Black Boxes & White Noise The Evolution of Automatic Control

K. J. Åström

Lund Institute of Technology Lund, Sweden

Introduction
Early Ideas
A Discipline Emerges
The Second Wave
Conclusions

Application Packages

Mould Level Control, Continuous Steel Casting, ±3 mm

LUND INSTITUTE OF TECHNOLOGY

Natural Science and Engineering Science Many similarities but also differencies

Natural Phenomena

Analysis Isolate phenomena Simplicity Basic laws

Technical Systems

Synthesis Interaction Complexity System principles

Introduction
Early Ideas
A Discipline Emerges
The Second Wave
Conclusions

Industrial Process Control

Windmills Mead	1787
Steam engines	
Watt, Boulton	1788
Maxwell	1868
Routh	1875
Water turbines	
Stodola	1893
Hurwitz	1895

Accuracy & Stability

PID Control

$$u(t) = k \left(e(t) + \frac{I}{T_i} \int_{O}^{t} e(s) \, ds + T_d \, \frac{de}{dt} \right)$$

Honeywell Taylor Instrument Leeds & Northrup Foxboro

Flight Control

The Wright Brothers 1903 Sperry 1912 Fully Automatic transatlantic flight 1947 Apollo 1969

Minorsky 1922

It is an old adage that a stable ship is difficult to steer.

Telecommunication

SYSTEM	DATE	CHANNELS PER PAIR	LOSS IN DB (3000 MI)	REPEATERS (3000 MI)
1 st Transcontinental	1914	1	60	3–6
2 nd Transcontinental	1923	1–4	150–400	6–20
Open Wire Carrier	1938	16	1000	40
Cable Carrier	1936	12	12000	200
First Coaxial	1941	480	30000	600

The Feedback Amplifier

Black's patent 1928 Granted 1937 "Singing" = Instability Nyquist 1932 Bode 1945 Network Analysis and Feedback Amplifier Design

$$\frac{V_2}{V_1} = -\frac{R_2}{R_1} \cdot \frac{1}{1 + \frac{1}{A} \left(1 + \frac{R_2}{R_1}\right)}$$

Introduction
Early Ideas
A Discipline Emerges
The Second Wave
Conclusions

A Discipline Emerges

Industrial Process Control Telecommunications Flight Control Mathematics Principles Theory Design Methodology Applications

War Pressures

National Defense Research Committee MIT Radiation Laboratory MIT Servomechanism Laboratory MIT Instrumentation Laboratory MIT Lincoln Laboratory

The Black Box Concept

Abstraction Information hiding

The Black Box View of Dynamical System

The Notion of Transfer Function

System Principles

Two Paradigms

Feedback

Open loop Acts only on deviations Market driven Unmeasurable disturbance Less accurate model Feedforward Closed loop Act before deviations occur Planning Measurable disturbance Accurate model

Servomechanism Theory

Foundations Complex variables Laplace transforms Design methodology Frequency response Graphical methods

System Concepts Feedback Feedforward

Analog simulation

Implementation

Consequences

Education Application Industrialization Organisation Journals Conferences Introduction
Early Ideas
A Discipline Emerges
The Second Wave
Conclusions

The Second Wave

Feedback from applications Challenging problems New technology New ideas

Key Elements

Reexamination of fundamentals Vital interaction with other disciplines Theory to match new technology

Two views of Dynamical Systems

External Description Electrical engineering Input/Output Black Box Internal descriptions Mechanical Engineering The notion of state

$$\frac{dx}{dt} = f(x,u)$$
$$y = g(x,u)$$

"Modern" Control Theory

Optimal control Computer control Stochastic control Robust control CACE System identification Adaptive control Intelligent control

Optimal Control

Euler Lagrange Pontryagin Hamilton Jacobi Bellman 1707–1783 1736–1813 1962 1805–1865 1804–1851 1957

Modeling Disturbances

Power spectra White noise Innovations

Stochastic Control Theory

- Filtering and prediction
- Merger of calculus of variations and theory of random processes
- Decision making under uncertainty
- Industrial process control

System Identification

MODEL OF PROCESS DYNAMICS AND DISTURBANCES

Control of Basis Weight

Dual Control

 Control actions should be both directing and investigating

Consequences for decision
making decisions under uncertainty

Two Principles

Certainty Equivalence (H. Simon 1956) Make the best estimate act as if it was true.

Dual Control Control should be investigating as well as directing.

Computer Aided Control Engineering

How to disseminate complicated technology? Conceptual simplicity computational sophistication Combine human intuition with computational power Nice way to package theory

Computer Control

Control Design & Process Design

The Internal Model Principle

Applications

Energy generation Energy transmission Process control Discrete manufacturing Instrumentation Telecommunication Transportation Heating, ventilation, aircondition Entertainment Physics Biology Economics

Mission Critical

Flight Control Space flight Automotive CD player Camcorder manufacturing

The Mercedes A-class

Automatic control gives extra freedom to the designer

Unstable behavior improved by Electronic Stabilization Program (ESP)

Control and Economics

Committee on Policy Optimisation HSO 1978

To consider the present state of development of optimal control techniques as applied to macroeconomic policy. To make recommendations concerning the feasibility and value of applying thes techniques within Her Majesty's Treasury. Introduction
Early Ideas
A Discipline Emerges
The Second Wave
Conclusions

Some Challenges

The gap between theory and practice "Intelligent" systems Man–machine interfaces Technology / society interfaces Academic positioning

Conclusions

A glimpse of an emerging field Automatic control is pervasive Some system principles Many challenges ahead