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Introduction

Bicycles are convenient, environmental friendly, and
efficient transportation devices

Not trivial to explain how bicycles work. Example: Do you
actively stabilize a bicycle when you ride it?
Good illustration of many interesting issues in control

Modeling, stabilization, RHP poles & zeros
Fundamental limitations
Integrated process and control design

Experiences from using bicycles in education?
Motivation
Concrete illustration of ideas and concepts
Many (simple and advanced) experiments

Very high student attraction

Klein’s adapted bicycles for children with disabilities
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Bicycles in Science

W. J. Macquorn Rankine 1869 - famous thermodynamicist
- counter-steering

E. Carvallo 1898-1900 Prix Fourneyron

F. J. W. Whipple 1899

Felix Klein and Arnold Sommerfeld 1910

D. E. H. Jones 1942 The stability of the bicycle. Physics
Today, reissued 2006

Ju. I. Neimark and N. A. Fufaev 1972 (1967) Dynamics of
nonholonomic systems AMS
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Bicycle Modeling

Geometry, tires, elasticities, rider

Early models Whipple and Carvallo
1899-1900: 4th order models

Timoshenko-Young 1920 2nd order

Popular thesis topics 1960-1980,
manual derivations

Rider models

Motorcycle models Sharp 1970

The role of software for symbolic
calculation, multi-body programs
and Modelica

The control viewpoint, bicycle robots

Whipple developed his
4th order model as an

undergraduate at
Cambridge.
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Arnold Sommerfeld on Gyroscopic Effects

That the gyroscopic effects of the
wheels are very small can be seen
from the construction of the wheel:
if one wanted to strengthen the gy-
roscopic effects, one should pro-
vide the wheels with heavy rims
and tires instead of making them
as light as possible. It can never-
theless be shown that these weak
effects contribute their share to the
stability of the system.

Four of Sommerfeld’s graduate students got the Nobel Prize
Heisenberg 1932, Debye 1936, Pauli 1945 and Bethe 1962
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Tilt Dynamics

Linerized momentum
balance around ζ axis

J
d2ϕ

dt2
= m�{ϕ + {F

Like an inverted pen-
dulum model ξ

η

η

ζ

a

b

δ

ϕ

O

P1 P2

Kinematics gives the Lateral Force F

F = m
(V 20
r
+ dVy
dt

)

= m
(V 20
b

δ + aV0
b

dδ

dt

)
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The Inverted Pendulum Model δ → ϕ

Linearized tilt dynamics

J
d2ϕ

dt2
= m�{ϕ + {F

The force acting on the center of mass of frame and rider

F = m
(V 20
b

δ + aV0
b

dδ

dt

)

Model that relates steering angle δ to tilt ϕ

d2ϕ

dt2
= m�{
J

ϕ + m{V
2
0

bJ
δ + am{V0

bJ

dδ

dt

Transfer function: P(s) = am{V0
bJ

s+ V0/a
s2 −m�{/J
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Some Interesting Questions

How do you stabilize a bicycle?
By steering or by leaning?

Do you normally stabilize a bicycle when you ride it?

Why is it possible to ride no hands

How is stabilization influenced by the design of the bike?

Why does the front fork look the way it does?
The main message:

A bicycle is a feedback system!
The front fork is the key!

Is the control variable steering angle or steering torque?
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Block Diagram of a Bicycle

Control variable: Handlebar torque T

Process variables: Steering angle δ , tilt angle ϕ

ϕδ

?

T

Front fork

Frame?

−1

Σ

A feedback system
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The Front Fork

The front fork has many interesting features that were
developed over a long time. Its behavior is complicated by
geometry, the trail, tire-road interaction and gyroscopic effects.
We will describe it by a strongly simplified static linear model.

With a positive trail the front wheel
lines up with the velocity (caster ef-
fect). The trail also creates a torque
that turns the front fork into the
lean. A static torque balance gives

T −m�tϕ −m�tαδ = 0
δ = −k1ϕ + k2T

d

t

Qualitative experimental verification. In reality more complex,
dynamics and velocity dependence will be discussed later.
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Block Diagram of a Bicycle

ϕδ

k2

Handlebar torque T

Front fork

k(s+V0/a)
s2−m�{/Jk1

−1

Σ
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The Closed Loop System

Combining the equations for the frame and the front fork gives

d2ϕ

dt2
= m�{
J

ϕ + am{V0
bJ

dδ

dt
+ m{V

2
0

bJ
δ

δ = −k1ϕ + k2T

we find that the closed loop system is described by

d2ϕ

dt2
+am{k1V0

bJ

dϕ

dt
+m�{
J

(k1V
2
0

b� −1
)

ϕ = amk2{V0
bJ

(dT

dt
+V0
a
T
)

This equation is stable if

V0 > Vc =
√

b�/k1

where Vc is the critical velocity. Physical interpretation. Think
about this next time you bike!
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Stabilization

The bicycle is a feedback system. The clever design of the front
fork gives a feedback because a the front wheel will steer into a
lean. The closed loop system can be described by the equation

d2ϕ

dt2
+am{k1V0

bJ

dϕ

dt
+m�{
J

(k1V
2
0

b� −1
)

ϕ = amk2{V0
bJ

(dT

dt
+V0
a
T
)

which shows how tilt angle ϕ depends on handle bar torque T .

The equation is unstable for low speed but stable for high
speed V0 > Vc =

√

b�/k1, the critical velocity.

This means that the bicycle is self-stabilizing if the velocity is
larger than the critical velocity Vc! You can observe this by
rolling a bicycle down a gentle slope or by biking at different
speeds.
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Gyroscopic Effects

Gyroscopic effects has a little influence on the front fork

d2ϕ

dt2
= m�{
J

ϕ + am{V0
bJ

dδ

dt
+ m{V

2
0

bJ
δ

δ = −k1ϕ−k�
dϕ

dt
+ k2T

we find that the closed loop system is described by

(

1+ am{k�V0
bJ

)d2ϕ

dt2
+
(am{k1V0

bJ
+ m{k�V

2
0

b�
)dϕ

dt

+m�{
J

(k1V
2
0

b� − 1
)

ϕ = amk2{V0
bJ

(dT

dt
+ V0
a
T
)

Damping is slightly improved, but the stability condition is the
same as before

V0 > Vc =
√

b�/k1
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Lund Bicycle with Strong Gyroscopic Action
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Rear Wheel Steering

F. R. Whitt and D. G. Wilson (1974) Bicycling Science -
Ergonomics and Mechanics. MIT Press Cambridge, MA.

Many people have seen theoretical advantages in the fact that
front-drive, rear-steered recumbent bicycles would have simpler
transmissions than rear-driven recumbents and could have the
center of mass nearer the front wheel than the rear. The U.S.
Department of Transportation commissioned the construction
of a safe motorcycle with this configuration. It turned out to be
safe in an unexpected way: No one could ride it.

The Santa Barbara Connection
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The NHSA Rear Steered Motorcycle

The National Highway Safety Administration had a project
aimed at developing a safe motorcycle in the late 1970s.

Low center of mass

Long wheel base

Separation of steering and braking

Robert Schwarz, South Coast Technology in Santa
Barbara, California

Use Sharp model reverse velocity

Linearize analyse eigenvalues, in the range of 4 to 12 s for
speeds ranging from 3 to 50 m/s

Pointless to do experiments

NHSA insisted on experiments
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The NHSA Rear Steered Motorcycle
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Comment by Robert Schwarz

The outriggers were essential; in fact, the only way to
keep the machine upright for any measurable period
of time was to start out down on one outrigger, apply a
steer input to generate enough yaw velocity to pick up
the outrigger and then attempt to catch it as the
machine approached vertical. Analysis of film data
indicated that the longest stretch on two wheels was
about 2.5 s.
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The Linearized Tilt Equation

Front wheel steering:

d2ϕ

dt2
= m�{
J

ϕ + am{V0
bJ

dδ

dt
+ m{V

2
0

bJ
δ

Rear wheel steering (change sign of Vo):

d2ϕ

dt2
= m�{
J

ϕ−am{V0
bJ

dδ

dt
+ m{V

2
0

bJ
δ

The transfer function of the system is

P(s) = am{V0
bJ

−s+ V0
a

s2 − m�{
J

One pole and one zero in the right half plane.
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The Transfer Function

P(s) = am{V0
bJ

−s+ V0
a

s2 − m�{
J

One RHP pole at p =
√

m�{
J

( 3 rad/s (the pendulum pole)

One RHP zero at z = V0
a
( 5, z

p
= 5
3
( 1.7

Pole position independent of velocity but zero proportional to
velocity. When velocity increases from zero to high velocity you
pass a region where z = p and the system is unreachable.

K. J. Åström Bicycle Dynamics and Control



Does Feedback from Rear Fork Help?

Combining the equations for the frame and the rear fork gives

d2ϕ

dt2
= m�{
J

ϕ − am{V0
bJ

dδ

dt
+ m{V

2
0

bJ
δ

δ = −k1ϕ + k2T

we find that the closed loop system is described by

d2ϕ

dt2
−am{k1V0

bJ

dϕ

dt
+m�{
J

(k1V
2
0

b� −1
)

ϕ = amk2{V0
bJ

(dT

dt
+V0
a
T
)

where Vc =
√

b�/k1. This equation is unstable for all k1. There
are several ways to turn the rear fork but it makes little
difference.

Can the system be stabilized robustly with a more complex
controller?
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Can a general linear controller help?

Nyquist’s stability theorem

−1

ω s

1/Ms

The sensitivity function

S = 1

1+ L

For a system with a pole p
and a zero z in the right half
plane the maximum modulus
theorem implies

pS(iω )p ≥ pz+ pp
pz− pp

pS(iω )p < 2 implies z > 3p
(or z < p/3) for any con-
troller!
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Return to Rear Wheel Steering ...

The zero-pole ratio is

z

p
= V0

√
J

a
√
m�{ =

V0
√

Jcm +m{2
a
√
m�{

The system is not controlable if z = p, and it cannot be
controlled robustly if the ratio z/p is in the range of 0.3 to 3.

To make the ratio large you can

Make a small by leaning forward

Make V0 large by biking fast (takes guts)

Make J large by standing upright

Sit down, lean back when the speed is sufficiently large
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Klein’s Un-ridable Bike
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Klein’s Ridable Bike
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The Lund University Un-ridable Bike
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The UCSB Rideable Bike
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Using the Un-rideable Bike in Education

The un-rideable bike can be put to great pedagogical use. The
bicycles strange dynamic behavior always rises curiosity. A
typical teaching scenario

Ask students to design a reclining bicycle, guide them
towards front-wheel drive and rear-wheel steering

Go out and try the rear-steered bike

Discuss

Some issues that can be illustrated

A design may be perfect statically but useless because of
dynamics, a good reasson for studing control

Fundamental limitations due to RHP poles and zeros

The importance of sensors and actuators

An interpretation of transmission zeros
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Steering and Stabilization - A Classic Problem

Lecture by Wilbur Wright 1901:

Men know how to construct air-planes.
Men also know how to build engines.

Inability to balance and steer still confronts
students of the flying problem.

When this one feature has been worked out,
the age of flying will have arrived, for

all other difficulties are of minor importance.

The Wright Brothers figured it out and flew the Wright Flyer at
Kitty Hawk on December 17 1903!

Minorsky 1922:

It is an old adage that a stable ship is difficult to steer.
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The Wright Flyer - Unstable but Maneuvrable

K. J. Åström Bicycle Dynamics and Control



Steering

Having understood stabilization of bicycles we will now
investigate steering for the bicycle with a rigid rider.

Key question: How is the path of the bicycle influenced by
the handle bar torque?
Steps in analysis, find the relations

How handle bar torque influences steering angle
How steering angle influences velocity
How velocity influences the path

We will find that the instability of the bicycle frame causes some
difficulties in steering (dynamics with right half plane zeros).
This has caused severe accidents for motor bikes.
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How Steer Torque Influences Steer Angle

ϕδ

k2

Handlebar torque T

Front fork

k(s+V0/a)
s2−m�{/Jk1

−1

Σ

Transfer function from T to δ is
k2

1+ k1P(s)
= k2

1+ k1 k(s+V0/a)s2−m�{/J
= k2

s2 −m�{/J
s2 + am{k1V0

bJ
s+ m�{

J

(

V2
0

V2c
− 1
)
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Summary of Equations

Kinematics
dy

dt
= Vψ

dψ

dt
= V
b

δ .

The transfer function from steer angle δ to path deviation y is

Gyδ (s) =
V 2

bs2
.

Transfer function from steer torque T to y

GyT (s) =
k1V

2

b

s2 −m�h/J

s2

(

s2 + k2VD
bJ

s+ m�h
J
(V
2

V 2c
− 1)

) .
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Simulation
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Summary

The simple inverted pendulum model with a rigid rider can
explain stabilization. The model indicates that steering is
difficult due to the right half plane zero in the transfer
function from handle bar torque to steering angle.

The right half plane zero has some unexpected
consequences which gives the bicycle a counterintuitive
behavior. This has caused many motorcycle accidents.

How can we reconcile the difficulties with our practical
experience that a bicycle is easy to steer?

The phenomena depends on the assumption that the rider
does not lean.

The difficulties can be avoided by introducing an extra
control variable (leaning).

K. J. Åström Bicycle Dynamics and Control



Coordinated Steering

An experienced rider uses both lean and the torque on the
handle bar for steering. Intuitively it is done as follows:

The bicycle is driven so fast so that it is automatically
stabilized.

The turn is initiated by a torque on the handle bar, the rider
then leans gently into the turn to counteract the centripetal
force which will tend to lean the bike in the wrong direction.
This is particularly important for motor bikes which are
much heavier than the rider.

A proper analysis of a bicycle where the rider leans require a
more complex model because we have to account for two
bodies instead of one. There are also two inputs to deal with.
Accurate modeling of a bicycle also has to consider tire road
interaction and a more detailed account of the mechanics.
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Wilbur Wright on Counter-Steering

I have asked dozens of bicycle riders how they turn to
the left. I have never found a single person who stated
all the facts correctly when first asked. They almost
invariably said that to turn to the left, they turned the
handlebar to the left and as a result made a turn to the
left. But on further questioning them, some would
agree that they first turned the handlebar a little to the
right, and then as the machine inclined to the left they
turned the handlebar to the left and as a result made
the circle inclining inwardly.

Wilbur’s understanding of dynamics contributed significantly to
the Wright brothers’ success in making the first airplane flight.

Adding an input (lean) eliminates the RHP zero!
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Review

So far we have used a very simple second order model
consisting of

A momentum balance for frame and rider

An empirical static model for the front fork

This led to the important observation that the front fork creates
a feedback that can stabilize the system. It is natural to
consider more complex models. A natural first step is to replace
the static front fork model with a dynamic model. The closed
loop system is then of fourth order, the linear version is
Whipple’s model.

Deriving the models is straight forward in principle but
complexity rises quickly and calculations are error prone.
Modeling software (multi-body software, Modelica) a great help.
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Models of Increasing Complexity

Second order linear model

Fourth order linear model

Fourth order nonlinear model

Flexible tires

Tire road interaction

Frame flexibility

Rider model

Multi-body software useful

There is a Modelica library for bicycles
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Carvallo-Whipple 4th Order Linear Model

This model can be derived in different ways, Newton’s
equations, Lagrange’s equations, projection methods etc.
Calculations are complicated and error prone. Versions of the
model are found in

Whipple 1899

Carvallo 1897-1900

Klein and Sommerfeld 1910

Neimark Fufaev 1968

Many doctoral theses 1970-1990

Schwab et al 2004
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Parameters for 4th Order Linear Model

The model is described by 25 parameters; wheel base b = 1.00
m, trail c = 0.08, head angle λ = 70○, wheel radii
Rrw = R fw = 0.35, and data in the table.

Rear Frame Fr Frame Rr Wheel Fr Wheel
Mass m [kg] 87 (12) 2 1.5 1.5

Center of Mass
x [m] 0.492 (0.439) 0.866 0 b

z [m] 1.028 (0.579) 0.676 Rrw R fw
Inertia Tensor
Jxx [kg m2] 3.28 (0.476) 0.08 0.07 0.07
Jxz [kg m2] -0.603 (-0.274) 0.02 0 0
Jyy [kg m2] 3.880 (1.033) 0.07 0.14 0.14
Jzz [kg m2] 0.566 (0.527) 0.02 Jxx Jxx
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A Fourth Order Linear Model

Momentum balances for frame and front fork

M









ϕ̈
δ̈








+ CV









ϕ̇
δ̇








+ (K0 + K2V 2)









ϕ
δ








=








0

T








,

Notice structure of velocity dependence. The matrices are

M =








96.8 (6.00) −3.57(−0.472)
−3.57 (−0.472) 0.258 (0.152)








,

C =








0 −50.8 (−5.84)
0.436 (0.436) 2.20 (0.666)








,

K0 =








−901.0 (−91.72) 35.17 (7.51)
35.17 (7.51) −12.03 (−2.57)








,

K2 =








0 −87.06 (−9.54)
0 3.50 (0.848)








.
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Root Locus Bicycle with Rider

−15 −10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real pk

Im
ag
p
k

p1 p2p3 p4

K. J. Åström Bicycle Dynamics and Control



Real Parts of Poles for Bicycle with Rider
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Movies of Weave and Wobble
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Fourth Order Nonlinear Model

The equations are of the form

M(x)ẍ + F(x, ẋ) = T

They were generated by Anders Lennartsson using multi-body
software (Sophia). The functions are too complicated to be
printed but they were used to compute equilibria, linearize and
simulate. A Modelica library is now available.
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Equilibria and Bifurcations
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Stable Periodic Motion
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Open Problems

The nonlinear model has very rich behavior which has not been
fully explored.

Local behavior around all equiblibira

There are also other equilibria that are of interest. Steady
turning is for example of particular interest for motorcycles.

There are also fundamental the fundamental problem of
investigating these issues when the function is only defined
indirectly via software

What are appropriate tools?
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Experiments

Many interesting experiments can be performed with bicycles.

Front fork model
Ride in a straight line lean the body in one direction and
determine the steer-torque required to maintain a straight
line path.

Stabilization
Push an riderless bicycle down a slope which gives the
bicycle critical speed. Observe self-stabilization and
investigate effects of trail and front-wheel inertia.

Steering
Give a riderless bicycle a push on a flat surface. Apply a
steering torque and observe the trajectory.

K. J. Åström Bicycle Dynamics and Control



Instrumentation

Equipment can range from rudimentary to advanced

Rudimentary
A torque wrench to measure steer-torque, lean and speed
sensors

Intermediate
Sensors for bike and rider lean, speed, steer torque with
interfaces and a data logger

Advanced
A fully instrumented bicycle robot with electric drive motor
and retractable support wheels. Cameras on bike and on
the ground.
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Robot Bicycles

1988 Klein UIUC

1996 Pacejka Delft
mmotorcycle robot

2004 Tanaka and
Murakami

2005 UCSB

2005 Yamakita and
Utano Titech

2005 Murata Co

Murata Manufacturing Company
Japan Times Oct 5 2005
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Klein’s Adapted Bikes for Children with Disabilities

Over a dozen clinics for children and adults with a wide range
of disabilities, including Down syndrome, autism, mild cerebral
palsy and Asperger’s syndrome. More than 2000 children aged
6-20 have been treated, see

http://www.losethetrainingwheels.org
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Scaled Dynamics

Unstable pole

p =
√

m�(h− R)
J

(
√

(1− R/h)�
h

.

Critical velocity

Vc =
√

�b(h− R)
k2h

η

ζ

R

h − R

CM

Same behavior as an ordinary bike but dynamics is slower and
more stable. The children learn the right behavior in a gentle
environment, the dynamics is then gradually speeded up to that
of a normal bike.
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Conclusions

Bicycle dynamics is a good illustration theoretically and
experimentally

Much insight into stabilization and steering can be derived
from simple models
Interaction of system and control design (the front fork)
Counterintuitive behavior because of dynamics with right
half plane zeros
Importance of several control variables

Lesson 1: Dynamics is important! Things may look OK
statically but intractable because of dynamics.

Lesson 2: A system that is difficult to control because of
zeros in the right half plane can be improved significantly
by introducing more control variables.
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