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A Perspective on Control

Servomechanism theory 1945
Drivers: gun control, radar, ...
A holistic view: theory, simulation and implementation
Block diagrams, Transfer functions, analog computing

The second wave 1965
Drivers: space race, digital control, mathematics
Subspecialities: linear, nonlinear, optimal, stochastic, ...
Design methods: state feedback, Kalman filter, H∞-control
Computational tools emerged
Impressive theory development but the holistic view was
lost

The third wave 2005
Embedded systems, control over/of communication
networks, (systems biology)
Recover the holistic view
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Control, Computing and Communication

Bode, Nyquist and Shannon 1945

Close connections during the analog era

Essential to get systems engineers with a broad view and
a deep specialization

Generic knowledge: control, computing, communication

Specific knowledge: process, sensing and actuation

Practical skills: implementation, commisioning, operation

Essential to compactify current knowledge for different
users

The Bologna process
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The Role of Computing

Vannevar Bush 1927. Engineering can proceed no faster
than the mathematical analysis on which it is based.
Formal mathematics is frequenly inadequate for numerous
problems, a mechanical solution offers the most promise.

Herman Goldstine 1962: When things change by two
orders of magnitude it is revolution not evolution.

Gordon Moore 1965: The number of transistors per square
inch on integrated circuits has doubled approximately
every 18 months.

Moore+Goldstine: A revolution every 15 year!
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Analog Computing EAI 231
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Hardware in the Loop Simulation
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The Iron Bird
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Feedback Fundamentals

1 Introduction
2 Controllers with Two Degrees of Freedom
3 The Gangs of Four and Six
4 The Sensitivity Functions
5 Consequences for Design
6 Fundamental Limitations
7 PID Control
8 Summary

Themes: Understanding the basic feedback loop. Systems with
two degrees of freedom. The gangs of four and six. Sensitivity
functions. Fundamental limitations.
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Introduction

A basic feedback system
Effects of

Load disturbances
Measurement noise
Process variations
Command signals

How to capture a complex reality in tractable mathematics

Assessment of the properties of a control system

Concepts and insights

A basis for analysis, specification and design

Insight into fundamental limitations

K. J. Åström Feedback Fundamentals



A Basic Control System

F C P

Controller Process
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Ingredients:

Controller: feedback C, feedforward F

Load disturbance d : Drives the system from desired state

Measurement noise n : Corrupts information about x

Process variable x should follow reference r
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A Remark on Load Disturbances

Load disturbances are assumed to enter at the process input
and measurement noise at the process output. The same idea
can be applied to other configurations. A general structure is
given below.
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zw

r
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Criteria for Control Design

F C P

Controller Process
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Ingredients

Attenuate effects of load disturbance d

Do not feed in too much measurement noise n

Make the system insensitive to process variations

Make state x follow command r
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System with Two Degrees of Freedom

F C P

Controller Process
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The controller has two degrees of freedom 2DOF because the
signal transmissions from reference r to control u and from
measurement y to u are different. Horowitz 1963.
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A Separation Principle for 2DOF Systems

Design the feedback C to achieve

Low sensitivity to load disturbances d

Low injection of measurement noise n

High robustness to process variations

Then design the feedforward F to achieve the desired response
to command signals r

Notice

Many books and papers show only the set point response

Interactive learning modules
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Process Control

The tuning debate: Should controllers be tuned for set-point
response or for load disturbance response?

Different tuning rules for PID controllers

Shinskey: Set-point disturbances are less common than
load changes.

Resolved by set-point weighting (poor mans 2DOF)

u(t) = k
(

β r(t)−y(t)
)

+ki
∫ t

0

(

r(τ )−y(τ )
)

dτ+kd
(

γ
dr

dt
−dyf
dt

)

Tune k, ki, and kd for load disturbances, filtering for
measurement noise and β , and γ for set-points
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PID Control with Set-Point Weighting
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Interactive Learning Modules

Learning is better than teaching because it is more intense: the
more is being taught, the less can be learned.

Josef Albers 1888-1976

Demonstrate Interactive Learning Module
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Designing Systems with 2DOF

Design procedure:

Design the feedback C to achieve
Small sensitivity to load disturbances d
Low injection of measurement noise n
High robustness to process variations

Then design the feedforward F to achieve desired
response to command signals r

For many problems in process control the load disturbance
response is much more important than the set point response.
The set point response is more important in motion control.
Few textbooks and papers show more than set point responses.
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Many Versions of 2DOF

Σ
r

F C P

−1

u y

ΣΣ

r

My

Mu

C P

−1

u f f

ym u f b y

For linear systems all 2DOF configurations have the same
properties. For the systems above we have CF = Mu + CMy
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A More General Structure

Model and
Feedforward
Generator

r

u

-x̂

xm
ProcessΣ Σ

State
Feedback

Observer

u f b

u f f

y
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Some Systems only Allow Error Feedback

There are systems where only the error is measured, and the
controller then has to be restricted to error feedback.
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The Gangs of Four and Six

F C P

Controller Process
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X = P

1+ PC D −
PC

1+ PCN +
PCF

1+ PCR

Y = P

1+ PC D +
1

1+ PCN +
PCF

1+ PCR

U = − PC

1+ PC D −
C

1+ PCN +
CF

1+ PCR
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Some Observations

To fully understand a system it is necessary to look at all
transfer functions

A system based on error feedback is characterized by four
transfer functions The Gang of Four

The system with a controller having two degrees of
freedom is characterized by six transfer function The Gang
of Six

It may be strongly misleading to only show properties of a
few systems for example the response of the output to
command signals. This is a common omission in papers
and books.

The properties of the different transfer functions can be
illustrated by their transient or frequency responses.

K. J. Åström Feedback Fundamentals



A Possible Choice

Six transfer functions are required to show the properties of a
basic feedback loop. Four characterize the response to load
disturbances and measurement noise, compare H∞-theory.

PC

1+ PC
P

1+ PC
C

1+ PC
1

1+ PC

Two more are required to describe the response to set point
changes.

PCF

1+ PC
CF

1+ PC

Physical interpretations!
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Amplitude Curves of Frequency Responses

PI control k = 0.775, Ti = 2.05 of P(s) = (s+ 1)−4 with
M(s) = (0.5s+ 1)−4
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Step Responses

PI control k = 0.775, Ti = 2.05 of P(s) = (s+ 1)−4 with
M(s) = (0.5s+ 1)−4
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An Alternative

Show the responses in the output and the control signal to a
step change in the reference signal for system with pure error
feedback and with feedforward. Keep the reference signal
constant and make a unit step in the process input. Show the
response of the output and the control signal.
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Interactive Learning Modules!
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A Warning!

Remember to always look at all responses when you
are dealing with control systems. The step response
below looks fine but ...

0 1 2 3 4 5
0

0.5

1
Response of y to step in r
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Four Responses
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What is going on?
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The System

Process P(s) = 1

s− 1

Controller C(s) = s− 1
s

The system has error feedback sufficient to consider The Gang
of Four

PC

1+ PC =
1

s+ 1
P

1+ PC =
s

(s+ 1)(s− 1)
C

1+ PC =
s− 1
s+ 1

1

1+ PC =
1

s+ 1

Response of y to step in disturbance d

Y(s)
D(s) =

P

1+ PC =
s

(s+ 1)(s− 1)
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Focus on Feedback

C P

−1

Σ ΣΣ
r = 0 e u

d

x

n

y

Neglect following of reference signals (the feedforward
problem) and focus on on the feedback problem, i.e.

Load disturbances
Measurement noise
Model uncertainty
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The Feedback Problem

C P

−1

Σ ΣΣ
r = 0 e u

d

x

n

y

The signals have the following relations. Notice that there are
only four transfer functions - The Gang of Four.

X = P

1+ PC D −
PC

1+ PCN

Y = P

1+ PC D +
1

1+ PCN

U = − PC

1+ PC D −
C

1+ PCN
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The Loop Transfer Function L(s) = P(s)C(s)
Tells a lot about the system, quantitative measures phase
margin and gain margin
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But it only tells about 1/(1+ PC), and PC/(1+ PC) but not
P/(1+ PC) and C/(1+ PC)
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The Gangs of Four and Six

Response of y to load disturbance d is characterized by

Gyd =
P

1+ PC

Response of u to measurement noise n is characterized by

−Gun =
C

1+ PC

Robustness to process variations is characterized by

S = 1

1+ PC , T =
PC

1+ PC

Responses of y and u to reference signal r is characterized by

Gyr =
PCF

1+ PC , Gur =
CF

1+ PC
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The Sensitivity Functions

The transfer functions

Sensitivity function S = 1

1+ PC =
1

1+ L
Complementary sensitivity function T = PC

1+ PC =
L

1+ L
are called sensitivity functions. They have interesting properties
and useful physical interpretations. We have

The functions S and T only depend on the loop transfer
function L

S+ T = 1
Typically S(0) small and S(∞) = 1 and consequently
T(0) = 1 and T(∞) small
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Poles, Zeros and Sensitivity Functions

The sensitivity functions depend only on the loop transfer
function

S = 1

1+ L , T =
L

1+ L
Notice that

The sensitivity function S is zero and the complementary
sensitivity function is one at the poles of L

The sensitivity function S is one and complementary
sensitivity function T is zero at the zeros of L
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Quiz

Look at the block diagram

F C P

Controller Process

−1

Σ Σ Σ
r e u

d

x

n

yv

Find all relations where the signal transmissions are equal to
either the sensitivity function or the complementary sensitivity
function

The Audience is Thinking ...
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Disturbance Reduction

C P

−1

Σ ΣΣ
r = 0 e u

d

x

n

y

Output without control Y = Yol(s) = N(s) + P(s)D(s)
Output with feedback control

Ycl =
1

1+ PC
(

N + PL
)

= 1

1+ PCYol = SYol

Disturbances with frequencies such that pS(iω )p < 1 are
reduced by feedback, disturbances with frequencies such that
pS(iω )p > 1 are amplified by feedback.
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Assessment of Disturbance Reduction

We have
Ycl(s)
Ycl(s)

= S(s) = 1

1+ P(s)C(s)
Feedback attenuates disturbances of frequencies ω such that
pS(iω )p < 1. It amplifies disturbances of frequencies such that
pS(iω )p > 1
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Assessment of Disturbance Reduction

Ycl

Yol
= 1

1+ PC = S

Geometric interpretation:
Disturbances with frequen-
cies inside the circle are
amplified by feedback. Dis-
turbances with frequencies
outside are reduced.
Disturbances with frequen-
cies less than ω s are re-
duced by feedback.

−1

ω s
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Properties of the Sensitivity function

Can the sensitivity be small for all frequencies?
No we have S(∞) = 1!

Can we get pS(iω )p ≤ 1?
If the Nyquist curve of L = PC is in the first and third
quadrant! Passive systems!

Bode’s integral, pk RHP poles of L(s)
∫ ∞

0

log pS(iω )pdω = π
∑

Re pk −
π

2
lim
s→∞

sL(s)

The "water-bed effect". Push the curve down at one
frequency and it pops up at another!
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The Water Bed Effect
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)p

∫ ∞

0

log pS(iω )pdω = π
∑

Re pk −
π

2
lim
s→∞

sL(s)

The sensitivity can be decreased at one frequency at the cost
of increase at another frequency.
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Robustness

Effect of small process changes on T = PC/(1+ PC)

dT

dP
= dP
P
− CdP

1+ PC =
1

1+ PC
dP

P
= SdP

P

How much can the process
be changes without making
the system unstable?

pC∆Pp < p1+ PCp

or
p∆Pp
pPp <

1

pT p

−1

1+ L

C∆P
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Another View of Robustness

A feedback system where the process has multiplicative
uncertainty, i.e. P(1+ δ ), where δ is the relative error, can be
represented with the following block diagrams

P

−C

Σ

δ δ

− PC
1+PC

The small gain theorem gives the stability condition

pδ Pp <
∣

∣

∣

1+ PC
PC

∣

∣

∣
= 1

pT p
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When are Two Systems Close

For stable systems

δ (P1, P2) = max
ω
pP1(iω ) − P2(iω )p

as a measure of of closeness of two processes.

Is this a good measure?

Are there other alternatives?
A long story

Gap metric (Zames)
Graph metric coprime factorization (Vidyasagar) G = N/D
Vinnicombe’s metric
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Similar Open Loop Different Closed Loop

P1(s) =
1000

s+ 1, P2(s) =
1000a2

(s+ 1)(s+ a)2

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

Complementary sensitivity functions with unit feedback C = 1

T1 =
1000

s+ 1001, T2 =
107

(s− 287)(s2 + 86s+ 34879)
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Different Open Loop Similar Closed Loop

The systems

P1(s) =
1000

s+ 1, P2(s) =
1000

s− 1

are very different because P1 is stable and P2 unstable. The
complementary sensitivity functions obtained with unit feedback
are

T1(s) =
1000

s+ 1001 T2(s) =
1000

s+ 999
These closed loop systems are very similar.
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The Graph Metric

We know how to compare stable systems. What to do with
unstable systems? Let

P(s) = B(s)
A(s)

where A and B are polynomials. Choose a stable polynomial C
whose degree is not lower than the degrees of A and B, then

P(s) =

B(s)
C(s)
B(s)
C(s)

= N(s)
D(s)

Compare the numerator and denominator transfer functions
jointly.
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Many Ways to Choose D

Two rational functions D and N are called coprime if there exist
rational functions X and Y which satisfy the equation

X D + YN = 1

The condition for coprimeness is essentially that D(s) and N(s)
do not have any common factors.

Let D∗(s) = D(−s). A factorization P = N/D such that

DD∗ + NN∗ = 1

is called a coprime factorization of P.
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Vinnicombe’s Metric

Consider two systems with the normalized coprime
factorizations

P1 =
D1

N1
, P2 =

D2

N2

To compare the systems it must be required that

1

2π
∆ argΓ(N1N∗

2 + D1D∗
2) = 0

where Γ is the Nyquist contour. In the polynomial
representation this condition implies

1

2π
∆ argΓ(B1B∗

2 + A1A∗
2) = deg A2

The winding number constraint!
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Vinnicombe’s Metric

If the winding number constraint is satisfied Vinnicombe’s
Metric can be defined as

δν (P1, P2) = sup
ω

pP1(iω ) − P2(iω )p
√

(1+ pP1(iω )p2)(1+ pP2(iω )p2)
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Feedback Interpretation

Consider systems with the transfer functions P1 and P2.
Compare the complementary sensitivity functions for the closed
loop systems obtained with a controller C that stabilizes both
systems.

δ (P1, P2) =
∣

∣

∣

P1C

1+ P1C
− P2C

1+ P2C
∣

∣

∣
=

∣

∣

∣

(P1 − P2)C
(1+ P1C)(1+ P2C)

∣

∣

∣

For frequencies where the maximum sensitivity is large we have

δ (P1, P2) ( Ms1Ms2pC(P1 − P2)p

It can be shown that δ is a good measure of closeness of
processes.

Vinnicombes metric corresponds to C = 1, i.e. unit feedback.
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Geometric Interpretation
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Robustness

Additive perturbations P→ P+ ∆P, ∆P stable

p∆P(iω )p
pP(iω )p <

pP(iω )C(iω )p
p1+ P(iω )C(iω )p =

1

pT(iω )p

For normalized Co-prime factor perturbations
P = N/D → (N + ∆N)(D + ∆D) this generalizes to

pp(∆N(iω ),∆D(iω ))pp < 1

γ (ω )

where

γ = σ̄









1

1+ P(iω )C(iω )
P(iω )

1+ P(iω )C(iω )
P(iω )

1+ P(iω )C(iω )
P(iω )C(iω )
1+ P(iω )C(iω )








=

√

(1+ pP(iω )p2)(1+ pC(iω )p2)
p1+ P(iω )C(iω )p
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Maximum Sensitivity

The number

Ms = max pS(iω )p

is a measure of robustness, be-
cause 1/Ms is the smallest dis-
tance from the Nyquist curve to the
critical point -1.

1/Ms ωms

ω s

−1

Reasonable values are between 1.2 and 2.
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Maximum Sensitivities

Specifications on maximum sensitivities give require the
Nyquist curve to be outside circles around the critical point

Ms = Mt = 2 Ms = Mt = 1.4

The circles show the loci of constant sensitivities, full lines for
Ms and dashed lines for Mt.
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Maximum Sensitivities

A maximal sensitivity Ms guarantees a gain margin

�m ≥
Ms

Ms − 1

and a phase margin

ϕm ≥ arcsin
1

Ms

Constraints on both gain and phase margins can be replaced
by constraints on Ms.

Ms = 2 guarantees �m ≥ 2 and ϕm ≥ 30○

Ms =
√
2 ( 1.41 guarantees �m ≥ 3.4 and ϕm ≥ 45○

Ms = 2/
√
3 ( 1.15 guarantees �m ≥ 7.5 and ϕm ≥ 60○

K. J. Åström Feedback Fundamentals



Summary of the Sensitivity Functions

S = 1

1+ L , T =
L

1+ L , Ms = max pS(iω )p, Mt = max pT(iω )p

The value 1/Ms is the shortest distance from the Nyquist curve of the
loop transfer function L(iω ) to the critical point −1.

S = � logT� log P =
Ycl(s)
Yol(s)

How much can the process be changed without making the system
unstable?

p∆Pp
pPp <

1

pT p
Bode’s integral the water bed effect.

∫ ∞

0

log pS(iω )pdω = π
∑

Re pk −
π

2
lim
s→∞
sL(s)
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Summary of Sensitivity Functions

S = 1

1+ L , T =
L

1+ L , Ms = max pS(iω )p, Mt = max pT(iω )p

The value 1/Ms is the shortest distance from the Nyquist curve
of the loop transfer function L(iω ) to the critical point −1.

S = � logT� log P =
Ycl(s)
Yol(s)

,
p∆Pp
pPp <

1

pT p

Bode’s integral and the water bed effect.
∫ ∞

0

log pS(iω )pdω =
∫ ∞

0

log p 1

1+ L(iω ) pdω = π
∑

pi

∫ ∞

0

log pT
( 1

iω

)

pdω =
∫ ∞

0

log p L(1/iω )
1+ L(1/iω ) pdω = π

∑ 1

zi
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Performance

Disturbance reduction by feedback

Ycl(s)
Yol(s)

= 1

1+ PC

Load disturbance attenuation (typically low frequencies)

Gxd = Gyd =
P

1+ PC , Gud = −
PC

1+ PC
Measurement noise injection (typically high frequencies)

Gxn =
PC

1+ PC , Gun = −
C

1+ PC
Command signal following

Gxr =
Y

R
= PCF

1+ PC , Gur =
CF

1+ PC
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Robustness

Robustness to process variations (large, additive, stable ∆P)

∣

∣

∣

∆P

P

∣

∣

∣
< p1+ PCppPCp = 1

pT p

Sensitivity of command signal response (small variations)

dGxr

Gxr
= 1

1+ PC
dP

P
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Consequences for Design

Consider a first order system with PI control

P(s) = b

s+ a , C(s) = k+
ki

s

where the controller parameters are chosen to give a closed
loop system with the characteristic polynomial s2 +ω 0s+ω 20.
The Gang of Four is given by

PC

1+ PC =
(ω 0 − a)s+ω 20
s2 +ω 0s+ω 20

P

1+ PC =
bs

s2 +ω 0s+ω 20

C

1+ PC =
((ω 0 − a)s+ω 20)(s+ a)
b(s2 +ω 0s+ω 20)

1

1+ PC =
s(s+ a)

s2 +ω 0s+ω 20

We will investigate the properties of the Gang of Four for
ω 0/a = 0.1, 1 and 10.
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Amplitude Curves for the Gang of Four
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Comments

Attenuation of load disturbances increases with increasing
ω 0.

Amplification of high frequency disturbances increases
with ω 0

The sensitivity and the complementary sensitivities are
very large for ω 0 = 0.1. Designs with small values of ω 0
are useless because of their extreme sensitivity to
modeling errors.

The ability to follow command signals increases with
increasing ω 0.

The closed loop poles cannot be chosen arbitrarily even in
a simple case like this.
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Estimating Maximum Sensitivity

We have for a = 1 and ω 0 = 0.1

S = s(s+ a)
s2 +ω 0s+ω 20

= s(s+ 1)
s2 + 0.1s+ 0.01

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

ω

p1
/(
1
+
L
(iω
))
p

We have approximately Ms (
0.1

0.011
= 9 (9.4)
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Estimating Maximum Complementary Sensitivity

We have for a = 1 and ω 0 = 0.1

T = (ω 0 − 1)s+ω 20
s2 +ω 0s+ω 20

= −0.9s+ 0.01
s2 + 0.1s+ 0.01

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

ω

pL
(iω
)/
(1
+
L
(iω
))
p

We have approximately Mt ( 0.1
0.01
= 10 (10.04)
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A Simple Pole Placement Design

Consider a stable first order system

Y(s) = b

s+ aU(s),

PI controller with set point weighting

U(s) = −kβY(s) + ki(R(s) − Y(s))
The transfer function from reference to output is

Gyr(s) =
kβ s+ bki

s2 + (a+ bk)s+ bki
Desired closed loop characteristic polynomial

(s+ p1)(s+ p2),
Controller parameters

k = p1 + p2 − a
b

ki =
p1p2

b
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Sensitivity Functions

S(s) = s(s+ a)
(s+ p1)(s+ p2)

T(s) = (p1 + p2 − a)s+ p1p2(s+ p1)(s+ p2)
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A Reasonable Choice

Closed loop system slower than process p1 < a: choose
p2 = a, which implies that controller cancels fast pole.

Closed loop faster than process p1 ≥ a: choose p2 = p1
The controller parameters then becomes

k =
{

p1/b if p1 < a
(2p1 − a)/b if p1 ≥ a.

ki =
{

ap1/b if p1 < a
p21/b if p1 ≥ a

β =
{

1 if p1 < a
p1/(2p1 − a) if p1 ≥ a

This controller parameters gives a robust closed loop system.
Transfer function from reference to output is Gyr = p1/(s+ p1).
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Design Rules

The following rules give designs with low sensitivities

Determine desired closed loop bandwidth

Cancel fast stable process poles by controller zeros

Approximate cancellation obtained by eliminating poles in
model before design

Cancel slow stable process zeros by controller poles

Unstable poles and zeros cannot be canceled and they
give rise to fundamental limitations
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Feedback Fundamentals

1 Introduction
2 Controllers with Two Degrees of Freedom
3 The Gangs of Four and Six
4 The Sensitivity Functions
5 Consequences for Design
6 Fundamental Limitations
7 PID Control
8 Summary
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The First IEEE Bode Lecture 1989

A video was made by IEEE and the Lecture was finally printed
in the IEEE Control Systems Magazine in August 2003!
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Fundamental Limitations

F C P

−1

ΣΣΣ
r e u

d

x

n

y

Important factors

Load disturbances and measurement noise

Actuation power

System dynamics with time delays, RHP poles and zeros
imposes severe limitations of what can be achieved

Recognize the difficult problems
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Minimum Phase Systems

Any transfer function can be realized. No limitations because of
system dynamics. High bandwidth attenuates disturbances
effectively but measurement noise is also amplified. Gain
crossover frequency ω�c captures

Disturbance attenuation

Ycl = SYol

Noise injection to state

X = −TN

How about noise
injection to u?

U = −CSN

ω �c

ω sc
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Effect of Noise on Control Signal

Loop shaping design

Determine desired crossover frequency ω�c
Required phase lead at crossover frequency

ϕ l = π −ϕm − arg P(iω�c)

Add phase lead to give desired phase margin

Adjust gain to make loop gain 1 at ω�c

Phase lead is requires gain.
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Gain of a Simple Lead Networks

Gn(s) =
( s+ a
s/ n
√
K + a

)n

.

Phase lead ϕ = n arctan
n
√
K − 1
2
2n
√
K

.

Gain Kn =
(

1+ 2 tan2 ϕ
n
+ 2 tan ϕ

n

√

1+ tan2 ϕ
n

)n

Phase lead n=2 n=4 n=6 n=8 n=∞
90○ 34 25 24 24 23
180○ - 1150 730 630 540
225○ - 14000 4800 3300 2600

As n goes to infinity Kn → K∞ = e2ϕ , exponential increase
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Lead Networks of 2nd 3rd and 10th Order
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Bode’s Phase Area Formula

Let G(s) be a transfer function with no poles and zeros in the
right half plane. Assume that lims→∞ G(s) = G∞. Then

log
G(∞)
G(0) =

2

π

∫ ∞

0

argG(iω )dω
ω
= 2

π

∫ ∞

−∞
arg Ḡ(iu)du

The gain K required to obtain a given phase lead ϕ is an
exponential function of the area under the phase curve

K = e4cϕ0/π = e2γ ϕ0

γ = 2c
π

  

( )

ϕ
o

  c c       
  c
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Estimate of Controller Gain

log pCp

− log Kc

− log pP(iω�c)p

ω�c

log
√

Kϕ

log
√

Kϕ

logω

Kc = max
ω≥ω�c

pC(iω )p =
√

Kϕ

pP(iω�c)p
= eγ ϕ l

pP(iω�c)p
= e

γ (−π+ϕm−arg P(iω�c))

pP(iω�c)p
.

Right hand side only depends on the process!
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Estimating Controller Gain

This largest high frequency gain of the controller is
approximately given by (γ ( 1)

Kc = max
ω≥ω�c

pC(iω )p = eγ ϕ l

pP(iω�c)p
= e

γ (−π+ϕm−arg P(iω�c))

pP(iω�c)p

Notice that Kc only depends on the process

Compensation for process gain 1/pP(iω�c)p
Gain required for phase lead: eγ (−π+ϕm−arg P(iω�c))

The largest allowable gain is determined by sensor noise and
resolution and saturation levels of the actuator. Results also
hold for NMP systems but there are other limitations for such
systems.
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Example - Two Lags

For the process P(s) = 1
(s+1)n we have

Kc =
1

pP(iω�c)p
eγ (−π+ϕm−arg P(iω�c)) =

(

1+ω 2�c
)n/2

eγ (n arctanω�c−π+ϕm)

Choose n = 2, γ = 1 and ϕm = π /4.

ω�c 10 20 50 100 200
Kc 181.5 796 5.3 103 2.2 104 8.7 104

ϕ l 33.6 39.3 42.7 43.8 44.4
arg P(iω�c) -168 -174 -178 -179 -179

Essentially compensation for the drop in process gain.
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Example - Eight Lags

For the process P(s) = 1
(s+1)n we have

Kc =
1

pP(iω�c)p
eγ (−π+ϕm−arg P(iω�c)) =

(

1+ω 2�c
)n/2

eγ (n arctanω�c−π+ϕm)

Choose n = 8, γ = 1 and ϕm = π /4.

ω�c 0.5 1.0 1.2 1.4 1.5
Kc 9.4 812 3.7 103 1.5 104 2.7 104

ϕ l 78 225 266 300 315
arg P(iω�c) -212 -360 -401 -435 -450

Much gain is needed to compensate for the phase lag!
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A Classic Problem

For linear systems it follows Bode’s phase area formula
that phase advance requires gain

An observation: higher order compensator gives lower gain

A key question: Can we get a given phase advance with
less gain by using a nonlinear systems?

The Clegg integrator

A problem worth revisiting?
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Limitations due to NMP Dynamics

Process dynamics can impose severe limitations on what can
be achieved. Notice that dynamic phenomena do not show up
in a traditional static analysis.

An important part of recognizing the difficult problems

Time delays and RHP zeros limit the achievable bandwidth

Poles in the RHP requires high bandwidth

Systems with poles and zeros in the right half plane can be
very difficult or even impossible to control robustly. Think
about the bicycle with rear wheel steering!

Remedies:

Add sensors and actuators (changes and removes zeros)
or redesign the process
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Robustness and Gain Crossover Frequency

Factor process transfer function as P(s) = Pmp(s)Pnmp(s) such
that pPnmp(iω )p = 1 and Pnmp has negative phase. Requiring a
phase margin ϕm we get

arg L(iω�c) = arg Pnmp(iω�c) + arg Pmp(iω�c) + argC(iω�c)
≥ −π +ϕm

But arg PmpC ( nπ /2, where n is the slope at the crossover
frequency. (Exact for Bodes ideal loop transfer function
Pmp(s)C(s) = (s/ω�c)n). Hence

arg Pnmp(iω�c) ≥ −π +ϕm − n
π

2

The phase crossover inequality implies that robustness
constraints for NMP systems can be expressed in terms of ω�c.
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Bode’s Ideal Cut-off Characteristics

The repeater problem. Large gain vari-
ations in vacuum tube amplifiers. What
should a loop transfer function look like
to make the properties independent of
open-loop gain?

L(s) =
( s

ω�c

)n

Phase margin invariant with loop gain. For this transfer function
we have arg L(iω ) = nπ /2.
The slope n = −1.5 gives the phase margin ϕm = 45○.
Horowitz extended Bodes ideas to deal with arbitrary plant
variations not just gain variations in the QFT method.
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The Crossover Frequency Inequality

The inequality

arg Pnmp(iω�c) ≥ −π +ϕm − n�c
π

2

implies that robustness requires that the phase lag of the
non-minimum phase component Pnmp at the crossover
frequency is not too large!

Simple rule of thumb:

ϕm = 45○, n�c = −1/2[ − arg Pnmp(iω�c) ≤
π

2
(90○)

ϕm = 60○, n�c = −2/3[ − arg Pnmp(iω�c) ≤
π

3
(60○)

ϕm = 45○, n�c = −1[ − arg Pnmp(iω�c) ≤
π

4
(45○)
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Useful to Plot the Phase of Pnmp

Example from Doyle, Francis and Tannenbaum 1992 and the
Bhattacharya fragility debate.

P(s) = s− 1
s2 + 0.5s− 0.5, Pnmp =

(1− s)(s+ 0.5)
(1+ s)(s− 0.5)
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System with RHP Zero

Pnmp(s) =
z− s
z+ s

Cross over frequency inequality

arg Pnmp(iω�c) = −2 arctan
ω�c
z
≥ −π +ϕm − n�c

π

2

Hence
ω�c
z
≤ tan(π

2
− ϕm
2
+ n�c

π

4
)

Requiring that phase lag of Pnmp is less than 90○ gives

ω�c < z
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System with Time Delay

Pnmp(s) = e−sT

Cross over frequency inequality

ω�cT ≤ π −ϕm + n�c
π

2

Requireing that phase lag of Pnmp is less than 90○ gives

ω�cT ≤
π

2
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System with RHP Pole

Pnmp(s) =
s+ p
s− p

Cross over frequency inequality

−2 arctan p
ω�c
≥ −π +ϕm − n�c

π

2

Hence
ω�c ≥

p

tan(π
2
− ϕm
2
+ n�cπ

4
)

Requiring that phase lag of Pnmp is less than 90○ gives ω�c ≥ p
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Time Delay and RHP Pole

Pnmp(s) =
s+ p
s− pe

−sT .

arg Pnmp(iω�c) = π − 2 arctan ω�c
p
−ω�cT > −π +ϕm − n�c

π

2

Hence

2 arctan

√

2

pT
− 1− pT

√

2

pT
− 1 > ϕm − n�c

π

2

Necessary for stability to have pT < 2.
Requiring that phase lag of Pnmp is less than 90○ gives
pT < 0.33.
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Stabilizing an Inverted Pendulum with Delay

Right half plane pole at

p =
√

�
{

The inequality pT < 0.33 gives T
√

�
{ < 0.33 or

{ > �T
2

0.333
( 90T2

A neural lag of 0.07 gives { > 0.44 m.

A vision based system with sampling rate of 50 Hz gives a time
delay of 0.02 s, this gives { > 0.04 m.
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System with RHP Pole and Zero Pair

Pnmp(s) =
(z− s)(s+ p)
(z+ s)(s− p)

For z > p the cross over frequency inequality becomes

ω�c
z
+ p

ω�c
≤ (1− p

z
) tan

(π

2
− ϕm
2
+ n�c

π

4

)

ϕm < π + n�c
π

2
− 2 arctan

√

p/z
1− p/z

With n�c = −0.5 we get

z/p 2 2.24 3.86 5 5.83 8.68 10 20
ϕm -6.0 0 30 38.6 45 60 64.8 84.6
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An Example

Doyle, Francis Tannenbaum 1992
Keel and Bhattacharyya 1997 (fragile control)

P(s) = s− 1
s2 + 0.5s− 0.5

Pole at s = 0.78
Zero at s = 1.0
z

p
= 1.28

Hopeless to control robustly

You don’t need any more calculations
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Example - The X-29

Advanced experimental aircraft. Much design effort was done
with many methods and much cost. Specifications ϕm = 45○
could not be reached. Here is why!

Non-minimum phase part of the transfer function

Pnmp(s) =
s− 26
s− 6

The zero pole ratio is z/p = 4.33 with n�c = −1/2 we get

ϕm = 32.4

It is extremely difficult to obtain a phase margin of 45○!
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Bicycle with Rear Wheel Steering

Transfer function

P(s) = am{V0
bJ

−s+ V0
a

s2 − m�{
J

RHP pole at
√

m�{/J
RHP zero at V0/a

Kleins bike
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V0 = 1, 2, 3, 4, 5 m/s

K. J. Åström Feedback Fundamentals



Other Criteria

There are several alternatives to the phase margin

Ms = max
ω
pS(iω )p

Mt = max
ω
pT(iω )p

Combined sensitivity

Msp = max
ω
(pT(iω )p + pS(iω )p)

H∞ norm

M = max
ω

√

(1+ pCp2)(1+ pPp2)
p1+ PCp

Essentially the same results but numerical values are different.
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Summary of Limitations - Part 1

A RHP zero z gives an upper bound to bandwidth

ω�c
z
≤

{

0.5 for Ms, Mt < 2
0.2 for Ms, Mt < 1.4.

A time delay T gives an upper bound to bandwidth

ω�cT ≤
{

0.7 for Ms, Mt < 2
0.4 for Ms, Mt < 1.4.

A RHP pole p gives a lower bound to bandwidth

ω�c
p
≥

{

2 for Ms, Mt < 2
5 for Ms, Mt < 1.4.
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Summary of Limitations - Part 2

RHP poles and zeros must be sufficiently separated

z

p
≥

{

7 for Ms, Mt < 2
14 for Ms, Mt < 1.4.

RHP poles and zeros must be sufficiently separated

p

z
≥

{

7 for Ms, Mt < 2
14 for Ms, Mt < 1.4

The product of a RHP pole and a time delay cannot be too
large

pT ≤
{

0.16 for Ms, Mt < 2
0.05 for Ms, Mt < 1.4.
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Design Issues and Tradeoffs

Load disturbances

Measurement noise

Command signals

Process variations

Process dynamics, time delays, RHP poles and zeros

Actuator resolution and saturation

Sensor resolution and range

Results can be summarized in an assessment plot that can be
generated from the process transfer function

K. J. Åström Feedback Fundamentals



The Assessment Plot

The assessment plot has a gain curve Kc(ω�c) and two phase
curves arg P(iω ) and arg Pnmp(iω )

Attenuation of disturbance captured by ω�c
Injection of measurement noise captured by the high
frequency gain of the controller Kc(ω�c)
Robustness limitations due to time delays and RHP poles
and zeros captured by arg Pnmp(ω�c)
Controller complexity is captured by arg P(iω�c)
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Assessment Plot for P(s) = 1/(s+ 1)4
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Assessment Plot for P(s) = e−
√
s
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Assessment Plot for P(s) = e−0.01s/(s2 − 100)
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Summary

For non-minimum phase systems the limitations can be
expressed by the crossover frequency inequality

arg Pnmp(iω�c) ≥ −π +ϕm − n�c
π

2

Simple Rule of Thumb: − arg Pnmp(iω�c) ≤ 45○ − 90○

RHP zeros and time delays give upper bound on ω�c
Long time delays are bad
Slow unstable zeros are bad

RHP poles gives a lower bound on ω�c
Fast unstable poles are bad

RHP poles and zeros cannot be too close

The tradeoff plot puts it all together!
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Feedback Fundamentals

1 Introduction
2 Controllers with Two Degrees of Freedom
3 The Gangs of Four and Six
4 The Sensitivity Functions
5 Consequences for Design
6 Fundamental Limitations
7 PID Control
8 Summary
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PID Control

Look at traditional PID control from the perspective of feedback
fundamentals.

F C P

Controller Process

−1

Σ Σ Σ
ysp e u

d

x

n

yv

u(t) = k
(

β ysp(t)−yf (t)
)

+ki
∫ t

0

(

ysp(τ )−yf (τ )
)

dτ+kd
(

γ
dysp

dt
−dyf
dt

)

Tune k, ki, kd, and filtering Y f = G fY for load disturbances and
measurement noise and β , and γ for set-point response
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Recall Criteria for Control Design

F C P

Controller Process

−1

Σ Σ Σ
ysp e u

d

x

n

yv

Ingredients

Attenuate effects of load disturbance d

Do not feed in too much measurement noise n

Make the system insensitive to process variations

Make state x follow set-point ysp
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Performance

Disturbance reduction by feedback

Ycl =
1

1+ PCYol

Load disturbance attenuation (typically low frequencies)

Gyd =
P

1+ PC (
1

ski
, −Gud =

PC

1+ PC
Measurement noise injection (typically high frequencies)

Gxd =
PC

1+ PC , −Gun =
C

1+ PC ( C = G f (k+
ki

s
+ kds)

Command signal following

Gxr =
PG f (γ kds2 + β ks+ ki)
s+ PG f (kds2 + β ks+ ki)

,Gur =
G f (γ kds2 + β ks+ ki)
s+ PG f (kds2 + β ks+ ki)
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Robustness

The sensitivity function

S = 1

1+ PC

Complementary sensitivity

T = PC

1+ PC

Combined sensitivties
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A Design Methodology

Maximize integral gain subject to constraints on robustness
and high frequency gain of the controller MIGO
(M-constrained Integral Gain Optimization)
Follow the footsteps of Ziegler and Nichols

Test batch of processes
Find optimized controllers
Correlate with dynamics features

Results
Insight and tuning rules
Characterization of process dynamics

P(s) = K

1+ sT e
−sL

Lag dominance and delay dominance
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How to Characterize Process Dynamics?

Standard model for PID control

G(s) = K

1+ sT e
−sL

K static gain

T apparent time constant

L apparent time delay

Ziegler and Nichols used two parameters K/T and L

Is this enough?
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Process Dynamics - Step Responses

L Tar = L + T

0.63Kp

Kp

slope Kv

−a
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Essentially Monotone Step Responses

P1(s) =
e−s

1+ sT , P2(s) =
e−s

(1+ sT)2

P3(s) =
1

(s+ 1)(1+ sT)2 , P4(s) =
1

(s+ 1)n

P5(s) =
1

(1+ s)(1+α s)(1+α 2s)(1+α 3s)

P6(s) =
1

s(1+ sT1)
e−sL1 , T1 + L1 = 1

P7(s) =
T

(1+ sT)(1+ sT1)
e−sL1 , T1 + L1 = 1

P8(s) =
1−α s

(s+ 1)3

P9(s) =
1

(s+ 1)((sT)2 + 1.4sT + 1)
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PI Control
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The AMIGO Tuning Rule

Robustness criterion: Ms = Mt = 1.4

K = 0.15
Kp
+

(

0.35− LT

(L + T)2
)

T

KpL

Ti = 0.35L +
13LT2

T2 + 12LT + 7L2 ,

For integrating processes, Kp and T go to infinity and
Kp/T = Kv, and he tuning rule is be simplified to

K = 0.35
KvL

Ti = 13.4L.

Works for delay dominant as well as lag dominant processes

K. J. Åström Feedback Fundamentals



PID Control

Looks straight forward, but ...

A difficulty

Derivative action is a real cliffhanger

Understanding what goes on

Fixing the problem

Tuning rules

K. J. Åström Feedback Fundamentals



Derivative Action - A Cliffhanger P(s) = (1+ s)−4
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Derivative Action - A Cliffhanger P(s) = (1+ s)−4
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P(s) = (1+ s)−4

x

y

−1

k = 0.925, ki = 0.9, and kd = 2.86
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PID Control
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A Conservative Tuning Rule

AMIGO (Approximate MIGO) for PID control

K = 1

Kp

(

0.2+ 0.45T
L

)

Ti =
0.4L + 0.8T
L + 0.1T L

Td =
0.5LT

0.3L + T .

For integrating processes the equations becomes

K = 0.45/Kv
Ti = 8L
Td = 0.5L.

K. J. Åström Feedback Fundamentals



A Conservative Tuning Rule
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PID Control
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Delay Dominant Processes
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The simple rule KkiL = 0.5 works well for τ > 0.4
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An Observation
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Fundamental limitation ω�cL ≤ 0.4 for Ms = 1.4
Why different for small τ ?
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Benefits of Derivative Action
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Better Modeling by Relay Feedback
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Short Experiment Time G(s) = exp(−√s)
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Good Excitation
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Summary

Derivative action - a cliffhanger

The importance of auto-tuning

Lag dominance (τ small) or delay dominance (τ large)

Simple tuning rules work well for τ > 0.2
What happens for small τ ?

Notice that L is the apparent time delay
Important to separate true time delay from time constants
Tuning can be improved with better modeling
Relay auto-tuning gives good excitation

Sensor noise and detuning
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Feedback Fundamentals

1 Introduction
2 Controllers with Two Degrees of Freedom
3 The Gangs of Four and Six
4 The Sensitivity Functions
5 Consequences for Design
6 Fundamental Limitations
7 PID Control
8 Summary

K. J. Åström Feedback Fundamentals



Summary

Error feedback and systems with two degrees of freedom

A system with error feedback is characterized by four
transfer functions (Gang of Four GoF) S, T , PS, CS

A system with two degrees of freedom is characterized by
six transfer functions (Gang of Six = GoF + FT+ FCS)

Systems with two degrees of freedom allow a complete
separation of responses to reference signals and
disturbances

Design feedback for disturbances and robustness, then
design feedforward F to give desired response to
reference signals

Analysis and specifications should cover all transfer
functions!

The assessment plot and PID control
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