + Voo (f (%, u))]

Example: Dijkstra’s Algorithm

Dynamic Programming in Discrete Time

N-1
Minimize ) " 1(x(t), u(t))
t=0

subjectto x(¢+ 1) = f(x(¢),u(?)) t=0,1,2,...,N—1
x(0) = xo

Let Viy(xo) denote the minimal value. The value function Vy
satisfies the Bellman equation

Vi (x) = min [[(x,u) + Vy-1 (£ (x,u))]
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Value iteration Theorem: Value Iteration Convergence

N-1
Minimize > U(x(8),u(t) Suppose the condition 0 < V(£ (x,u)) < 7I(x,u) holds
=0 uniformly for some y < oo and that 0 < 7V, < Vi < 6 V.

subjectto  x(t+1) = f(x(t),u(?)) #(0)=x€ X Then the sequence defined iteratively by

Recall that the value function Vy satisfies the Bellman equation Vii(x) = min [VF(f(x,u)) + 1(x,u)] j>0
Vn(x) = muin (L(x,u) + Vv (£ (x,u))] approaches V,, according to the inequalities
Starting from V_;(x) = 0 the iteration gives Vi (x) with n—-1 < Vily) < 6—1
1+ 7(1 Y Voo(x) < V; (x)< |1+ 7(1 Y Voo (x)

0 < Vi(x) < Va(x) < Va(x)--

Alrim Vn(x) = Veo(x), N — 0
Often extremely complex when X = R". Useful for finite X .

Proof idea Lecture 1

Use assumptions nV,, < Vi and Vo (f(x,u)) < yi(x,u) to get

v

Optimal control
Vi(x) = min [Vo(£(x,u)) + I(x,u)]

> min [nVeo (f(x,u)) + L(x, u)]
2 min [171 Voo (£ (x,4)) + ml(x,u)]
=11Voo(x)

v

Dynamic Programming and Bellman’s Equation

v

Value iteration

v

for some 11 > 1. The smaller y is, the bigger n; becomes. Relaxed Dynamic Programming

Repeat the argument to get V;/(x) > 17, Vo (x), where
nN<nN<ne<nz<... » Examples

Convergence from above is obtained the same way.

Who decides the price of a Volvo? Valuation by the customer
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Valuation by the car dealer The key: Simplified valuation

Exact value-iteration gives absurd complexity.

Every subcontractor of Volvo would have to modify his prices
when Andersson expands his garage.

Of course, pricing is not done like that.
Approximations are done in every step.
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Customers: Andersson, Pettersson and Lundstrém



Bounds on the Optimal Cost

V(x) < muin V(f(x,u))+I(x,u)]

then V is a lower bound on the optimal cost.
Conversely, if

muin V(f(x,u)) +i(x,u)] < V(x)

then V' is an upper bound on the optimal cost.

Theorem: Relaxed Value Iteration Convergence

Suppose the condition 0 < Vo (f(x,u)) < yIl(x,u) holds
uniformly for some y < oo and that 0 < nVy, < Vi < V.

Then a sequence satsifying

min [V;(f(x,u)) + 1(x,u)/e] < Vji(x) < min [Vi(f(z,4)) + al(x,u)]

approaches the interval [a =1V, « V] according to the
inequalities

[1+ /o }a*lvoog\/;(x)g{l
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Optimize switches for continuous dynamics

x(t+ 1) = Djx(t) + Tiju(t)

O

x(t+1) = Djx(t) + Tjju(t)

Minimize 3, x(t)” Qi (t) + ()" Rigjyu(t)
Two types of inputs, both affect the penalty

Relaxed Value lteration

Replace the Bellman equation by an inequality:
min [V(f(x,u)) + (x,u)/a] < V(x) < min [V(f(x,u)) + al(x,u)]
where o > 1.
From the inequalities, it follows that
Vi(x)/a < V(x) <aV*(x)
The recursive conditions become
min [V (f(x,0)) +L(x,u)/@] < Vi (x) < min [V;(£(x,0) +al(x,0)]

The interval for V;,1(x) makes it possible to work with a simplified
parameterization of V;.

Relaxed Dynamic Programming

1.6
-1 -0.5 0 0.5 1

muin{Vk(f(x,u)) +l(x,u)/a} < Viga(x) < muin{Vk(f(x,u)) + al(x,u)}

Vi (x) Vk+1(x)

Example: Switched voltage converter

A step-down DC/DC converter.

R x L Load

2
VinJi_ Swi t ch +>x1 Load
T T

» A linear system except for the switching actuator
» Objective: Keep output voltage constant.

Example: Switched voltage converter

R x L Load

2
Vi Ji— Swi t ch +>x1 Load
T T

=|_1 R 1
—1x1— %2+ 15(8)Vin
Viet — 21

ﬁ & (%2 = Foaa)

I(x) = gp(x1 — Vyer)® + qr23 + qp (22 — Daa)®



Example: Switched voltage converter

Value function complexity
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Example: Switched voltage converter

Simulation of switched power controller
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More on Control of DC-DC Converters

126 IEEE TRANSACTIONS ON CONTROL EM: OGY, VOL. 18, NO. 5, SEI 010

Comparison of Hybrid Control Techniques for Buck
and Boost DC-DC Converters

Sébastien Mariéthoz, Member, IEEE, Stefan Almér, Mihai B4ja, Andrea Giovanni Beccuti, Diego Patino,
Andreas Wernrud, Jean Buisson, Hervé Cormerais, Tobias Geyer, Member, IEEE, Hisaya Fujioka, Member, IEEE,
UIf T. Jonsson, Member, IEEE, Chung-Yao Kao, Member, IEEE, Manfred Morari, Fellow, IEEE,
Georgios Papafotiou, Member, IEEE, Anders Rantzer, Fellow, IEEE, and Pierre Riedinger

Four steps of approximate value iteration

After four iterations we have one 30 x 30 matrix P’ for each
node such that the following switch law is within a factor 3.81
from optimality:

Jumptonode n if 2T[AL P" Ay + Qin)z < 2T [AL P™ Ay + Qin]2
Jump to node m  else

Example: Switched voltage converter

.. Switched control law

X, at switch

Integrator x,

0.6

Voltage x, 0.4 02 05

Example: Switched voltage converter

Frequency weights in the cost function can be used to suppress
undesired harmonics. This increases state dimension, but has
no significant effect on computational complexity.

Simulation of switched power controller
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Switch mode

Optimal control: 60 discrete states, 30 continuoous

120 x 30 eigenvalues

Minimize

>0 2 Qigpyui 2(2)

Continuous dynamics:  z(t + 1) = A;u2(t) 2(0) =z € R*

Discrete jumps: i(t+1) =u(?) i(0) = ig

Two versions of relaxed value iteration

min [V;(f(x,u)) +1(x,u)/a] < Vjpa(x) < min [V;(f(x,u)) +1(x,u)]

Decentralized computations!

min [V;(f(x,u)) +1(x,u)/e] < Vipi(x) < min [Vi (£(x,u)) +1(x,u)]

Global convergence!



If simple approximation exists, we will find one!

Assume V'S is “simple” and satisfies

min [V* (£(x,u)) +1(x,u)/@] < VS(x) < min [Vs(f(x,u)) +1(x,u)]

Then V*/a < VS < V* and the following relaxed value iteration with
Vo = 0 is feasible in every step:

min [Vi(f(x,u)) +1(x,u)/a] < Vi (x) <min [V (F(x,u)) +1(x,u)]

Moreover
V*(x)/a < limsup Vi (x) < V*(x)
k—oo
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Conclusions of Lecture 1

v

Dynamic programming — Off-line controller optimization

v

Main limitation: Complexity of optimal value function

v

Relaxed Dynamic Programming (with error bounds)

» Next: On-line optimization — Model Predictive Control

[Lincoln and Rantzer, Relaxing Dynamic Programming, TAC 51:8, 2006]

[Rantzer, Relaxing Dynamic Programming in Switching Systems,
IEE Proceeding on Control Theory and Applications, 153:5, 2006]




