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Abstract

We present a synthesis procedure to design structured controllers for linear systems to optimize a

quadratic performance criterion. Controllers are updated in an iterative fashion to reduce the cost. Descent

directions are determined by simulating the system itself and the corresponding adjoint system. In each

iterate suboptimality bounds are calculated in order to validate the current controller. An important

property of the proposed method is that the computational complexity scales linearly when the system

matrices are sparse. Hence it is useful when designing controllers for large-scale sparse systems, for

example distributed systems or systems resulting from discretized PDEs.

I. INTRODUCTION

The theory of optimal linear quadratic control has been around for several decades and is

well documented in the literature, for example [2], [9], [17]. The solutions are closely related

to solving the algebraic Riccati equation to get an expression for an optimal feedback matrix.

Solving optimal linear quadratic control problems with the use of Riccati equations works well

when considering small and medium sized systems. Due to the fact that workspace complexity

is O(n2) and the computational complexity is O(n3), see [6], this method of finding the optimal

solution is less tractable for large-scale systems. When solving general large-scale optimization

problems, one can not use conventional approaches but one needs to find and exploit some
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structure in the problem [19]. One common structure of linear dynamic systems is that the

system matrices are sparse. Such sparse systems are for example obtained from discretization

of PDEs, for example [13], [20], [31], or when considering large interconnected systems. The

papers [6], [5] treat systems with a large state space but only a few inputs, for example systems

resulting from discretization of PDEs. The solution to the Riccati equation is approximated with

low rank Cholesky factors, and the feedback matrix is determined by a tractable product of

these. In [16], [8] solving large-scale algebraic Riccati equations using Arnoldi-based methods

are discussed. By projecting the parameters onto Krylov subspaces, low rank approximations of

the Riccati solutions can be determined. Another low rank approximation method based on stable

invariant subspaces of the Hamiltonian is given in [1]. A Riccati based method for stabilization

of large-scale systems can be found in [28].

Except for the possible large state space, distributed interconnected systems introduces another

constraint on the controllers. When controlling these systems, it is often desirable to respect a

communication structure in which a subsystem is only allowed to communicate with a few other

subsystems. Already in the late 1960s it was pointed out that such problems are fundamentally

difficult to solve. In particular [33] showed that even a small quadratic control problem does

not have a linear optimal solution. The stabilizability and optimality of linear decentralized

controllers for large-scale interconnected systems was investigated in [15]. In recent years a

lot of work has been made to provide synthesis methods for classes of distributed systems. A

concept of quadratic invariance was introduced in [30], [29], which transforms the problem of

finding an optimal controller into a convex optimization program. The works [3], [4] investigated

systems that are spatially invariant. A structured state and output feedback H2 control synthesis

method by relaxing the Riccati equations via linear matrix inequalities was discussed in [21].

In [22], [23] H2 design of state feedback matrices subjected to structural constraints such that

many entries are zero, are considered. Other methods which involve the use of linear matrix

inequalities were presented in for example [11], [18], [27].

It is possible to investigate the solution of a linear quadratic control problem using Pontryagin’s

Maximum principle, by introducing adjoint states, [9], [14]. In [9] it was shown how the express

the optimal control signal in terms of adjoint states. In [14], large-scale sparse continuous-time

system were discretized to solve open-loop linear quadratic control problems. By introducing

adjoint variables, the problem was transformed to a set of sparse linear equations, which was



solved by Gauss-Seidel (GS) iterations. It was also suggested how solve the equations with GS

as a preconditioner in a Krylov subspace method.

In this paper we present a method to iteratively improve a structured linear controller with

respect to a given linear quadratic performance. The underlying idea works by determining a

descent direction to the performance and to take a step in that direction to reduce the cost.

A similar technique has been studied in [12] where the descent direction was determined by

calculating solutions to Riccati equations, which means that it is not applicable for large-scale

systems. In this work we determine the descent direction by simulating the dynamical system and

the corresponding adjoint system. The trajectories are used to find the descent direction. When

the dynamical system is sparse it turns out that this will produce a scalable method. The trajectory

determined for calculating a descent direction can also be used to find a suboptimality bound

of the current controller. This gives a way to verify that the controller is close to the optimal

solution. Hence the bound can be used as a criterion when to stop the process of updating the

controller to improve the performance. The paper builds on the recent papers [24], [25].

The paper is organized as follows. In Section II the general problem setup is given. The

process of finding the descent direction to the quadratic cost function using the trajectories of

the dynamical and adjoint system is found here. This section also shows how to determine the

suboptimality bounds. In Section III the dynamical system is restricted to sparse distributed

systems and it is shown how the previously presented method is used to give a scalable scheme.

If the dynamical system is modified to include noise, a real-time scheme can be handled in a

similar fashion. The details of this process is found in Section IV. Two examples illustrating the

methods are presented in Section V.

A. Mathematical Notation

The set of real numbers is denoted by R, real vectors of dimension n by R
n and real n×m

matrices by R
n×m. When a partition of a vector or a matrix exists, subscripts will refer to that

partition. For example, for x ∈ R
n then xi ∈ R

ni refers to the ith partition of x and A ∈ R
n×m

then Ai,j = Aij ∈ R
ni×mj refers to the i, jth partition of A. When the components of the

vectors or matrices are ordered with respect to the partition, xi or Aij equivalently means the

ith or i, jth block of x or A, respectively. Let dX denote an infinitesimal change of the variable

X . For a matrix valued function f : Rn×m → R we define the differential df as the part of



f(X + dX)− f(X) that is linear in dX , that is the linearized part of f . The gradient of f with

respect to X is denoted ∇Xf and means

∇Xf =
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For a pair of (A,B) ∈ R
m×m × R

m×p we say that the matrix K ∈ R
p×m stabilizes (A,B) if

A−BK has all its eigenvalues in the unit circle. A pair (A,B) is said to be stabilizable if such

K exists.

The normal distribution with mean µ and variance σ2 will be denoted N (µ, σ2).

II. GENERAL THEORY

In this paper we consider linear time invariant systems in discrete time. Hence, the dynamic

equation for these systems is

x(t + 1) = Ax(t) +Bu(t), x(0) = x0 (1)

where x(t) ∈ R
m and u(t) ∈ R

p for t ≥ 0 and x0 ∈ N (0, σ2
x0
). The matrices A ∈ R

m×m and

B ∈ R
m×p. We assume that (A,B) is stabilizable in the paper.

A. Problem Formulation

We wish that the controllers used to control the system (1) should minimize a quadratic

expression in the system states and control variables. Hence we are looking at linear quadratic

control (LQR) synthesis. With the knowledge that linear state feedback controllers are optimal

for this problem, the controllers we consider are such. That is, we consider controllers on the

form

u(t) = −Kx(t) (2)

A difference from usual LQR design is that we are interested in structured controllers and restrict

the allowed feedback matrices to some subspace K ⊂ R
p×m. Also, let the subset of K that

consists of all admissible stabilizing feedback matrices, be

Kstab = {K | K ∈ K and K stabilizes (1)}



With the dynamics in (1) and the control in (2) in mind, for every K ∈ Kstab we define the

linear quadratic cost function

J(K, x0) =

∞∑

t=0




x(t)

u(t)





T 


Qx Qxu

QT
xu Qu





︸ ︷︷ ︸

Q




x(t)

u(t)



 (3)

where Qx is positive semi-definite and Qu is positive definite. For the classical LQR problem

with full feedback matrices, the initial condition x0 does not influence the solution. However,

when introducing structural constraints, generally the optimal feedback matrix differs for different

initial conditions. Assuming that the initial condition is some stochastic variable, the cost

E x0
[J(K, x0)] (4)

will be the objective for the control synthesis for feedback matrices in Kstab.

B. Analysis

By solving certain Lyapunov equations we can get tractable expressions for (3). The unique

solution X0 for the Lyapunov equation

X0 = (A−BK)X0(A− BK)T + x0x
T
0 (5)

is given by

X0 =
∞∑

t=0

(A− BK)tx0x
T
0 ((A− BK)T )t

Inserting (1) and (2) into (3), we get an expression for the cost of the given system

J(K, x0) = tr

(

(Qx − 2QxuK +KTQuK)
∞∑

t=0

x(t)x(t)T

)

= tr
(
(Qx − 2QxuK +KTQuK)X0

)

Similarly, by denoting QK = Qx−QxuK−KTQT
xu+KTQuK, the unique solution P to another

Lyapunov equation

P = (A−BK)TP (A− BK) +QK (6)

can be expressed as

P =

∞∑

t=0

((A− BK)T )tQK(A− BK)t



This solution P can be used to derive another expression for the cost function

J(K, x0) =
∞∑

t=0

x(t)TQKx(t) = tr
(
Px0x

T
0

)

With these expressions we are able to determine the gradient of J with respect to K.

Proposition 1: Given the system (1) and a stabilizing K, the gradient of the cost function J

defined in (3) with respect to K is

∇KJ = 2
(
QuK −QT

xu −BTP (A− BK)
)
X0, (7)

where X0 and P satisfy the Lyapunov equations (5) and (6).

Proof. We will determine an expression for the differential of P . Let us start with defining the

following notation to simplify the future expressions:

AK = A−BK

M = dKT
(
QuK −QT

xu − BTPAK

)

Differentiating (6) shows that dP satisfies the Lyapunov equation

dP = AT
KdPAK +M +MT ⇐⇒

dP =

∞∑

k=0

(AT
K)

k(M +MT )Ak
K

Hence, since dJ = tr
(
dPx0x

T
0

)
, we get that

dJ = 2 · tr

(
∞∑

k=0

(AT
K)

kMAk
Kx0x

T
0

)

=

= 2 · tr

(

M

∞∑

k=0

Ak
Kx0x

T
0 (A

T
K)

k

)

=

= 2 · tr
(
dKT (QuK −QT

xu − BTPAK)X0

)

By using the relation about differentials

dZ = tr
(
dXT · Y

)
=⇒ ∇XZ = Y

the relation (7) is verified. 2



The expression in (7) involves the solution of the Lyapunov equation (6). Finding the solution

to a Lyapunov equation is a time-consuming operation for large-scale systems. It is well known

that the adjoint states of a system are closely related to optimal control. In for example [9] it is

shown how to express the optimal control signal with adjoint states and in that way not have to

solve a Riccati equation. In the following proposition we introduce the adjoint states in a way to

get rid of the Lyapunov solution P in the expression for ∇KJ . A benefit of this substitution is

that the time complexity for finding the gradient is heavily reduced, which will later be shown.

Proposition 2: Given the system (1) and a stabilizing K, let the adjoint states λ be defined

by the backwards iteration

λ(t− 1) = (A− BK)Tλ(t)−

− (Qx −QxuK −KTQT
xu +KTQuK)x(t)

(8)

where x(t) are the states of (1), with lim
t→∞

λ(t) = 0. Then

∇KJ = 2

(
∞∑

t=0

(
−Quu(t)−QT

xux(t) +BTλ(t)
)
x(t)T

)

(9)

Proof. For simplicity, let QK = Qx −QxuK −KTQT
xu +KTQuK and keep the notation from

Proposition 1. For any j,

λ(j) = −
∞∑

k=j+1

(AT
K)

k−j−1QKx(k) =

= −
∞∑

k=0

(AT
K)

kQKA
k+1
K x(j)

Hence

∞∑

t=0

λ(t)x(t)T = −
∞∑

t=0

∞∑

k=0

(AT
K)

kQK(AK)
k+1x(t)x(t)T =

= −PAKX0

Fitting this into (7) and using that X0 =
∞∑

t=0

x(t)x(t)T gives the desired result. 2

The gradient ∇KJ for a stabilizing admissible feedback matrix K is generally not in the space

K . This means that the gradient can not directly be used to update K since that K−γ∇KJ /∈ K

for any non-zero γ. Let us define the scalar product of elements of K as the scalar product

of the vector representation of the elements. By orthogonally projecting the gradient onto K ,



denoted projK (∇KJ), we obtain an admissible descent direction. Now, K − γ · projK (∇KJ)

for a small enough γ will be an admissible feedback matrix with cost less than K.

C. General Algorithm

Instead of infinite time, we truncate the sum in (9), implying that we approximate the gradient

of J . Let the final time of the sum be tfinal. We will have to simulate the states from t = 0 to

t = tfinal in increasing time and after which the adjoint states are simulated from t = tfinal to

t = 0 in decreasing time. With these trajectories we are able to determine an approximation of

the gradient. We summarize the procedure into the following algorithm.

Algorithm 1: Consider a system (1) with control u(t) = −Kx(t) where K ∈ Kstab. To find

a local minimizer to (4), start with K(0) ∈ Kstab and for each τ ≥ 0,

1) Simulate the states of (1) for some x0 ∈ N (0, σ2
x0

with control u(t) = −K(τ)x(t) for times

t = [0, tfinal].

2) Simulate the adjoint states of (8) for times t = [0, tfinal] in the backwards time direction

with λ(tfinal) = 0.

3) Calculate an approximation of ∇KJ

∇KJapprox = 2

tfinal∑

t=0

(

−Quu(t)−QT
xux(t) +

+BTλ(t)
)

x(t)T

and project the approximation on the admissible set of feedback matrices

G = projK (∇KJapprox)

4) Update the feedback matrix in the direction of the projected gradient

K(τ+1) = K(τ) − γτG

for some step length γτ .

5) Increase τ with 1 and goto 1).

Remark 1: For a general constrained optimization problem the procedure of using projected

gradients as the descent direction is commonly known as a projected gradient method. For more

about projected gradient methods see for example [7], [10].



Remark 2: In step 4 of the algorithm the feedback matrix is updated in the direction of

the projected gradient with some step length. How to pick an appropriate step length is of

course some concern. In a way, the step length is a design parameter of the algorithm, but there

are approaches to estimate a suitable step length for a direction. By simulating (1) with the

K = K(τ) − γτG the cost can be evaluated. Hence, a line-search may be applied, for example

Armijo’s rule.

Remark 3: In order to approximate the gradient in Algorithm 1 a final time tfinal needs to be

determined to ensure that the approximation is still a descent direction. For any descent direction

D, tr
(
∇KJ

T ·D
)
< 0 must hold. Letting G be the truncated gradient and H = ∇KJ−G. Then

G is a descent direction if tr
(
(G+H)TG

)
< 0, that is tr

(
GTG

)
< tr

(
HTG

)
. Since tr

(
GTG

)

can be determined, a valid final time would be one for which it is possible to determine a bound

on H in order for the inequality to hold. A strategy could be to analyse the decrease in the state

trajectory to find such bound. This is an issue that needs further attention.

Remark 4: The initialization of Algorithm 1 needs a stabilizing structured feedback matrix

K(0). In case when (1) is stable K(0) can simply be chosen to be 0. However, for unstable systems

it may not be a nontrivial problem to find such a stabilizing feedback matrix. For unstable system

of a moderate size, methods to find structured stabilizing feedback matrices can for example be

found in [32], [23].

As posed, there is no stopping criterion for Algorithm 1. It is possible to specify the number

of iterations to update the feedback matrix. This strategy will not guarantee that any kind of

performance of the acquired feedback matrix is met. In the following section we describe how

to calculate a bound of the suboptimality. In the end of the section it will be shown how to

incorporate this bound in Algorithm 1 to get a stopping criterion.

D. Suboptimality Bounds

Solving the ordinary LQR control problem is a well-studied problem and has a tractable

solution. But finding the minimizing feedback matrix, when imposing a structure, is not even

guaranteed to be convex. The underlying method in Algorithm 1 is a descent method, and hence

we can not guarantee that the globally optimal structured feedback matrix is ever attained. As

mentioned in Algorithm 1, this method produces a locally optimal solution. A measure of the

suboptimality for the feedback matrix in each iteration step of the update algorithm, is α ≥ 1



such that

J(K, x0) ≤ αJ(Kopt, x0), (10)

where Kopt = argmin
K

J(K, x0). That is, J(K, x0) is within a factor of α of the actual optimal

value. This means that if we can verify that an α close to 1 must satisfy (10), then even though

K might not be the optimal feedback matrix, we will not find one that reduces the cost greatly

compared to this one.

We introduce the truncated version of the cost by

J(K, x0, tfinal) =

tfinal∑

t=0




x(t)

u(t)





T

Q




x(t)

u(t)



 (11)

where the states x(t) satisfy (1) and u(t) = −Kx(t). The following theorem gives us a

suboptimality bound telling us that in the time interval [0, tfinal] we are within a factor of α of

the optimal solution on this interval. The theorem is a duality result of the original optimization

problem. It should be noted that the theorem holds for any choice of adjoint variables λ(t), but

later on we show that a natural choice of the adjoint variables is determined by (8).

Theorem 1: If α ≥ 1 is such that for a given sequence of adjoint variables λ(t), with λ(tfinal) =

0

J(K, x0, tfinal) ≤ α min
x,u

x(0)=x0

tfinal∑

t=0

(



x(t)

u(t)





T

Q




x(t)

u(t)



 +

+ 2λ(t)T (x(t + 1)− Ax− Bu(t))

)
(12)

then α is a suboptimality bound, that is

J(K, x0, tfinal) ≤ αJ(Kopt, x0, tfinal), (13)

where

Kopt = argmin
K

J(K, x0, tfinal)



Proof. Assume that α ≥ 1 is such that for a given sequence of λ(t), (12) holds. We have that

J(Kopt, x0, tfinal) =







min
K,x

tfinal∑

t=0




x(t)

−Kx(t)





T

Q




x(t)

−Kx(t)





subject to: x(t + 1) = (A− BK)x(t)

x(0) = x0

≥







min
x,u

tfinal∑

t=0




x(t)

u(t)





T

Q




x(t)

u(t)





subject to: x(t + 1) = Ax(t)−Bu(t)

x(0) = x0

≥ min
x,u

x(0)=x0

tfinal∑

t=0

(



x(t)

u(t)





T

Q




x(t)

u(t)





+ 2λ(t)T (x(t+ 1)− Ax(t)−Bu(t))

)

where the last inequality comes from introducing dual variables. The right hand side of this

inequality is the dual function of the minimization problem on the left hand side. Now, it is

well-known that the optimal value of a minimization problem is greater than or equal to any

value of its dual function. Hence, if (12) holds, so must (13). 2

Remark 5: If the matrix Q is not positive definite (that is, only positive semi-definite) it is

easily realized the minimization program in (12) is not necessarily bounded. For any direction

in
[

x(t)T u(t)T
]T

that is not penalised, λ(t) needs to be such that the term 2λ(t)T (x(t+ 1)−

Ax(t) − Bu(t)) equals 0 in this direction. Given a sequence of λ(t) and all the directions in

which Q is singular, the way to construct an admissible sequence of adjoint variables is then

to project
[

(λ(t− 1)T − λ(t)TA) λ(t)TB
]T

onto the orthogonal subspace of these directions

(meaning the range of Q).

With a large-scale system and a long simulation horizon tfinal, the minimization program is

potentially huge. It turns out that there is an easy explicit solution.

Proposition 3: Assume that Q is positive definite. The minimal value (denoted Vmin) of the



minimization program in (12) can be determined explicitly and is

Vmin = xT
0Qxx0 − 2λ(0)TAx0 −

− fTQ−1
u f −

tfinal∑

t=1

g(t)TQ−1g(t)

where

f = QT
xux0 −BTλ(0)

g(t) =




λ(t− 1)−ATλ(t)

−BTλ(t)





Proof. Introduce

F = Quu(0) + f

G(t) = Q




x(t)

u(t)



+ g(t)

We get that

tfinal∑

t=0

(



x(t)

u(t)





T

Q




x(t)

u(t)



 +

+ 2λ(t)T (x(t + 1)− Ax(t)−Bu(t))

)

=

=




x0

u(0)





T

Q




x0

u(0)



− 2λ(0)T (Ax0 +Bu(0)) +

+

tfinal∑

t=1

(



x(t)

u(t)





T

Q




x(t)

u(t)



 +

+ 2λ(t− 1)Tx(t)− 2λ(t)T (Ax(t) +Bu(t))

)

=

= xT
0Qxx0 − 2λ(0)TAx0 + F TQ−1

u F − fTQ−1
u f +

+

tfinal∑

t=1

(
G(t)TQ−1G(t)− g(t)TQ−1g(t)

)

The equalities arise by inserting x(0) = x0, using that λ(tfinal) = 0 and completing the squares.

To minimize the final expression, the squares F TQ−1
u F and G(t)TQ−1G(t) are set to 0 and the

relation for Vmin is reached. 2



Remark 6: With similar reasoning as in Remark 5 it is also possible to deal with positive

semi-definite Q. Then Q−1g(t) will mean any vector v satisfying Qv = g(t) (this v will actually

equal some minimizing −
[

x(t)T u(t)T
]T

).

Theorem 1 does not specify the sequence of λ(t) to choose to determine the suboptimality

bound of a given feedback matrix. Any sequence giving giving an α ≥ 1 will actually do.

Though, the name suggest that we choose the adjoint variables defined by (8). To motivate

this choice, we could refer to Pontryagin’s maximum principle. The motivation comes from

examining

max
λ

min
x,u

tfinal∑

t=0

(



x(t)

u(t)





T

Q




x(t)

u(t)



 +

+ 2λ(t)T (x(t + 1)−Ax(t)− Bu(t))

)

︸ ︷︷ ︸

L(x,u,λ)

from Theorem 1. We let the objective function be denoted by L(x, u, λ). To find a saddle point

for L then

0 = ∇x(t)L = 2(Qxx(t) +Qxuu(t) + λ(t− 1)− ATλ(t))

0 = ∇u(t)L = 2(QT
xux(t) +Quu(t)−BTλ(t))

We get (8) by ∇x(t)L+KT∇u(t)L = 0 and replacing u(t) = −Kx(t).

To include the suboptimality bound as a stopping criterion in Algorithm 1, only step 5 will be

modified. Assume that a maximal degree of suboptimality αmax is given. That is, Algorithm 1

should stop when it can be verified that α ≤ αmax. Then the step 5 should be modified to

5’) Let

M = min
x,u

x(0)=x0

tfinal∑

t=0

(



x(t)

u(t)





T

Q




x(t)

u(t)





+ 2λ(t)T (x(t + 1)− Ax− Bu(t))

)

If
J(K, x0, tfinal)

M
≤ αmax then terminate, otherwise goto 1).



III. SYNTHESIS OF DISTRIBUTED CONTROLLERS

To get a scalable scheme from the theory developed in the previous section, we need to

impose structure on both the systems and the admissible controllers. Such structure is for example

distributed systems, that is systems, which are partitioned in distinct subsystems, denoted agents.

These agents are only connected to a few other agents. This connection has two meanings. First,

the dynamics for each agent only directly depends on the states of the agents it is connected

to. Second, each agent is only able to communicate with its connected agents, meaning that for

example only measurements of the states from these agents can be used to determine the control

signal. The connection between agents can be formulated by a directed graph structure. We will

explain the details below.

A. Underlying Graph Structure

With a graph G we mean the pair (V, E) of vertices and edges, respectively. The set of

vertices V = {v1, v2, . . . , vn} will later represent the partition of the system. Each vertex vk

will denote an agent of the system. The set of edges E is a collection of ordered pairs (vi, vk)

(or in short (i, k)) which means that there is a connection starting from vertex vi and ends in

vertex vk. We will require all considered edge sets to include the pairs (vi, vi) for all vertices

1 ≤ i ≤ n. For each vertex vi we define its up-neighbors as N up
i = {vk | (vk, vi) ∈ E , k 6= i} and

its down-neighbors as N down
i = {vk | (vi, vk) ∈ E , k 6= i}. We will denote an agents neighbors

by Ni = N up
i ∪N down

i .

B. Modelling the Subsystems

As mentioned in the previous section, we consider LTI systems in discrete time (1) with

the same assumptions as in this section. The systems will also be assumed to be distributed, a

property described by an associated graph G. The vertices of the graph constitute a partition of

the states of (1). We assume that the states are ordered according to the vertices, i.e. we collect

the states corresponding to v1 in the beginning of the state vector x and so on. This gives us

the state vector x =
[

xT
1 xT

2 . . . xT
n

]T

, where each xi is the states of vertex or agent vi.

Now, the distributed structure of the system can be described by the edges of G. If there is an

edge (vi, vk) ∈ E , then agent vi may directly influence agent vk through the dynamics. That



1

2

3

4 u1

u2

u3

u4

A12, A21

A31

A23

A34, A43

Fig. 1. Graphical representation of a distributed system. The arrows shows how each agent affects the others. The set

E = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (1, 3), (3, 2), (3, 4),

(4, 3)}

is, the dynamics matrix has a sparsity structure which resembles the graph associated with the

distributed system

Aik = 0 if (vk, vi) /∈ E

We will assume that the control inputs are partitioned over the agents, meaning that each agent

has a distinct set of control signals which it uses to control its states. This set of control signals

may not affect any other agent directly. The way this shows up in the dynamics equation is that

the matrix B will be block diagonal,

B = diag(B1, B2, . . . , Bn)

where Bi is the local B matrix for agent vi.

Remark 7: The reason for assuming that the matrix B to be block-diagonal will become

evident in a later section. This assumption can be relaxed to allow certain sparse matrices.

The dynamics for each subsystem can then be written as

xi(t + 1) = Aiixi(t) +Biui(t) +
∑

k∈N up
i

Aikxk(t) (14)

where xi(t) ∈ R
mi and ui(t) ∈ R

pi .

A system with 4 agents can be found in Figure 1. For example, we have that

x3(t+ 1) = A33x3(t) +B3u3(t) + [A31x1(t) + A34x4(t)]



C. Problem Formulation

In Section II-A we saw how to impose restrictions on the admissible controllers. This suits well

with the idea of distributed controllers. We assume that an agent vi may only use measurements

from the states of its neighbors to determine its control input. In terms of the structure of the

feedback matrix

Kik = 0 if (vi, vk) /∈ E

This defines the set of admissible feedback matrices as

K = {K | Kik = 0 if (vi, vk) /∈ E , ∀i, k} (15)

We will also introduce a restriction on the cost function in (3). The matrix Q will be assumed

to have a structure which allows us to separate the cost function in a term for each agent, i.e.

J(K, x0) =

n∑

i=1

∞∑

t=0




xi(t)

ui(t)





T 


[Qx]i [Qxu]i

[Qxu]
T
i [Qu]i





︸ ︷︷ ︸

Qi




xi(t)

ui(t)





This means that we assume that the matrices Qx, Qu and Qxu are block diagonal. Hence, Qx is

positive semi-definite and Qu is positive definite if and only if all [Qx]i and [Qu]i are positive

semi-definite and positive definite, respectively.

Remark 8: The reason for restricting Q to this structure is the same as for the restriction of

the B matrix, and will become evident later on. As with the B matrix, the assumption can be

relaxed to allow certain sparse Q.

D. Scalable Calculations

With the distributed structure of the system and problem, i.e. the assumptions of the structure

A and B in the dynamics equation and Q in the cost function, we will show that the algorithm

in Section II-C will be both scalable when considering computational time and modularized in

the sense that computations can be partitioned. Specifically, we will show that the calculations

of the part of the gradient in agent i only requires the dynamics matrix, states and adjoint states

for neighboring agents, i.e. agents in Ni.

In Section II-B a descent direction is obtained by projecting the gradient onto the subspace

K . With the structure of K in (15), the only part of the gradient that needs to be determined



is

[∇KJ ]ik = 2
∞∑

t=0

[(
−Quu(t)−QT

xux(t) +BTλ(t)
)
x(t)T

]

ik

= 2
∞∑

t=0

(
−[Qu]iui(t)− [Qxu]

T
i xi(t) +BT

i λi(t)
)
xk(t)

T

for all k ∈ {i} ∪ N down
i . Here we understand that for each agent i, we need to determine both

its state evolution and its adjoint states evolution.

Obviously, by the restriction of A, B and K, an agent i uses only the states from neighboring

agents to simulate its states xi. By (8), the adjoint state evolution of agent i is

λi(t− 1) =
[
(A− BK)Tλ(t)

]

i
−

−
[
(Qx −QxuK −KTQT

xu +KTQuK)x(t)
]

i

(16)

The first term of (16) simplifies to

[
(A− BK)Tλ(t)

]

i
= [A− BK]Tiiλi(t) +

+
∑

k∈N down
i

[A− BK]Tkiλk(t)

The second term of (16) becomes

[
(Qx −QxuK −KTQT

xu +KTQuK)x(t)
]

i
=

= [Qx]ixi(t) + [Qxu]iui(t)−

−
∑

k∈{i}∪N down
i

KT
ki ([Qxu]kxk(t) + [Qu]uk(t))

Now, with these expressions, Algorithm 1 can be updated to

Algorithm 2: Consider a system (1) with control u(t) = −Kx(t) where K ∈ Kstab. To find

a local minimizer to (3), start with K(0) ∈ Kstab and for each τ ≥ 0,

1) Simulate the states of (1) with control u(t) = −K(τ)x(t) for times t ∈ [0, tfinal].

2) Simulate the adjoint states of (8) for times t ∈ [0, tfinal] in the backwards time direction

with λ(tfinal) = 0.

3) For all agents i and all k ∈ N down
i ,



I) Calculate

Gik = 2

tfinal∑

t=0

(

− [Qu]iui(t)− [Qxu]
T
i xi(t) +

+BT
i λi(t)

)

xk(t)
T

II) Update the feedback matrix

K
(τ+1)
ik = K

(τ)
ik − γτGik

for some step length γτ .

4) Increase τ with 1 and goto 1).

The scheme is modularized since the operations that are performed for each agent in the

algorithm only needs information of its neighbors. The number of operations needed to determine

the descent direction in each agent scales as O (|Ni|). Assuming |Ni| ≤ Nmax ≪ n for all i,

that is each agent only has a few neighbors, this implies that the total number of operations to

determine the descent direction scales as O (n ·Nmax).

Remark 9: The reason for limiting the structure of B and Q becomes evident when investi-

gating the scalability of the method. If B is not block-diagonal the matrix A − BK does not

have the same structure as A. The structure of Q will affect the structure of (Qx − QxuK −

KTQT
xu +KTQuK)x(t). But if B and Q are chosen in a way such that the structures of these

matrices are still sparse, the method will still be scalable. For example, if B and Q also have

non-zero blocks for agents that are neighbors the sparsity structure still holds (when the number

of neighbors for each agent is still a lot less than the total number of agents).

We also notice that the procedure is robust in the aspect of adding new agents to the system.

If the system is enlarged with new agents, only the calculations to agents in the neighborhood

of where these new agents come in, are changed.

E. Scalable Suboptimality Bound Calculations

When determining the suboptimality bound using Proposition 3, the structure of the included

matrices ensures a scalable method. The matrix inverses of Q and Qu are solved efficiently using

the block-diagonal structure of these matrices.



By exploiting the structure of the matrices of the minimization program of (12) of Theorem 1

for determining the suboptimality bound, it is easily seen that it can be separated into minimiza-

tion programs for each subsystem. Each minimization program will have a number of decision

variable in the order of the size of each subsystem.

IV. REAL-TIME SYNTHESIS OF DISTRIBUTED CONTROLLERS

In Section II and III the focus was on finding a scheme for obtaining controllers solving

the distributed deterministic linear quadratic control problem. The systems considered are deter-

ministic and the scheme worked by simulating them offline. It turns out that by changing the

model description to include noise, we can follow similar steps to find a scheme that solves the

stochastic linear quadratic control problem (LQG) for a real plant in real-time. By using measured

values of the states of the actual plant we can determine a descent direction of the feedback

matrix. This means that we get a scheme that works in real-time to improve performance of a

distributed system.

A. Restated System Model

We now consider the discrete time stochastic LTI system

x(t + 1) = Ax(t) +Bu(t) + w(t) (17)

where w is white noise with variance W , and w(t) is independent of x(s) for s ≤ t. In all other

aspects we use the same assumptions and notation as in Section III-B, i.e. the system consists

of n agents, and the connection of the agents is described by a graph G, the structure of the

matrices in (17) are determined by the edges of G and so on.

In this stochastic setting the cost function will now be

J(K) = E




x(t)

u(t)





T

Q




x(t)

u(t)



 (18)

where x(t) satisfies (17) and u(t) = −Kx(t).



B. Analysis

Similar to the analysis in Section II we state the following two propositions, without proofs.

Proposition 4: Given the stationary stochastic process (17) where u(t) = −Kx(t) for a

stabilizing K and where w is white noise with covariance W . Then J(K), defined by (18),

has the gradient

∇KJ = 2
[
QuK −QT

xu − BTP (A− BK)
]
X (19)

where X and P satisfy the Lyapunov equations

X = (A−BK)X(A−BK)T +W (20)

P = (A− BK)TP (A−BK) +

+Qx −QxuK −KTQT
xu +KTQuK

(21)

Proposition 5: Under the conditions of Proposition 4, consider the stationary stochastic pro-

cess λ defined by the backwards iteration

λ(t− 1) = (A− BK)Tλ(t)−

−(Qx −QxuK −KTQT
xu +KTQuK)x(t)

(22)

where x(t) are the states of the original system. Then

∇KJ = 2
(
(QuK −QT

xu)ExxT +BT
EλxT

)

C. Real-Time Scheme

Similar to Section III-D we use Proposition 5 to form an online scheme to update the feedback

matrix K to improve the performance given in (18) while K ∈ Kstab. The difference is that

instead of simulating the states of the system, we collect measurement of the states and use

them to simulate the adjoint state equations.

Algorithm 3: Consider a system (17) with control u(t) = −Kx(t) where K ∈ Kstab. To

iteratively improve the performance (18) and approach a local minimizer, at time tτ , let the

feedback matrix be K(τ), and in each agent i:

1) Measure the state xi(t) of the agent and collect measurements of the states and control

signals of the agent’s neighbors, for times t = tτ , . . . , tτ +N .



2) Simulate the adjoint states λi(t) of the system (22) for times t = tτ , . . . , tτ + N in the

backwards direction, by communicating adjoint states from and to neighboring agents.

3) For every j ∈ {i} ∪ N down
i , calculate the estimates of Euix

T
j and Eλix

T
j by

(
Exix

T
j

)

est
=

1

N

tτ+N∑

t=tτ

xi(t)xj(t)
T

(
Euix

T
j

)

est
=

1

N

tτ+N∑

t=tτ

ui(t)xj(t)
T

(
Eλix

T
j

)

est
=

1

N

tτ+N∑

t=tτ

λi(t)xj(t)
T

4) For every j ∈ {i} ∪ N down
i the estimate of the i, j-block of the gradient becomes

Gij = 2
(

− [Qu]i
(
Euix

T
j

)

est
− [Qxu]

T
i

(
Exix

T
j

)

est
+

+BT
i

(
E λix

T
j

)

est

)

5) For every j ∈ {i} ∪ N down
i , update K

(τ+1)
ij = K

(τ)
ij − γτGij for some step length γτ .

6) Let tτ+1 = tτ +N , increase k by one and go to 1).

V. NUMERICAL EXAMPLES

Two numerical examples will be investigated. The first is a small-scale example which will

illustrate the method and compare it to the optimal LQR solution in order to show the conver-

gence and suboptimality of the method. In the second example we examine the scalability of

Algorithm 2 by using it on a sequence of large-scale systems with increasing size.

A. Small-scale Example

The system

x(t + 1) = Ax(t) +Bu(t)

that is considered, consists of 10 agents, each with one state, where the agents are connected

in a linear fashion, see Figure 2. This leads to a tri-diagonal dynamics matrix, which, in this

example, is

A =









0.5 0.5
−0.5 0.1 −0.3

0.4 −0.2 −0.5
−0.4 −0.5 0.2

0.2 0.3 −0.1
−0.3 0.1 0.3

0.2 −0.4 −0.4
0.2 −0.2 0.3

0.5 −0.5 0.3
−0.1 −0.1











x1 x2 x9 x10Φ21

Φ12

Φ9,10

Φ10,9

· · ·

Fig. 2. Graphical representation of the system in Example V-A. The arrows shows how each agent affects the others.

and with the remaining entries equal to zero. We allow each agent to have an input and set

B = I . We wish to minimize the cost

J(K, x0) =

tfinal∑

t=0

(
x(t)TQxx(t) + u(t)TQuu(t)

)

where u = −Kx, Qx = Qu = I and x0 ∈ N (0, I).

The magnitude of the maximal eigenvalue of A, ρ(A) ≈ 0.81, hence we can initially let

the system be uncontrolled, i.e. let K = 0. The algorithm is used for 50 iterations where the

systems are simulated for times t = 0, . . . , 10 in each iteration. The step length is constant in

all iterations, and γτ = 10−2. The method for estimating suboptimality bounds is done in each

update iteration. The result is given in Figures 3-4.

In Figure 3 the estimated suboptimal bound is denoted by α and shown in blue. A first remark

is that the in the first iteration we get a negative value of the suboptimality bound. This is due

to the fact that minimization program in (12) is not guaranteed to give a positive value. In case

a negative value is obtained nothing can really be said about the suboptimality. Though, as we

get closer to the optimal feedback matrix, the adjoint trajectory will approach the optimal (with

respect to the Lagrangian in Pontryagin’s maximum principle) and the inequalities in the proof

of Theorem 1 will almost be equal implying that we can expect a positive value from (12).

When positive, the suboptimality bound is always larger than 1 which is natural. In the same

figure denoted by αexact and shown in green, is the true suboptimality determined by

αexact =
J(K(k), x0)

J(Kopt, x0)

As expected the suboptimality bound (when positive) is also always larger than the true sub-

optimality. As the true suboptimality approaches 1, that is the cost with the feedback matrix

approaches the optimal cost, the suboptimality bound also approaches 1.

In Figure 4 the relative difference between α and αexact is shown, that is

∆αrel =
α− αexact

αexact − 1



0 5 10 15 20 25 30 35 40 45 50
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Iteration (k)

 

 

                      

                      

                      

                      

α

αexact

Fig. 3. Example V-A: Plots of the estimated suboptimality using the described method (in blue) and the exact suboptimality

(in green).

Hence, the relative difference measures how far the suboptimality bound is from the true

suboptimality compared to the distance from the true suboptimality to the optimal value 1.

When the suboptimality bound is positive the plot shows us that the relative difference is below

3.5. The relative distance decreases and when the true suboptimality approaches 1 the relative

difference is below 1.5, meaning that the suboptimality bound does not underestimates the true

suboptimality by more than a factor of 1.5. This shows that the suboptimality bound is a descent

measure of the suboptimality and can hence be used for a stopping criterion for the method.

B. Large-scale Example

In this example a sequence of systems with increasing size will be examined. The systems

will be randomly generated by some rules described below. For one system in the sequence with

n agent

• Each agent will consist of 10 states. The part of dynamics matrix Aii will be uniformly

drawn and scaled to have the largest eigenvalue equal 0.7.

• Each agent will have one control signal. The part of control matrix, Bi will be uniformly

drawn from [−1, 1]10.

• The adjacency matrix will be randomly generated, to give all agents 5 neighbors and a
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Fig. 4. Example V-A: Plot of the relative difference between the estimated and the exact suboptimality.

connected graph. The adjacency matrix will be symmetric, hence a undirected graph.

• The neighbors affect the agent by Aik = b · cT where b and c are uniformly drawn from

[−0.22, 0.22]10.

The resulting systems not guaranteed to be stable, but the parameters are chosen to give stable

systems in most cases. If a system is not stable it is regenerated until it is.

The number of agents for the systems will be n = 50k for k = 1, . . . , 20. Hence, the size

of the smallest system will be 500 states and for the largest 10000 states. For all systems, the

weights Qx = I and Qu = I (where I has the appropriate size). In each update iteration of

Algorithm 2, the systems will be simulated for times t = 1, . . . , 20. The step length will be

γτ = 5 · 10−4 in every iteration for every system.

When the method is applied to a system, it is keeps iterating to update the feedback matrices

until the suboptimality bound is below 1.01 in 20 consecutive update iterations. The resulting

computation times for completing the method is shown in Figure 5. We find the computation

times for the method in blue. It shows that the complexity of the method is linear when we

increase the number of agents. This should be compared the curve in green corresponding to

the time required to determine the centralized optimal solution by solving the Riccati equation.

This solution is only determined for the systems with n ≤ 200 due to time requirements as

well as workspace requirements. If we exclude the workspace requirement, and fit a third order
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Fig. 5. Example V-B: Plot of the computation time with respect to the size of the system.

polynomial to the curve (since the computational complexity should be O(n3)), the expected

time to complete the calculations for the system with n = 1000 would take more than 55 hours

(but the workspace requirement would not even permit these calculations). It should be noted

that it is only a coincidence that both computation times for n = 50 are approximately equal.

The number of update iterations in Algorithm 2 needed vary between 283 and 343. The

fact that the number of iterations are almost constant is the reason why the method has linear

complexity with respect to the number of agents. The number of iterations is actually decreasing

for the sequence, the more agents generally means that fewer iterations were needed.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have shown a method for finding structured linear controllers to improve the LQR or

LQG performance criterion. Given an initial stabilizing controller for a linear system and a cost

function, the method works by iteratively updating the controller in a descent direction to reduce

the cost. By simulating the system controlled by the current controller and the corresponding

adjoint state equation, the descent direction are given by a relation which involve multiplying

the trajectories together. The only operations performed are matrix or vector multiplications,

implying that when sparse matrices constitutes the system, the method will be scalable. The

same trajectories determined for the evaluation of the descent direction, are also used to calculate



a suboptimality bound for the current controller. This bound validates the performance of the

controllers and can be used as a stopping criterion for the iteration process.

B. Future Work

In [26] a similar method for designing Kalman filters was presented. When these works are

connected we get a scheme for output feedback synthesis. An interesting question is if the

suboptimality bounds still are valid in this setting.

An example of a large-scale system is the large deformable mirrors presented in for exam-

ple [13]. The system has more than 10000 states and the system matrices are of a sparse nature.

In other words, the methods described in this paper are suitable for finding controllers for such

deformable mirrors.
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