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Abstract

This thesis addresses challenges in increasing the robustness of cloud-deployed
applications and services to unexpected events and dynamic workloads. With-
out precautions, hardware failures and unpredictable large traffic variations can
quickly degrade the performance of an application due to mismatch between
provisioned resources and capacity needs. Similarly, disasters, such as power
outages and fire, are unexpected events on larger scale that threatens the in-
tegrity of the underlying infrastructure on which an application is deployed.

First, the self-adaptive software concept of brownout is extended to repli-
cated cloud applications. By monitoring the performance of each application
replica, brownout is able to counteract temporary overload situations by reduc-
ing the computational complexity of jobs entering the system. To avoid exist-
ing load balancers interfering with the brownout functionality, brownout-aware
load balancers are introduced. Simulation experiments show that the proposed
load balancers outperform existing load balancers in providing a high quality of
service to as many end users as possible. Experiments in a testbed environment
further show how a replicated brownout-enabled application is able to maintain
high performance during overloads as compared to its non-brownout equivalent.

Next, a feedback controller for cloud autoscaling is introduced. Using a novel
way of modeling the dynamics of typical cloud application, a mechanism sim-
ilar to the classical Smith predictor to compensate for delays in reconfiguring
resource provisioning is presented. Simulation experiments show that the feed-
back controller is able to achieve faster control of the response times of a cloud
application as compared to a threshold-based controller.

Finally, a solution for handling the trade-off between performance and disas-
ter tolerance for geo-replicated cloud applications is introduced. An automated
mechanism for differentiating application traffic and replication traffic, and dy-
namically managing their bandwidth allocations using an MPC controller is pre-
sented and evaluated in simulation. Comparisons with commonly used static
approaches reveal that the proposed solution in overload situations provides in-
creased flexibility in managing the trade-off between performance and data con-
sistency.
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1
Introduction

1.1 Background and motivation

Today, online services are expected to be able to accommodate large traffic
volumes all while providing users with a high Quality of Service (QoS). Cloud
computing has in recent years grown to become the de-facto standard for
rapidly deploying and scaling such services and applications. Public cloud ser-
vice providers such as Amazon, Google, Microsoft and Rackspace have given
small upstarts hosting opportunities where the tenants pay only for running
costs while not having to make the equivalent capital investment in computing
infrastructure themselves. In doing so, users have been enabled to almost seam-
lessly scale up their cloud applications as their popularity grows. Similarly, using
the same foundational principles, private and hybrid clouds are enabling larger
enterprises to transition many of their core functions to a cloud service model.
Recent estimates put expected global spending on cloud solutions by enterprises
at $235 billion by 2017, tripling the number from 20111. Cloud computing has
also lowered the entry barrier for large-scale scientific computing applications,
such as machine learning applications and big data analytics, by enabling users
to rapidly and inexpensively provision resources from a virtually infinite pool.

Public cloud providers were previously mainly offering tenants availability
guarantees. Now, there is an increasing demand for supporting stricter guaran-
tees on performance and fault tolerance as cloud computing is becoming a viable
platform for deploying business critical services. Existing cloud infrastructure
and management models are too static to support this in face of ever increas-
ing scale and complexity of cloud-based services, highlighting the need for new
integrated and holistic approaches.

Cloud applications are often exposed to dynamic workloads with large vari-
ability. This poses a challenge: service predictability with such workloads is dif-
ficult to achieve, with applications suddenly going from well-functioning to un-

1 http://press.ihs.com/press-release/design-supply-chain/cloud-related-spending-businesses-
triple-2011-2017, accessed 2016-05-13.
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Chapter 1. Introduction

responsive unless properly managed. Moreover, cloud applications are regularly
exposed to unexpected events, such as hardware failures, power outages and ex-
treme and sudden traffic surges. The example of the death of Michael Jackson
is famous, where the additional traffic almost brought Twitter offline and made
Google News wrongly classify related search terms as spam2. The work contained
in this thesis addresses these challenges in three different directions outlined be-
low.

First, the self-adaptive software concept of brownout [Klein et al., 2014; Mag-
gio et al., 2014] is extended to support cloud applications spanning multiple
servers. By designing brownout-compliant load balancers that distribute the traf-
fic across the available servers, brownout applications are enabled to guarantee
application performance in settings where workload and infrastructure are vari-
able while also keeping application service levels high. Experimental evaluations
in both simulation and in a testbed environment show that the contribution en-
ables cloud applications to withstand traffic surges and infrastructure failures
with robust performance while improving service levels as compared to state-
of-the-art load balancers.

Next, feedback-based autoscaling for cloud applications is considered, where
a model-based controller is designed using feedback from end-user perfor-
mance, here measured by application response times. To reduce the deleterious
effects of time delays caused by Virtual Machine (VM) startup times, a controller
structure similar to the classical Smith predictor is derived. Simulation experi-
ments show that the design is able to outperform a widely employed rule-based
autoscaler.

Finally the topic of geo-replicated cloud applications for increased disaster
tolerance is considered. Using Model Predictive Control (MPC), a solution is pre-
sented for managing network bandwidth allocations in high-load situations to
deal with trade-offs between a replicated application’s performance and robust-
ness to replica failure. Using simulations, it is shown that the proposed solution
offers more flexibility in handling dynamic workloads as compared to existing
static techniques for managing bandwidth allocation.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

• Load balancers designed for replicated brownout-enabled applications.
These are evaluated against state-of-the-art load balancers in simulation
and in testbed.

2 http://www.telegraph.co.uk/technology/5649500/How-did-Michael-Jacksons-death-affect-the-
internets-performance.html, accessed 2016-05-13.
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• A Smith predictor-like model-based feedback controller for cloud autoscal-
ing. Simulation evaluation shows that it can outperform a standard rule-
based autoscaler in terms of fast control of application response times.

• A dynamic approach based on MPC for network bandwidth allocations in a
geo-replicated cloud application. Simulations show that the solution pro-
vides more flexibility in handling the trade-off between application perfor-
mance and disaster tolerance as compared to commonly used static ap-
proaches.

1.3 Publications

The following is a list of publications included in this thesis along with a state-
ment of the author’s contribution.

Paper I
Dürango, J., M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos, F.

Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2014). “Control-
theoretical load-balancing for cloud applications with brownout”. In: 53rd
IEEE Conference on Decision and Control. Los Angeles, CA, USA.

J. Dürango was the main author of the paper and contributor on the
optimization-based solution. He assisted in implementing the other solutions
and the simulation framework, and in designing and running the experiments.

Paper II
Klein, C., A. V. Papadopoulos, M. Dellkrantz, J. Dürango, M. Maggio, K.-E. Årzén,

F. Hernández-Rodriguez, and E. Elmroth (2014). “Improving cloud service re-
silience using brownout-aware load-balancing”. In: 33rd IEEE International
Symposium on Reliable Distributed Systems (SRDS). Nara, Japan.

J. Dürango, along with M. Dellkrantz, designed and implemented the queue-
based load balancers. J. Dürango assisted in designing the experiments and in-
terpreting the results.

Paper III
Dellkrantz, M., J. Dürango, A. Robertsson, and M. Kihl (2015). “Model-based

deadtime compensation of virtual machine startup times”. In: 10th Interna-
tional Workshop on Feedback Computing. Seattle, WA, USA.

J. Dürango assisted M. Dellkrantz in designing the delay compensation
mechanism and the experiments, designed the controller, and co-wrote the pa-
per.
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Paper IV
Dürango, J., W. Tärneberg, L. Tomás, J. Tordsson, M. Kihl, and M. Maggio (2016,

submitted). “A control theoretical approach to non-intrusive geo-replication
for cloud services”. In: 55th IEEE Conference on Decision and Control. Las Ve-
gas, NV, USA. Submitted.

J. Dürango was the main author of the paper and implemented the simula-
tion framework in collaboration with W. Tärneberg. He also designed the con-
troller and ran the experiments after design inputs from the other authors.

1.4 Additional publications

In addition to the publications above, the following is a list of related publications
by the author that are not included in this thesis.

Mehta, A., J. Dürango, J. Tordsson, and E. Elmroth (2015). “Online spike detec-
tion in cloud workloads”. In: 2015 IEEE International Conference on Cloud
Engineering.

Papadopoulos, A. V., C. Klein, M. Maggio, J. Dürango, M. Dellkrantz, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2016). “Control-based
load-balancing techniques: analysis and performance evaluation via a ran-
domized optimization approach”. Control Engineering Practice 52, pp. 24–
34.
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2
Background

This chapter provides the relevant background to the topics of this thesis. First,
cloud computing and its underlying concepts are described. Next, a summary of
the topics of the thesis is given.

2.1 Cloud computing

Although cloud computing lacks a formal technical definition, many adhere to
the definition offered by the National Institute for Standards and Technology
(NIST) [Mell and Grance, 2011]:

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.

The NIST definition goes on by identifying five key characteristics of cloud
computing [Mell and Grance, 2011]:

I. On-demand self-service. Users can unilaterally provision computing re-
sources from a service provider without human interaction.

II. Broad network access. Capabilities are widely accessible through standard
mechanisms with no focus on a particular client platform.

III. Resource pooling. Service providers pool all available resources and assign
them to consumers based on their needs. Multiple consumers may share
the same physical resources, but are kept isolated and unaware of this fact.

IV. Rapid elasticity. Resources can be provisioned and released rapidly to fol-
low the needs of a consumer.

V. Measured service. Resource usage is measured by the cloud provider and
the measurements are made available to the consumer.
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Chapter 2. Background

While cloud computing has grown immensely popular in recent years, it is
not the result of any particular new disruptive technology, but can rather at-
tributed to the combination and development of several preexisting technolo-
gies. Some consider it a fulfillment of computer scientist John McCarthy’s vision
in the 1960’s of computation some day being organized as a utility, available in-
stantly and in virtually unlimited quantities [Garfinkel and Abelson, 1999]. Many
underlying concepts of cloud computing are shared with grid computing, which
emerged in the 1990’s. Grid computing was mainly a response to academia’s need
of access to vast and inexpensive computing resources on-demand for solving
large-scale computational problems [Foster and Kesselman, 2003]. Grid comput-
ing differed from traditional supercomputing design by instead employing a dis-
tributed infrastructure model with many relatively small computing nodes, often
geographically distributed and connected over the public Internet. Using mainly
commodity hardware rather than server-grade equipment, nodes were built to
be cheap and to fit well with parallelizable workloads. Although cloud comput-
ing has retained the same fundamental infrastructure model as grid comput-
ing, the two differ in other aspects. [Foster et al., 2008] attributed many of these
discrepancies to differing business models: grid computing has traditionally as-
sumed resources being provisioned for long-term or short-term projects with
multiple stakeholders, whereas cloud computing has assumed a more consumer-
producer like model, where resources are offered to consumers on a fine-grained
on-demand basis. To further underline the differences, [Vogels, 2008] lists three
additional key features that are novel to cloud computing:

• Computing resources appear to be available on-demand in infinite quan-
tities.

• Users make no up-front commitment, thereby allowing them to start with
little resources and increase provisioning as their needs increase.

• The ability to pay for use of computing resources on a short-term basis as
needed and release them when no longer needed.

Recent advancements in virtualization techniques have been key in enabling
cloud computing to achieve these features [Adams and Agesen, 2006; Barham
et al., 2003; Kivity et al., 2007]. Cloud providers use virtualization to offer com-
pute resources in a wide range of virtual CPU, memory, storage and network per-
mutations. Traditionally, hardware virtualization or paravirtualization has been
utilized to offer resources in the form of VMs in different configurations, letting
consumers configure the environment to their needs. In doing so, multiple ten-
ants can share the same physical infrastructure isolated under the impression
that they operate on their own separate hardware. In an effort to reduce over-
head in situations where the consumer has no explicit need to run a full VM
with its own operating system, recent years have seen the development of oper-
ating system-level virtualization as a more lightweight alternative. Solutions like
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2.2 Brownout

Linux containers [Linuxcontainers.org, 2016] and Docker [Docker, 2016] allow
tenants to run applications in software containers, offering users similar security
and performance isolation as VMs but at a much lower startup time. While the
use of VMs is still the prevalent solution, software containers are becoming more
popular for resource provisioning in cloud computing, and some results indicate
that they indeed are able to reduce the performance overhead that virtualization
usually carry [Felter et al., 2015].

Cloud computing services are typically made available to consumers using
three different service models: Infrastructure as a Service (IaaS), Software as a
Service (SaaS) and Platform as a Service (PaaS) [Mell and Grance, 2011]. IaaS of-
fers resources as VMs in different configurations, leaving it to the consumer to
configure the setup themselves regarding operating system and applications. The
other two service models hide the underlying infrastructure and rather provide
the consumer with pre-configured platforms for deploying their own software,
or provide an entire software solution that the consumer pays to get access to. In
this thesis, it is mainly IaaS solutions, such as Amazon EC2 [Amazon, 2016], that
are considered.

2.2 Brownout

Cloud computing infrastructures can be susceptible to failures, such as hardware
failures of the physical servers on which an application is running [Barroso et al.,
2013]. Unexpected events like these risk degrading the performance of a cloud
application as there suddenly can be a mismatch between the application’s re-
source demand and the available capacity. Another example of such an unex-
pected event is so-called flash crowds, which are sudden and unexpected traffic
influxes that may increase the resource demand of an application many times
over [Bodik et al., 2010; Ari et al., 2003]. Due to the rapid course of events dur-
ing a flash crowd or hardware failure, there is typically not enough time to fully
rely on scaling up an application in order to offset the lost resources or load in-
crease. To cope with these types of unexpected events, strategies not reliant on
provisioning additional resources are necessary. Such strategies typically have in
common that they increase robustness by temporarily reducing the load on the
infrastructure. An often used approach is admission control, where some jobs or
requests are refused service so as to reduce the system load and free up resources
for other jobs [Kihl et al., 2008].

For a cloud application responding to requests issued by end users, such as a
webservice, an alternative approach for maintaining a high performance during
a flash crowd or hardware failure is to reduce the computational complexity for
some of the requests, based on measurements of the application’s performance.
In case the application is only temporarily overloaded, it can be advantageous to
be able to continue serving all requests and accept some service level degrada-
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tion, as compared to admission control where some requests would be outright
denied service. A typical example could be an e-commerce site, where a recom-
mendation system is used to recommend to users items they might be interested
in, based on their purchase and browsing history. Such a system can provide the
site with extra revenue, but is not integral for the site to operate and might be
computationally costly. During a temporary overload, rather than denying some
users service completely as in admission control, or displaying a default fallback
page option, one can alternatively choose to reduce the frequency with which
the recommendation system is displayed in order to still be able to process re-
quests within acceptable time. This is the motivation behind brownout, which
was introduced for cloud applications in [Klein et al., 2014; Maggio et al., 2014].

In a brownout-enabled application, the computations necessary to handle a
user request are decomposed into a mandatory part and an optional part. In the
example above, the recommendation system would constitute the optional part,
while the computations for serving the rest of a request constitute the manda-
tory part. Brownout then employs a probabilistic solution to decide whether a
request should be served the optional content or not. If the application is well-
provisioned, the large majority of the requests will get the full content, whereas
if the application is under heavy load, the fraction of full requests served is re-
duced so as to maintain performance. In brownout, application performance is
determined from a statistic, either the average or 95th percentile, of the response
times of requests served in a sampling interval [k−1, k], and is denoted by t (k). A
brownout controller then compares t (k) to a setpoint response time tref and ad-
justs a so-called dimmer in order for the application to achieve the desired per-
formance. The dimmer corresponds to the probability of a request getting served
the full content.

Following [Klein et al., 2014], a simple dynamical model of t (k) is used:

t (k +1) =α(k)θ(k)+δt (k). (2.1)

Here α(k) is a possibly time-varying unknown parameter estimated during run-
time as α̂(k) using recursive least squares, δt (k) an unknown disturbance and
θ(k) the dimmer. The corresponding transfer function from dimmer to response
times is

P (z) = α

z
. (2.2)

By measuring t (k) and comparing it to the setpoint tref, the brownout controller
C (z) for adjusting the dimmer θ(k) can be designed using pole placement for the
pole of the closed loop system Gcl (z) from tref to t (k):

Gcl (z) = P (z)C (z)

1+P (z)C (z)
= 1−p

z −p
.
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clients load-balancer ...
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Figure 2.1 System architecture of replicated brownout applications as in Papers
I and II. User requests to the application are dispatched to indepent replicas of the
application by a load balancer. Each replica contains a separate brownout con-
troller that maintains the response time of its respective replica.

Solving for C (z) and using the estimate α̂(k) gives the brownout controller as an
adaptive I controller:

C (z) = 1−p

α̂
· z

z −1
. (2.3)

In the original work, brownout was designed for applications running on a
single server. As cloud applications typically are of larger scale, Papers I and II
propose an extension of brownout to a larger setting where the application is
replicated across several VMs and a load balancer is used to route traffic to the
different replicas. When scaling a brownout application to span multiple VMs, it
must be decided where to locate the brownout functionality. In order to promote
application robustness, the approach taken in Paper I and II is to make repli-
cas independent by having a local brownout controller in each replica, keeping
replicas separated from each other. This approach also makes application scal-
ing relatively straightforward, since scaling up in this setting entails starting an-
other VM, configuring and starting the application and registering the replica
with the load balancer to start receiving traffic, without the replicas having to
interact with each other. Load balancing is then used to distribute the load over
the available replicas. The system setup is illustrated in Figure 2.1. In the simplest
case, load balancing can be done either using round robin or by routing a request
to a replica chosen at random, giving replica i out of n available replicas a share
λi =λ/n of the total traffic λ. However, when the application is deployed on a set
of heterogeneous VMs with different capacities, this creates an uneven work dis-
tribution, possibly resulting in some replicas becoming overloaded while others
are left poorly utilized. This can be mitigated by attributing a weight wi to each
replica according to its capacity, giving the traffic shares

λi =λ ·wi ,
n∑

i=1
wi = 1. (2.4)

Other approaches include Shortest Queue First (SQF), where the load bal-
ancer routes the each request to the replica with currently fewest requests in
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Chapter 2. Background

process. However, this requires for the load balancer to keep track of the request
count at each replica, which for example in a distributed load balancing setting
can result in high communication overhead [Lu et al., 2011].

As traffic is distributed across available replicas, a natural goal to aim for is to
maximize the fraction of requests that get served the full content, thereby max-
imizing the generated revenue. Since existing load balancing strategies are not
designed with brownout in mind, they cannot be expected to perform to sat-
isfaction under all circumstances. Moreover, as many load balancers use feed-
back from the performance of the system there is a risk for the load balancer and
brownout functionality to interfere with each other as they both struggle to con-
trol the application response times [Mitzenmacher, 2001; Pao and Chen, 2006].
The topic of Paper I is the design of brownout-aware load balancers that handle
this source of interference while also aiming to serve as many user requests as
possible the full content. For this purpose, a simulation study is done to evaluate
the proposed strategies and compare them to a set of widely used state-of-the-
art load balancers during scenarios where traffic and infrastructure are allowed
to vary. Paper II then extends this work by implementing and evaluating some of
the load balancers on a real testbed consisting of a brownout-enabled web appli-
cation running on several VMs.

2.3 Elasticity control and autoscaling

When cloud applications are subjected to dynamic workloads, such as time-
varying request rates, the resulting load on the applications can vary greatly.
A well-performing application can during traffic surges quickly become over-
loaded, resulting in the application becoming unresponsive and facing unac-
ceptable QoS degradation as a consequence, unless properly managed. Similarly
during traffic declines, already provisioned resources risk being underutilized if
they cannot be put to good use elsewhere. To address this, and to match the al-
located resources to the current load, service providers and cloud users utilize
elasticity control to scale an application [Herbst et al., 2013]. By continuously re-
evaluating its resource needs, a cloud application can ideally be scaled with the
load to achieve the goal of high QoS while keeping the costs of the acquired re-
sources down.

Scaling in elastic cloud applications is done in two ways: horizontally and ver-
tically. In horizontal scaling, the resource allocation for an application is modi-
fied by adding or removing VMs to which the application is deployed. When new
VMs are provisioned, they boot, configure the necessary environments and ap-
plications, and register with a load balancer to start receiving jobs. In vertical
scaling on the other hand, the VMs themselves are reconfigured during runtime,
adding or removing virtual resources such as CPUs, storage and memory. Of the
two approaches, horizontal scaling is by far the most widely-used method.
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While some scaling decisions can be made manually by operators, it is gen-
erally preferable to automate such decisions. This automated decision mak-
ing process, commonly known as autoscaling, allows cloud applications to au-
tonomously scale with the load with little or no manual intervention. Autoscal-
ing has attracted significant research interest in recent years, with proposals to
use methods from many different domains such as control theory, time-series
analysis and queueing theory [Lorido-Botran et al., 2014]. Autoscaling solutions
are usually broadly classified as either reactive or proactive. Reactive autoscalers
base their decision on an assessment of the current state of the cloud applica-
tion [Lim et al., 2010; Lim et al., 2009; Gandhi et al., 2012]. Relevant metrics,
such as request rate, load, response time and number of jobs currently being
processed are monitored and used to determine if scaling is needed. Given the
random and often rapid fluctuations in traffic and load combined with the rel-
atively coarse and slow resource allocation in horizontal scaling, it is not unex-
pected if such solutions suffer from periods of resource mismatch due to under-
and over-provisioning. For this reason, much effort has been put into developing
proactive autoscalers where the future state of the cloud application is predicted
from measurements and historical data [Gong et al., 2010; Herbst et al., 2014; Ali-
Eldin et al., 2012]. These autoscalers are, on the other hand, possibly sensitive
to prediction errors, but have nonetheless been shown to often be able to offer
better performance than their reactive counterparts in some settings.

Feedforward and feedback autoscaling
From a decision to scale up and add another VM there will be some time before it
comes online and is able to process jobs. The exact time can vary, but estimates
of boot times of up to 10 minutes are not uncommon [Mao and Humphrey, 2012].
This delay may negatively impact the QoS, but does not pose a threat to the ser-
vice stability and integrity for autoscalers using metrics unrelated to the state of
the application, such as the request rate, as they essentially are feedforward solu-
tions. Using application state metrics, such as response times, on the other hand
constitute a feedback solution, to which the inherent delays of starting a new VM
can be a destabilizing factor. In state-of-the-art autoscalers found in commercial
cloud services, it is customary to address this issue using a cooldown period. It is
a time period that starts when a new VM is added, during which the autoscaler
is prohibited from starting additional VMs. As soon as the cooldown ends, the
autoscaler is again permitted to add or remove VMs. While preventing the au-
toscaler from continuing to deploy VMs until the last started VM has been able
to affect the service performance, it also makes it impossible to start additional
VMs during this interval even if it is truly necessary. Alternative approaches to
handling the time delays include setting the autoscaler sampling time to the time
taken to start new VMs [Ali-Eldin et al., 2012].

19



Chapter 2. Background

Controlling a system using a controller based purely on feedforward gener-
ally requires very accurate system models for acceptable control performance.
Cloud computing systems are notoriously hard to model, so autoscalers based
on feedforward are sensitive to modeling errors or changes in workload compo-
sition. For this reason such autoscalers can have a hard time fulfilling strict per-
formance requirements. Feedback can potentially mitigate these problems, but
its ability to do so is contingent on what metrics are used. By design, some so-
lutions use feedback from metrics that are only indirectly related to the QoS of
the service [Gandhi et al., 2012]. Doing so can be sensible implementation-wise
as some metrics may be more easily accessible than others, but requires a good
understanding of the relationship between the used metrics and QoS-relevant
metrics in order to maintain control of performance.

Paper III presents an autoscaler that uses feedback from actual application
performance, as measured by response times, to achieve improved control of the
QoS. Furthermore, to reduce the effect of startup delays for new VMs, a delay
compensating mechanism similar to the classical Smith predictor [Smith, 1957]
is derived. Key in achieving this delay compensation is the ability to accurately
model a cloud application. Paper III therefore also presents a novel dynamical
model for the response times of a typical cloud application. A derivation of the
model is presented in details below. Simulations show that the presented con-
troller is able to provide better and faster control of the performance of a simu-
lated cloud application subjected to traffic variations as compared to a threshold-
based autoscaler.

Dynamical modeling of cloud applications
Modeling of computer systems, applications and servers in cloud computing and
elsewhere, has historically been done using queueing theory [Kleinrock, 1975;
Harchol-Balter, 2013; Cao et al., 2003]. The behavior of servers and applications
is described using inter-connected networks of buffers and processors. In the
simplest setting, a server can be treated as single node consisting of a proces-
sor and a buffer where arriving jobs are enqueued to wait for their turn to be
processed. The processor then schedules which of the enqueued jobs to process
next according to some scheduling discipline, such as first in, first out (FIFO)
or processor sharing [Kleinrock, 1967]. Using the notation of [Kleinrock, 1975],
the exogenous arrival of jobs to a server can be described using independent and
identically distributed (i.i.d.) samples from an inter-arrival time distribution with
cumulative distribution function (CDF) A(t ), making the arrival process be of re-
newal type. Similarly are the service time for the jobs, i.e. the time it would take
to process a job if it was alone in the server, described as i.i.d. samples from a
service time distribution with CDF B(t ).

The single most well-studied and simplest example queueing system is the
M/M/1 system [Kleinrock, 1975], where jobs arrive according to a Poisson pro-
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Figure 2.2 State diagram of an M/M/1 queueing system with arrival rate λ and
service rate µ.

cess with mean rate λ and the service times are exponentially distributed with
mean 1/µ, or equivalently the servers having a service rate µ. The M/M/1 system
forms a continuous time Markov process onZ≥0, where the state denotes the cur-
rent number of jobs in the system, and can be illustrated by the state diagram in
Figure 2.2. By letting pk (t ) denote the probability of the system having exactly k
jobs at time t , the corresponding Kolmogorov forward equations for the system
are [Kleinrock, 1975]:

d p0(t )

d t
=µp1(t )−λp0(t )

d pk (t )

d t
=λpk−1(t )+µpk+1(t )− (

µ+λ)
pk (t ), k ≥ 1.

(2.5)

Under stable conditions, i.e., when λ< µ, and by introducing the system uti-
lization ρ =λ/µ, it is straightforward to verify from Equation (2.5) for the station-
ary queue length distribution X that X ∼ Geom(1−ρ) with a probability mass
distribution given by

pk = (
1−ρ)

ρk (2.6)

with mean

E[X ] = ρ

1−ρ . (2.7)

From an end-users perspective, the mean response time T for a job, i.e. the
total time spent by a job waiting in the queue and being processed, can be ex-
pressed as

T = E[X ]+1

µ
= 1

µ−λ . (2.8)

While results of a stationary analysis are very helpful in e.g. dimensioning
server systems, a dynamical analysis is necessary if transients need to be consid-
ered, such as when the arrival rate is time-varying. Unfortunately, even for the
simplest queueing system, a dynamical analysis quickly becomes cumbersome.
For this reason, simplified approximations are desirable. A possible approach is
to let x(t ) = E[X ] and use Equations (2.5) to show that
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d x(t )

d t
=

∞∑
k=0

k
d pk (t )

d t
=λ(t )−µ(1−p0(t )) =λ(t )−µρ(t ). (2.9)

An obvious complication is the inclusion of the unknowns p0(t ) or ρ(t ), nei-
ther of which is easily described during non-stationary conditions. [Rider, 1976;
Agnew, 1976; Tipper and Sundareshan, 1990] all propose a state dependent ap-
proximation on the form

ρ(t ) = x(t )

x(t )+1
(2.10)

which, together with Equation (2.9), yields an approximative dynamical model
for the queue length of an M/M/1 system as

d x(t )

d t
=λ(t )−µ x(t )

x(t )+1
. (2.11)

Note that the model given by Equation (2.11) has a stationary point that corre-
sponds to the mean queue length in Equation (2.7). For the response times, a
time-varying version of Equation (2.8) is used to give

T (t ) = x(t )+1

µ
(2.12)

In Paper III, the queue length and response time models given by Equations
(2.11)–(2.12) are used to describe a replicated cloud application. Assuming a
time-varying request rate λ(t ) and a variable number of currently running VMs
n(t ), each with capacity µ, and with randomized load balancing, the dynamics of
a replica can be described by

d x(t )

d t
= λ(t )

n(t )
−µ x(t )

x(t )+1

T (t ) = x(t )+1

µ
.

(2.13)

The model is then used in designing a feedback controller for the response times
T to follow a reference Tref. To address the issue of time delays when starting a
new VM, the controller uses a mechanism with close resemblance to the classical
Smith predictor [Smith, 1957].

2.4 Disaster tolerance in geo-replicated cloud services

As enterprise utilization of public cloud provider infrastructure has grown, the
propensity of deploying business critical operations on cloud platforms has in-
creased as well. While this allows users to benefit from the flexibility cloud com-
puting offers, it also exposes them to the risk of infrastructural failures that may
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interrupt services, such as power outages, operator misconfiguration and natural
disasters. That way, business users are exposed to the risk of large revenue losses
or even being put out of business [Keeton et al., 2004; Ji et al., 2003]. Therefore,
it is becoming increasingly important for businesses to make sure that applica-
tions and services can fully or partly resume operation shortly after a disaster.
This is commonly referred to as Business Continuity (BC), and is, in the case of
cloud services, achieved using mechanisms for Disaster Recovery (DR) [Wood et
al., 2010].

DR mechanisms for cloud applications typically rely on provisioning redun-
dant servers and storage, and keeping one or multiple replicas of an application
standing by to take over operation in case of a disaster. Note that this is different
from the procedure previously discussed, where replication serves as a means
to increase the total capacity of a cloud application. To provide a high degree of
disaster tolerance, replicas are kept geographically separated in different Data
Centers (DCs). This way, in the unfortunate event of a disaster such as a fire, the
main site at which an application is deployed might be brought down, but op-
eration can continue at a remote site. Providing this kind of redundancy entails
mirroring the state of an application along with its associated data at the remote
sites, so-called geo-replication.

As data is being written by the application, in order to maintain consistency,
the corresponding write operations need also to be carried out at the backup
sites. Typically, replicating the data is done using either synchronous or asyn-
chronous replication. For write operations at the main replica to complete when
using synchronous replication, the corresponding operations need also to be
successfully completed and verified at all sites. While providing a high degree
of resilience to data loss, synchronous replication can result in degraded appli-
cation performance as the latency and bandwidth between replicas become a
bottleneck for the write throughput [Wood et al., 2011]. This is particularly true
for geo-replicated applications, where the physical separation of replicas is likely
to negatively impact both latency and bandwidth. Using asynchronous replica-
tion, on the other hand, can partly overcome the latency limitation and improve
performance by letting write operations complete when the changes have been
written only locally at the primary application site. This way, the main applica-
tion replica is allowed to “pull ahead”, potentially leaving the other replicas in an
inconsistent state with data not yet replicated buffered until it can be sent. As
the application is no longer depending on write operations being completed at
all replicas, write throughput can increase, but comes at the cost of potentially
losing not-yet replicated data in case of a disaster. A commonly used tool for data
replication in Linux-based systems is DRBD [Reisner and Ellenberg, 2005], which
provides both synchronous and asynchronous replication modes for block stor-
age devices.
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Figure 2.3 Setup of the system considered in Paper IV. A geo-replicated applica-
tion replies to user requests, while a replication service replicates the data writ-
ten by the application along with regularly copying an image and corresponding
metadata of the VM hosting the application.

When employing DR solutions for cloud services in a geo-replicated setting,
such as over a Metropolitan Area Network (MAN) or Wide Area Network (WAN),
networking limitations of the infrastructure on which the application is run-
ning can also come into play. This is because the networking resources generally
are shared between the traffic sent by the application to its end users and the
traffic generated by the DR mechanism. The alternative would be to use dedi-
cated networking for the replication traffic, but doing so would generally be too
costly for many small and medium-sized businesses. Here, the focus is rather on
more cost efficient approaches. Periods of high load can lead to the aggregated
bandwidth needs exceeding the network capacity. When this happens, a trade-
off between application performance and keeping the replicas consistent is in-
troduced. To minimize the level of interference between application traffic and
replication traffic, different traffic control mechanisms can be employed [Hubert
et al., 2002]. In some settings, it is customary to restrict replication traffic to use
more than certain share of the bandwidth available to the system in order for it
to not negatively impact the application performance. In other settings, traffic
is managed by assigning priorities to different traffic classes, with higher priori-
tized traffic, typically belonging to the application, preempting the transmission
of lower prioritized traffic.

To improve the flexibility in managing the bandwidth allocation of the differ-
ent traffic types, Paper IV introduces an approach based on MPC. This way, allo-
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cation adjustments can be made dynamically based on the state of the applica-
tion the level of replica consistency. A setup as illustrated in Figure 2.3 is consid-
ered, where an application is responding to requests issued by users. Processing
these requests require that the application computes a response, performs nec-
essary write operations and sends the response back to the users. A DR service
is running alongside the application, replicating the data written by the appli-
cation to a remote replica. In addition, with fixed frequency, a full image of the
VM on which the application is running along with corresponding metadata is
sent to the remote replica. When the networking resources are under heavy load,
the system will buffer data sent by each traffic type until it can be transmitted.
Based on the content of these buffers, and using a model of their dynamics, the
MPC controller adjusts the bandwidth allocations of the system so as to manage
the trade-off between application performance and data consistency. Using an
event-based simulator, the approach is evaluated and compared to some of the
most commonly used static traffic management solutions. The results show that
a dynamical approach can increase the flexibility in handling said trade-off in
variable scenarios.
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Control-theoretical load-balancing for cloud
applications with brownout

Jonas Dürango Manfred Dellkrantz Martina Maggio
Cristian Klein Alessandro Vittorio Papadopoulos

Francisco Hernández-Rodriguez Erik Elmroth Karl-Erik Årzén

Abstract

Cloud applications are often subject to unexpected events like flash crowds
and hardware failures. Without a predictable behavior, users may abandon
an unresponsive application. This problem has been partially solved on two
separate fronts: first, by adding a self-adaptive feature called brownout in-
side cloud applications to bound response times by modulating user experi-
ence, and, second, by introducing replicas — copies of the applications hav-
ing the same functionalities — for redundancy and adding a load-balancer
to direct incoming traffic.

However, existing load-balancing strategies interfere with brownout
self-adaptivity. Load-balancers are often based on response times, that are
already controlled by the self-adaptive features of the application, hence
they are not a good indicator of how well a replica is performing.

In this paper, we present novel load-balancing strategies, specifically de-
signed to support brownout applications. They base their decision not on
response time, but on user experience degradation. We implemented our
strategies in a self-adaptive application simulator, together with some state-
of-the-art solutions. Results obtained in multiple scenarios show that the
proposed strategies bring significant improvements when compared to the
state-of-the-art ones.

© 2014 IEEE. Originally published in Proceedings of 53rd IEEE Conference on De-
cision and Control (CDC), Los Angeles, USA, December 2014. Reprinted with per-
mission. The article has been reformatted to fit the current document.
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Paper I. Control-theoretical load-balancing for cloud applications

1. Introduction

Cloud computing has dramatically changed the management of computing in-
frastructures. On one hand, public infrastructure providers, such as Amazon EC2,
allow service providers, such as Dropbox and Netflix, to deploy their services on
large infrastructures with no upfront cost [Buyya et al., 2009], by simply leas-
ing computing capacity in the form of VMs. On the other hand, the flexibility
offered by cloud technologies, which allow VMs to be hosted by any Physical Ma-
chine (PM) (or server), favors the adoption of private clouds [Gulati et al., 2011].
Therefore, self-hosting service providers themselves are converting their com-
puting infrastructures into small clouds.

One of the main issues with cloud computing infrastructures is application
robustness to unexpected events. For example, flash-crowds are sudden incre-
ments of end-users, that may raise the required capacity up to five times [Bodik
et al., 2010]. Similarly, hardware failures may temporarily reduce the capacity of
the infrastructure, while the failure is repaired [Barroso et al., 2013]. Also, unex-
pected performance degradations may arise due to workload consolidation and
the resulting interference among co-located applications [Mars et al., 2011]. Due
to the large magnitude and short duration of such events, it may be economi-
cally too costly to keep enough spare capacity to properly deal with them. As a
result, unexpected events may lead to infrastructure overload, that translates to
unresponsive services, leading to dissatisfied end-users and revenue loss.

Cloud services therefore greatly benefit from self-adaptation techniques [Sale-
hie and Tahvildari, 2009], such as brownout [Klein et al., 2014; Maggio et al.,
2014]. A brownout service adapts itself by reducing the amount of computations
it executes to serve a request, so as to maintain response time around a given set-
point. In essence, some computations are marked as mandatory — for example,
displaying product information in an e-commerce website — while others are
optional — for example, recommending similar products. Whenever an end-user
request is received, the service can choose to execute the optional code or not ac-
cording to its available capacity, and to the previously measured response times.
Note that executing optional code directly translates into a better service for the
end-user and more revenue for the service provider. This approach has proved
to be successful for dealing with unexpected events [Klein et al., 2014]. However,
there, brownout services were composed of a single replica, i.e., a single copy of
the application, running inside a single VM.

In this paper, we extend the brownout paradigm to services featuring multi-
ple replicas — i.e., multiple, independent copies of the same application, serv-
ing the user the same data — hosted inside individual VMs. Since each VM can
be hosted by different PMs, this enhances brownout services in two directions.
First, scalability of a brownout application — the ability for an application to deal
with more users by adding more computing resources — is improved, since ap-
plications are no longer limited to using the resources of a single PM. Second,
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resilience is improved: in case a PM fails, taking down a replica, other replicas
whose VMs are hosted on different PMs can seamlessly take over.

The component that decides which replica should serve a particular end-user
request is called a load-balancer. Despite the fact that load-balancing techniques
have been widely studied [Barroso et al., 2013; Lu et al., 2011; Lin et al., 2012;
Nakrani and Tovey, 2004], state-of-the-art load-balancers forward requests based
on metrics that cannot discriminate between a replica that is avoiding overload
by not executing the optional code and a replica that is not subject to overload.
Therefore, the novelty of our problem consists in finding a brownout-compliant
load-balancing technique that is aware of each replica’s self-adaptation mecha-
nism.

The contribution of this paper is summarized as follows.

• We present extensions to load-balancing architectures and the required
enhancements to the replicas that convey information about served op-
tional content and allow to deal with brownout services efficiently (Sec-
tion 3).

• We propose novel load-balancing algorithms that, by receiving informa-
tion about the adaptation happening at the replica level, try to maximize
the performance of brownout services, in terms of frequency of execution
of the optional code (Section 4).

• We show through simulations that our brownout-aware load-balancing al-
gorithms outperform state-of-the-art techniques (Section 5).

2. Related work

Load-balancers are standard components of Internet-scale services [Wang et
al., 2002], allowing applications to achieve scalability and resilience [Barroso
et al., 2013; Hamilton, 2007; Wolf and Yu, 2001]. Many load-balancing policies
have been proposed, aiming at different optimizations, spanning from equaliz-
ing processor load [Stankovic, 1985] to managing memory pools [Patterson et al.,
1995; Diao et al., 2005], to specific optimizations for iterative algorithms [Bahi
et al., 2005]. Often load-balancing policies consider web server systems as a tar-
get [Manfredi et al., 2013; Cardellini et al., 2003], where one of the most impor-
tant result is to bound the maximum response time that the clients are exposed
to [Huang and Abdelzaher, 2005]. Load-balancing strategies can be guided by
many different purposes, for example geographical [Andreolini et al., 2008; Ran-
jan et al., 2004], driven by the electricity price to reduce the datacenter operation
cost [Doyle et al., 2013], or specifically designed for cloud applications [Barroso
et al., 2013; Lu et al., 2011; Lin et al., 2012].

Load-balancing solutions can be divided into two different types: static and
dynamic. Static load-balancing refers to a fixed, non-adaptive strategy to select a
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replica to direct traffic to [Ni and Hwang, 1985; Tantawi and Towsley, 1985]. The
most commonly used technique is based on selecting each replica in turn, called
Round Robin (RR). It can be either deterministic, storing the last selected replica,
or probabilistic, picking a replica at Random. However, due to their static nature,
such techniques would not have good performance when applied to brownout-
compliant applications as they do not take into account the inherent fluctuations
of a cloud environment and the control strategy at the replica level, which leads
to changing capabilities of replicas.

On the contrary, dynamic load-balancing is based on measurements of the
current system’s state. One popular option is to choose the replica which had the
lowest response time in the past. We refer to this algorithm as Fastest Replica First
(FRF) if the choice is based on the last measured response time of each replica,
and FRF-EWMA if the choice is based on an Exponentially Weighted Moving Av-
erage over the past response times of each replica. A variation of this algorithm
is Two Random Choices (2RC) [Mitzenmacher, 2001], that randomly chooses two
replicas and assigns the request to the fastest one, i.e., the one with the lowest
maximum response time.

Through experimental results, we determined that FRF, FRF-EWMA and 2RC
are unsuitable for brownout applications. They base their decision on response
times alone, which leads to inefficient decisions for brownout services. Indeed,
such services already keep their response-time at a given setpoint, at the expense
of reducing the ratio of optional content served. Hence, by measuring response-
time alone, it is not possible to discriminate between a replica that is avoiding
overload by not executing the optional code and a replica that is not subject to
overload executing all optional code, both achieving the desired response times.

Another adopted strategy is based on the pending request count and gener-
ally called Shortest Queue First (SQF), where the load-balancer tracks the pend-
ing requests and select the replicas with the least number of requests waiting for
completion. This strategy pays off in architectures where the replicas have similar
capacities and the requests are homogeneous. To account for non-homogeneity,
[Pao and Chen, 2006] proposed a load balancing solution using the remaining
capacity of the replicas to determine how the next request should be managed.
The capacity is determined through a combination of factors like the remaining
available CPU and memory, the network transmission and the current pending
request count. Other approaches have been proposed that base their decision
on remaining capacity. However, due to the fact that brownout applications indi-
rectly control CPU utilization, by adjusting the execution of optional content, so
as to prepare for possible request bursts, deciding on remaining capacity alone is
not an indicator of how a brownout replica is performing.

A merge of the fastest replica and the pending request count approach was
implemented in the BIG-IP Local Traffic Manager [BIG-IP, 2013], where the repli-
cas are ranked based on a linear combination of response times and number
of routed requests. Since the exact specification of this algorithm is not open,

34



3 Problem statement

clients load-balancer ...

replica1

replican

...

controller1

controllern

λ

λ1

λn

t1

θ1

tn

θn

Figure 1. Architecture of a brownout-compliant cloud application featuring
multiple replicas.

we tried to mimic as follows: A Predictive load balancer would rank the replicas
based on the difference between the past metrics and the current ones. One of
the solutions proposed in this paper extends the idea of looking at the difference
between the past behavior and the current one, although our solution observes
the changes in the ratio of optional code served and tries to maximize the re-
quests served enabling the full computation.

Dynamic solutions can be control-theoretical [Zhang et al., 2002; Kameda et
al., 2000] and also account for the cost of applying the control action [Diao et al.,
2004] or for the load trend [Casolari et al., 2009]. This is especially necessary when
the load balancer also acts as a resource allocator deciding not only where to
route the current request but also how much resources it would have to execute,
like in [Ardagna et al., 2012]. In these cases, the induced sudden lack of resources
can result in poor performance. However, we focus only on load-balancing solu-
tions, since brownout applications are already taking care of the potential lack of
resources [Maggio et al., 2014].

3. Problem statement

Load-balancing problems can be formulated in many ways. This is especially
true for the case addressed in this paper where the load-balancer should dis-
tribute the load to adaptive entities, that play a role by themselves in adjusting
to the current situation. This section discusses the characteristics of the consid-
ered infrastructure and clearly formulates the problem under analysis.

Figure 1 illustrates the software architecture that is deployed to execute a
brownout-compliant application composed of multiple replicas. Despite the
modifications needed to make it brownout-compliant, the architecture is widely
accepted as the reference one for cloud applications [Barroso et al., 2013].

Given the generic cloud application architecture, access can only be done
through the load-balancer. The clients are assumed to be closed-loop: They first
send a request, wait for the reply, then think by waiting for an exponentially dis-
tributed time interval, and repeat. This client model is a fairly good approxima-
tion for users that interact with web-sites requiring a pre-defined number of re-
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quests to complete a goal, such as buying a product [D. F. García and J. García,
2003] or booking a flight. The resulting traffic has an unknown but measurable
rate λ.

Each client request is received by the load-balancer, that sends it to one of
the n replicas. The chosen replica produces the response and sends it back to the
load-balancer, which forwards it to the original client. We measure the response
time of the request as the time spent within the replica, assuming negligible time
is taken for the load-balancer execution and for the routing itself. Since the re-
sponses are routed back to the load-balancer, it is possible to attach information
to be routed back to aid balancing decisions to it.

Each replica i receives a fraction λi of the incoming traffic and is a stand-
alone version of the application. More specifically, each replica receives requests
at a rate λi = wi ·λ, such that wi ≥ 0, and

∑
i wi = 1. In this case, the load balancer

simply computes the replica weights wi according to its load-balancing policy.
Special to our case is the presence of a controller within each replica [Klein et

al., 2014]. This controller receives periodic measurements of the response time
ti of the requests served by the replica, and adjusts the percentage of requests
θi served with optional components. Here ti is the 95-th percentile of the re-
sponse times for a control period. Following the approach of [Klein et al., 2014],
we model the response times from a replica as

t k+1
i =αk

i ·θk
i

where αk
i is an unknown parameter estimated online (details omitted here). The

control loop is then closed using the PI controller

θk+1
i = θk

i + 1−p1

α̂k
i

·ek+1
i

where ek+1
i is the control error and p1 the closed-loop pole. As the controller out-

put is restricted, anti-windup measures are employed. In our experiments, p1 is
set to 0.99, the replica control period is to 0.5s, while the load-balancer acts every
second.

As given by the brownout paradigm, a replica i responds to requests either
partially, where only mandatory content is included in the reply, or fully, where
both mandatory and optional content is included. This decision is taken inde-
pendently for each request with a probability θi for success. The service rate for a
partial response is µi while a full response is generated with a rate Mi . Obviously,
partial replies are faster to compute than full ones, hence, µi ≥ Mi . Assuming the
replica is not saturated, it serves requests fully at a rate λiθi and partially at a rate
λi (1−θi ).

Many alternatives can be envisioned on how to extend existing load balancers
to deal with brownout-compliant applications. In our choice, the load-balancer
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receives information about θi from the replicas. This solution results in less com-
putationally intensive load-balancers with respect to the case where the load-
balancer should somehow estimate the probability of executing the optional
components, but requires additional communication. The overhead, however,
is very limited, since only one value would be reported per replica. For the pur-
pose of this paper, we assume that to aid load-balancing decisions, each replica
piggy-backs the current value of θi through the reply, so that this value can be ob-
served by the load-balancer, limiting the overhead. The load-balancer does not
have any knowledge on how each replica controller adjusts the percentage θi , it
only knows the reported value. This allows to completely separate the action of
the load- balancer from the one of the self-adaptive application.

Given this last architecture, we want to solve the problem of designing a
load-balancer policy. Knowing the values of θi for each replica i ∈ [1,n], a load-
balancer should compute the values of the weights wi such that

∞∑
k=0

∑
i

wi (k)θi (k) (1)

is maximized, where k denotes the discrete time. Given that we have no knowl-
edge of the evolution in time of the involved quantities, we aim to maximize
the quantity

∑
i wiθi in every time instant, assuming that this will maximize the

quantity defined in Equation (1). In other words, the load-balancer should max-
imize the ratio of requests served with the optional part enabled. For that, the
aim is to maximize the ratio of optional components served in any time instant.
In practice, this would also maximize the application owner’s revenue [Klein et
al., 2014].

4. Solution

This section describes three different solutions for balancing the load directed
to self-adaptive brownout-compliant applications composed of multiple repli-
cas. The first two strategies are heuristic solutions that take into account the self-
adaptivity of the replicas. The third alternative is based on optimization, with the
aim of providing guarantees on the best possible behavior.

4.1 Variational principle-based heuristic (VPBH)
Our first solution is inspired by the predictive approach described in Section 2.
The core of the predictive solution is to examine the variation of the involved
quantities. While in its classical form, this solution relies on variations of re-
sponse times or pending request count per replica, our solution is based on how
the control variables θi are changing.

If the percentage θi of optional content served is increasing, the replica is as-
sumed to be less loaded, and more traffic can be sent to it. On the contrary, when
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the optional content decreases, the replica will receive less traffic, to decrease its
load and allow it to increase θi .

The replica weights wi are initialized to 1/n where n is the number of replicas.
The load-balancer periodically updates the values of the weights based on the
values of θi received by the replicas. At time k, denoting with∆θi (k) the variation
θi (k)−θi (k −1), the solution computes a potential weight w̃i (k +1) according to

w̃i (k +1) = wi (k) · [1+γP ∆θi (k)+γI θi (k)
]

, (2)

where γP and γI are constant gains, respectively related to a proportional and
an integral load-balancing action. As calculated, w̃i values can be negative. This
is clearly not feasible, therefore negative values are truncated to a small but still
positive weight ε. Using a positive weight instead of zero allows us to probe the
replica and see whether it is favorably responding to new incoming requests or
not. Moreover, the computed values do not respect the constraint that their sum
is equal to 1, so they are then re-scaled according to

wi (k) =
max(w̃i (k),ε)∑
i max(w̃i (k),ε)

. (3)

We selected γP = 0.5 based on experimental results. Once γP is fixed to a se-
lected value, increasing the integral gain γI calls for a stronger action on the load-
balancing side, which means that the load-balancer would take decisions very
much influenced by the current values of θi , therefore greatly improving perfor-
mance at the cost of a more aggressive control action. On the contrary, decreas-
ing γI would smoothen the control signal, possibly resulting in performance loss
due to a slower reaction time. The choice of the integral gain allows to exploit the
trade-off between performance and robustness. For the experiments we chose
γI = 5.0.

4.2 Equality principle-based heuristic (EPBH)
The second policy is based on the heuristic that a near-optimal situation is when
all replica serves the same percentage optional content. Based on this assump-
tion, the control variables θi should be as close as possible to one another. If the
values of θi converge to a single value, this means that the traffic is routed so that
each replica can serve the same percentage of optional content, i.e., a more pow-
erful replica receives more traffic then a less powerful one. This approach there-
fore selects weights that encourages the control variables θi to converge towards
the mean 1

n

∑
j θ j .

The policy computes a potential weight w̃i (k +1)

w̃i (k +1) = wi (k)+γe

(
θi (k)−

1

n

∑
j
θ j (k)

)
(4)
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where γe is a strictly positive parameter which accounts for how fast the algo-
rithm should converge. For the experiments we chose γe = 0.025. The weights
are simply modified proportionally to the difference between the current control
value and the average control value set by the replicas. Clearly, the same satu-
ration and normalization described in Equation (3) has to be applied to the pro-
posed solution, to ensure that the sum of the weights is equal to one and that they
have positive values — i.e., that all the incoming traffic is directed to the replicas
and that each replica receives at least some requests.

4.3 Convex optimization based load-balancing (COBLB)
The third approach is to update the replica weights based on the solution of an
optimization problem, where the objective is to maximize the quantity

∑
i wiθi .

In this solution, each replica is modeled as a queuing system using a Proces-
sor Sharing (PS) discipline. The clients are assumed to arrive according to a Pois-
son process with intensity λi , and will upon arrival enter the queue where they
will receive a share of the replicas processing capability. The simplest queueing
models assume the required time for serving a request to be exponentially dis-
tributed with rate µ̃. However, in the case of brownout, the requests are served
either with or without optional content with rates Mi and µi , respectively. There-
fore the distribution of service times Si for the replicas can be modelled as a mix-
ture of two exponential distributions with a probability density function fSi (t )
according to

fSi (t ) = (1−θi ) ·µi ·e−µi ·t +θi ·Mi ·e−Mi ·t , (5)

where t represents the continuous time and θi is the probability of activating the
optional components. Thus, a request entering the queue of replica i will receive
an exponentially distributed service time with a rate with probability θi being
Mi , and probability 1−θi being µi . The resulting queueing system model is of
type M/G/1/PS and has been proven suitable to simulate the behavior of web
servers [Cao et al., 2003].

It is known that for M/G/1 queueing systems adopting the PS discipline, the
mean response times will depend on the service time distribution only through
its mean [Kleinrock, 1967; Sakata et al., 1971], here given for each replica by

µ∗
i = 1

E[Si ]
=

[
1−θi

µi
+ θi

Mi

]−1

. (6)

The mean response times for a M/G/1/PS system themselves are given by

τi =
1

µ∗
i −λwi

. (7)
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The required service rates µ∗
i needed to ensure that there is no stationary error

can be obtained by inverting Equation (7)

µ∗
i =

1+τ∗i λwi

τ∗i
(8)

with τ∗i being the set point for the response time of replica i .
Combining Equation (6) and (8), it is then possible to calculate the steady-

state control variables θ∗i that gives the desired behavior

θ∗i =
Mi ·

(
µiτ

∗
i −1−λwiτ

∗
i

)(
1+λwiτ

∗
i

) · (µi −Mi
) = Ai −Bi wi

Ci +Di wi
. (9)

with Ai , Bi , Ci and Di all positive. Note that the values of θ∗i are not used in the
replicas and are simply computed by the optimization based load-balancer as
the optimal stationary conditions for the control variables θi . Clearly, one could
also think of using these values within the replicas but in this investigation we
want to completely separate the load-balancing policy and the replicas internal
control loops.

Recalling that θi is the probability of executing the optional components
when producing the response, the values θ∗i should be constrained to belong to
the interval [0,1], yielding the following inequalities (under the reasonable as-
sumptions that τ∗i > 1/Mi and µi ≥ Mi )

Ai −Ci

Bi +Di
≤ wi ≤

Ai

Bi
. (10)

Using these inequalities as constraints, it is possible to formally state the opti-
mization problem as

maximize
wi

J =
∑

i
wiθi =

∑
i

wi
Ai −Bi wi

Ci +Di wi

subject to
∑

i
wi = 1,

Ai −Ci

Bi +Di
≤ wi ≤

Ai

Bi

(11)

Since the objective function J is concave and the constraints linear in wi , the
entire problem is concave and can be solved using efficient methods [Boyd and
Vandenberghe, 2004]. We use an interior point algorithm, implemented in CVX-
OPT1, a Python library for convex optimization problems, to obtain the values of
the weights.

1 http://cvxopt.org/
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Notice that solving optimization problem (11) guarantees that the best pos-
sible solution is found for the single time instant problem, but requires a lot of
knowledge about the single replicas. In fact, while other solutions require knowl-
edge only about the incoming traffic and the control variables for each replica,
the optimization-based solution relies on knowledge of the service time of re-
quests with and without optional content Mi and µi that might not be available
and could require additional computations to be estimated correctly.

5. Evaluation

In this section we describe our experimental evaluation, discussing the perfor-
mance indicators used to compare different strategies, the simulator developed
and used to emulate the behavior of brownout-compliant replicas driven by the
load-balancer, and our case studies.

5.1 Performance indicators
Performance measures are necessary to objectively compare different algo-
rithms. Our first performance indicator is defined as the percentage %oc of the
total requests served with the optional content enabled, which is a reasonable
metric given that we assume that users perform a certain number of clicks to use
the application.

We also would like to introduce some other performance metrics to compare
the implemented load-balancing techniques. For this, we use the user-perceived
stability σu [Andreolini et al., 2008]. This metric refers to the variation of perfor-
mance as observed by the users, and it is measured as the standard deviation of
response times. Its purpose is to measure the ability of the replicas to respond
timely to the client requests. The entire brownout framework aims at stabilizing
the response times, therefore it should achieve better user-perceived stability, re-
gardless of the presence of the load-balancer. However, the load-balancing al-
gorithm clearly influences the perceived response times, therefore it is logical to
check whether the newly developed algorithms achieve a better perceived stabil-
ity than the classical ones. Together with the value of the user-perceived stability,
we also report the average response time µu to distinguish between algorithms
that achieve a low response time with possibly high fluctuations from solutions
that achieve a higher but more stable response time.

5.2 Simulator
To test the load-balancing strategies, a Python-based simulator for brownout-
compliant applications is used. In the simulator, it is easy to plug-in new load-
balancing algorithms. The simulator is based on the concepts of Client, Request,
LoadBalancer and Replica.

When a new client is defined, it can behave according to the open-loop client
model, where it simply issues a certain number of unrelated requests (as it is true
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for clients that respect the Markovian assumption), or according to the closed-
loop one [Schroeder et al., 2006; Alomari and Menascé, 2013]. Closed-loop clients
issue a request and wait for the response, when they receive the response they
think for some time (in the simulations this time is exponentially distributed with
mean 1s) and subsequently continue sending another request to the application.
While this second model is more realistic, the first one is still useful to simulate
the behavior of a large number of clients. The simulator implements both mod-
els, to allow for complete tests, but we will evaluate our results with closed-loop
clients given the nature of the applications, that requires users to perform a cer-
tain number of clicks.

Requests are received by the load-balancer, that directs them towards dif-
ferent replicas. The load-balancer can work on a per-request basis or based on
weights. The first case is used to simulate policies like Round Robin, Random,
Shortest Queue First and so on, that do not rely on the concept of weights. The
weighted load-balancer is used to simulate the strategies proposed in this paper.

Each replica simulates the computation necessary to serve the request and
chooses if it should be executed with or without the optional components ac-
tivated. If the optional content is served the service time is a random number
from a gaussian distribution with mean φi and variance 0.01, while if the op-
tional content is not served, the mean is ψi and the variance is 0.001. The pa-
rameters φi and ψi are specified when replicas are created and can be changed
during the execution. The service rate of requests with the optional component
is Mi = 1/φi while for serving only the mandatory part of the request the service
rate is µi = 1/ψi . The replicas are also executing an internal control loop to select
their control variables θi [Klein et al., 2014]. The replicas use PS to process the
requests in the queue, meaning that each of the n active requests will get 1/n of
the processing capability of the replica.

The simulator receives as input a Scenario, which describes what can hap-
pen during the simulation. The scenario definition supports the insertion of new
clients and the removal of existing ones. It also allows to turn on and off replicas
at specific times during the execution and to change the service times for ev-
ery replica, both for the optional components and for the mandatory ones. This
simulates a change in the amount of resources given to the machine hosting the
replica and it is based on the assumption that these changes are unpredictable
and can happen at the architecture level, for example due to the cloud provider
co-locating more applications onto the same physical hardware, therefore reduc-
ing their computation capability [Tomás and Tordsson, 2013].

With the scenarios, it is easy to simulate different working conditions and to
have a complete overview of the changes that might happen during the load-
balancing and replica execution. In the following, we describe two experiments
conducted to compare the load-balancing strategies when subject to different
execution conditions.
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5.3 Reacting to client behavior
The aim of the first test is to evaluate the performance of different algorithms
when new clients arrive and existing clients disconnect.

In the experiment the infrastructure is composed of four replicas. The first
replica is the fastest one and has φ1 = 0.05s (average time to execute both the
mandatory and the optional components) andψ1 = 0.005s (average time to com-
pute only the mandatory part of the response). The second replica is slower, with
φ2 = 0.25s and ψ2 = 0.025s. The third and fourth replicas are the slowest ones,
having φ3,4 = 0.5s and ψ3,4 = 0.05s.

Clients adhere to the closed-loop model. 50 clients are accessing the system
at time 0s, and 10 of them are removed after 200s. At time 400s, 25 more clients
query the application and 25 more arrives again at 600s. 40 clients disconnect at
time 800s and the simulation is ended at time 1000s.

The right column in Figure 2 shows the control variable θi for each replica,
while the left column shows the effective weights wi , i.e., the weights that have
been assigned by the load-balancing strategies computed a posteriori. Since so-
lutions like RR do not assign directly the weights, we decided to compute the
effective values that can be found after the load-balancing assignments.

The algorithms are ordered by decreasing percentage %oc of optional content
served, where EPBH achieves the best percentage overall, followed by VPBH and
by COBLB.

For this scenario, the strategies that are brownout-aware achieve better re-
sults in terms of percentage of optional content served. The SQF algorithm is the
only existing one capable of achieving similar (yet lower) performance in terms
of optional content delivered. The scenario also illustrates the benefit of using a
brownout-aware strategy, as there is a constant underutilization of replica 1 for
SQF.

To analyze the effect of the load-balancing strategies on the replicas response
times, Figure 3 shows box plots of the maximum response time experienced by
the replicas. The load-balancing strategies are ordered from left to right based
on the percentage of optional code %oc achieved. The bottom line of each box
represents the first quartile, the top line the third and the red line is the median.
The red crosses show the outliers. In addition to the classical box plot informa-
tion, the black dots show for each algorithm the average value of the maximum
response time measured during the experiment, also considering the outliers.

The box plots clearly show that all the solutions presented in this paper
achieve distributions that have outliers, as well as almost all the literature ones.
The only exception seems to be SQF, that achieves very few outliers, predictable
maximum response time, with a median that is just slightly higher than the
one achieved by VPBH. EPBH offers the highest percentage of optional con-
tent served, by sacrificing the response time bound. From this additional infor-
mation one can conclude that the solutions presented in this paper should be
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Figure 2. Results of a simulation with four replicas and clients entering and
leaving the system at different time instants. The left column shows the effective
weights while the right column shows the control variables for each replica. The
first replica is shown in black solid lines, the second in blue dashed lines, the third
in green dash-dotted lines, and the fourth in red dotted lines.
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Figure 2. (continued) Results of a simulation with four replicas and clients en-
tering and leaving the system at different time instants. The left column shows
the effective weights while the right column shows the control variables for each
replica. The first replica is shown in black solid lines, the second in blue dashed
lines, the third in green dash-dotted lines, and the fourth in red dotted lines.
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Figure 3. Box plots of the maximum response time in all the replicas for every
control interval. Each box shows from the first quartile to the third. The red line
shows the median; outliers are represented with red crosses while the black dots
indicate the average value (also considering the outliers).

tuned carefully if response time requirements are hard. For example, for certain
tasks, users prefer a very responsive applications instead of many features, hence
the revenue of the application owner may be increased through lower response
times. Notice that the proposed heuristics (EPBH and VPBH) have tunable pa-
rameters that can be used to exploit the trade-off between response time bounds
and optional content.

This case study features only a limited number of replicas. However, we have
conducted additional tests, also in more complex scenarios, featuring up to 20
replicas, reporting results similar to the ones presented herein. In the next sec-
tion we test the effect of infrastructural changes to load-balancing solutions and
response times.

5.4 Reacting to infrastructure resources
In the second case study the architecture is composed of five replicas. At time
0s, the first replica has φ1 = 0.07s, ψ1 = 0.001s. The second and third replicas are
medium fast, with φ2,3 = 0.14s andψ2,3 = 0.002s. The fourth and fifth replicas are
the slowest with φ4,5 = 0.7s and ψ4,5 = 0.01s.

At time 250s the amount of resources assigned to the first replica is decreased,
therefore φ1 = 0.35s and ψ1 = 0.005s. At time 500s, the fifth replica receives more
resources, achieving φ5 = 0.07s and ψ5 = 0.001s. The same happens at time 750
to the fourth replica.
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Table 1. Performance with variable infrastructure resources.

Algorithm %oc µu σu

COBLB 90.9% 0.78 0.97
EPBH 89.5% 1.06 1.95
VPBH 87.7% 1.02 1.90
SQF 83.3% 0.55 0.40
RR 75.5% 1.11 2.42
Random 72.9% 0.86 2.23
2RC 72.2% 0.74 1.64
FRF 70.4% 1.27 2.03
FRF-EWMA 51.4% 1.44 3.41
Predictive 47.4% 1.66 3.48

Table 1 reports the percentage %oc , the average response time and the user-
perceived stability for the different algorithms. It should be noted again that our
strategies obtain better optional content served at the expense of slightly higher
response times. However, COBLB is capable of obtaining both low response times
and high percentage of optional content served. This is due to the amount of in-
formation that it uses, since we assume that the computation times for manda-
tory and optional part are known. The optimization-based strategy is capable of
reacting fast to changes and achieves predictability in the application behavior.
Again, if one does not have all the necessary information available, it is possible
to implement strategies that would better exploit the trade-off between bounded
response time and optional content.

6. Conclusion

We have revisited the problem of load-balancing different replicas in the pres-
ence of self-adaptivity inside the application. This is motivated by the need of
cloud applications to withstand unexpected events like flash crowds, resource
variations or hardware changes. To fully address these issues, load-balancing so-
lutions need to be combined with self-adaptive applications, such as brownout.
However, simply combining them without special support leads to poor perfor-
mance.

Three load-balancing strategies are described, specifically designed to sup-
port brownout-compliant cloud applications. The experimental results clearly
show that incorporating the application adaptation in the design of load bal-
ancing strategies pay off in terms of predictable behavior and maximized per-
formance. They also demonstrated that the SQF algorithm is the best non-
brownout-aware solution and therefore it should be used whenever it is not pos-
sible to adopt one of our proposed solution. The granularity of the actuation of
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the SQF load-balancing strategy is on a per-request based and the used infor-
mation are much more updated with respect to the current infrastructure sta-
tus, which is an advantage compared to weight-based solutions and helps SQF
to serve requests faster. In future work we plan to investigate brownout-aware
per-request solutions.

Finally, the application model used in this paper assumes a finite number of
clicks per user, therefore the developed load-balancer strategies maximize the
percentage of optional content served. However, when a different application
model is taken into account, optimizing the absolute number of requests served
with optional content is another possible goal, that should be investigated in fu-
ture work.

References

Alomari, F. and D. Menascé (2013). “Efficient response time approximations for
multiclass fork and join queues in open and closed queuing networks”. IEEE
Transactions on Parallel and Distributed Systems 99, pp. 1–6.

Andreolini, M., S. Casolari, and M. Colajanni (2008). “Autonomic request man-
agement algorithms for geographically distributed internet-based systems”.
In: 2nd IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO).

Ardagna, D., S. Casolari, M. Colajanni, and B. Panicucci (2012). “Dual time-scale
distributed capacity allocation and load redirect algorithms for clouds”. Jour-
nal of Parallel and Distributed Computing 72:6.

Bahi, J. M., S. Contassot-Vivier, and R. Couturier (2005). “Dynamic load balanc-
ing and efficient load estimators for asynchronous iterative algorithms”. IEEE
Transactions on Parallel and Distributed Systems 16:4.

Barroso, L. A., J. Clidaras, and U. Hölzle (2013). The datacenter as a computer: an
introduction to the design of warehouse-scale machines. 2nd edition. Morgan
& Claypool Publishers.

BIG-IP (2013). Big-ip local traffic manager. http://www.f5.com/products/
big-ip/big-ip-local-traffic-manager/. Accessed: 2013-12-31.

Bodik, P., A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson (2010). “Charac-
terizing, modeling, and generating workload spikes for stateful services”. In:
1st ACM symposium on Cloud computing (SoCC), pp. 241–252.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge Univer-
sity Press, New York, NY, USA. ISBN: 0521833787.

Buyya, R., C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic (2009). “Cloud com-
puting and emerging it platforms: vision, hype, and reality for delivering com-
puting as the 5th utility”. Future Generation Computer Systems 25:6.

48



References

Cao, J., M. Andersson, C. Nyberg, and M. Kihl (2003). “Web server performance
modeling using an m/g/1/k* ps queue”. In: 10th International Conference on
Telecommunications (ICT). Vol. 2, pp. 1501–1506.

Cardellini, V., M. Colajanni, and P. S. Yu (2003). “Request redirection algorithms
for distributed web systems”. IEEE Transactions on Parallel and Distributed
Systems 14:4.

Casolari, S., M. Colajanni, and S. Tosi (2009). “Self-adaptive techniques for the
load trend evaluation of internal system resources”. In: 5th International Con-
ference on Autonomic and Autonomous Systems (ICAS).

Diao, Y., J. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S. Parekh, and C.
Garcia- Arellano (2004). “Incorporating cost of control into the design of a
load balancing controller”. In: Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS).

Diao, Y., C. W. Wu, J. Hellerstein, A. Storm, M. Surenda, S. Lightstone, S. Parekh, C.
Garcia-Arellano, M. Carroll, L. Chu, and J. Colaco (2005). “Comparative stud-
ies of load balancing with control and optimization techniques”. In: American
Control Conference.

Doyle, J., R. Shorten, and D. O’Mahony (2013). “Stratus: load balancing the cloud
for carbon emissions control”. IEEE Transactions on Cloud Computing 1:1.
DOI: 10.1109/TCC.2013.4.

García, D. F. and J. García (2003). “Tpc-w e-commerce benchmark evaluation”.
Computer 36:2, pp. 42–48.

Gulati, A., G. Shanmuganathan, A. Holler, and I. Ahmad (2011). “Cloud-scale re-
source management: challenges and techniques”. In: 3rd USENIX Conference
on Hot topics in Cloud Computing (HotCloud).

Hamilton, J. (2007). “On designing and deploying internet-scale services”. In:
LISA, 18:1–18:12.

Huang, C. and T. Abdelzaher (2005). “Bounded-latency content distribution fea-
sibility and evaluation”. IEEE Transactions on Computers 54:11.

Kameda, H., E.-Z. Fathy, I. Ryu, and J. Li (2000). “A performance comparison of
dynamic vs. static load balancing policies in a mainframe-personal computer
network model”. In: 39th IEEE Conference on Decision and Control (CDC).

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014).
“Brownout: building more robust cloud applications”. In: 36th International
Conference on Software Engineering (ICSE), pp. 700–711.

Kleinrock, L. (1967). “Time–shared systems: a theoretical treatment”. Journal of
the ACM 14:242-261.

Lin, M., Z. Liu, A. Wierman, and L. L. H. Andrew (2012). “Online algorithms for
geographical load balancing”. In: 2012 International Green Computing Con-
ference (IGCC). DOI: 10.1109/IGCC.2012.6322266.

49



Paper I. Control-theoretical load-balancing for cloud applications

Lu, Y., Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg (2011). “Join-idle-
queue: a novel load balancing algorithm for dynamically scalable web ser-
vices”. Performance Evaluation 68:11.

Maggio, M., C. Klein, and K.-E. Årzén (2014). “Control strategies for predictable
brownouts in cloud computing”. In: IFAC World Congress.

Manfredi, S., F. Oliviero, and S. Romano (2013). “A distributed control law for load
balancing in content delivery networks”. IEEE/ACM Transactions on Network-
ing 21:1.

Mars, J., L. Tang, R. Hundt, K. Skadron, and M. L. Soffa (2011). “Bubble-up: in-
creasing utilization in modern warehouse scale computers via sensible co-
locations”. In: 44th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 248–259.

Mitzenmacher, M. (2001). “The power of two choices in randomized load balanc-
ing”. IEEE Transactions on Parallel and Distributed Systems 12:10, pp. 1094–
1104.

Nakrani, S. and C. Tovey (2004). “On honey bees and dynamic server allocation
in internet hosting centers”. Adaptive Behavior - Animals, Animats, Software
Agents, Robots, Adaptive Systems 12:3-4, pp. 223–240.

Ni, L. and K. Hwang (1985). “Optimal load balancing in a multiple processor sys-
tem with many job classes”. IEEE Transactions on Software Engineering 11:5.

Pao, T.-L. and J.-B. Chen (2006). “The scalability of heterogeneous dispatcher-
based web server load balancing architecture”. In: 7th International Confer-
ence on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), pp. 213–216.

Patterson, R. H., G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka (1995). “In-
formed prefetching and caching”. In: 15th ACM Symposium on Operating Sys-
tems Principles (SOSP).

Ranjan, S., R. Karrer, and E. Knightly (2004). “Wide area redirection of dynamic
content by internet data centers”. In: 23rd Conference of the IEEE Communi-
cations Society (INFOCOM).

Sakata, M., S. Noguchi, and J. Oizumi (1971). “An analysis of the m/g/1 queue
under round-robin scheduling”. Operations Research 19:2, pp. 371–385.

Salehie, M. and L. Tahvildari (2009). “Self-adaptive software: landscape and re-
search challenges”. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 4:2, 14:1–14:42.

Schroeder, B., A. Wierman, and M. Harchol-Balter (2006). “Open versus closed:
a cautionary tale”. In: 3rd Conference on Networked Systems Design & Imple-
mentation (NSDI).

Stankovic, J. A. (1985). “An application of bayesian decision theory to decentral-
ized control of job scheduling”. IEEE Transactions on Computers 34:2.

50



References

Tantawi, A. N. and D. Towsley (1985). “Optimal static load balancing in dis-
tributed computer systems”. Journal of the ACM 32:2.

Tomás, L. and J. Tordsson (2013). “Improving cloud infrastructure utilization
through overbooking”. In: 2013 ACM Cloud and Autonomic Computing Con-
ference (CAC). DOI: 10.1145/2494621.2494627.

Wang, L., V. Pai, and L. Peterson (2002). “The effectiveness of request redirection
on cdn robustness”. In: 5th Symposium on Operating Systems Design and Im-
plementation (OSDI).

Wolf, J. L. and P. S. Yu (2001). “On balancing the load in a clustered web farm”.
ACM Transactions on Internet Technology 1:2.

Zhang, L., Z. Zhao, Y. Shu, L. Wang, and O. W. W. Yang (2002). “Load balancing of
multipath source routing in ad hoc networks”. In: IEEE International Confer-
ence on Communications (ICC).

51





Paper II

Improving cloud service resilience using
brownout-aware load-balancing
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Abstract

We focus on improving resilience of cloud services (e.g., e-commerce web-
site), when correlated or cascading failures lead to computing capacity
shortage. We study how to extend the classical cloud service architecture
composed of a load-balancer and replicas with a recently proposed self-
adaptive paradigm called brownout. Such services are able to reduce their
capacity requirements by degrading user experience (e.g., disabling recom-
mendations). Combining resilience with the brownout paradigm is to date
an open practical problem. The issue is to ensure that replica self-adaptivity
would not confuse the load-balancing algorithm, overloading replicas that
are already struggling with capacity shortage. For example, load-balancing
strategies based on response times are not able to decide which replicas
should be selected, since the response times are already controlled by the
brownout paradigm.

In this paper we propose two novel brownout-aware load-balancing
algorithms. To test their practical applicability, we extended the popular
lighttpd web server and load-balancer, thus obtaining a production-ready
implementation. Experimental evaluation shows that the approach enables
cloud services to remain responsive despite cascading failures. Moreover,
when compared to Shortest Queue First (SQF), believed to be near-optimal
in the non-adaptive case, our algorithms improve user experience by 5%,
with high statistical significance, while preserving response time predictabil-
ity.

© 2014 IEEE. Originally published in Proceedings of 33rd International Sympo-
sium on Reliable Systems (SRDS), Nara, Japan, October 2014. Reprinted with per-
mission. The article has been reformatted to fit the current document.

53



Paper II. Improving cloud service resilience using brownout-aware

1. Introduction

Due to their ever-increasing scale and complexity, hardware failures in cloud
computing infrastructures are the norm rather than the exception [Barroso et al.,
2013; Guan and Fu, 2013]. This is why Internet-scale interactive applications –
also called services – such as e-commerce websites, include replication early in
their design [Hamilton, 2007]. This makes the service not only more scalable, i.e.,
more users can be served by adding more replicas, but also more resilient to fail-
ures: In case a replica fails, other replicas can take over. In a replicated setup, a
single or replicated load-balancer is responsible for monitoring replicas’ health
and directing requests as appropriate. Indeed, this practice is well established
and can successfully deal with failures as long as computing capacity is suffi-
cient [Hamilton, 2007].

However, failures in cloud infrastructures are often correlated in time and
space [Gallet et al., 2010; Yigitbasi et al., 2010]. Therefore, it may be economi-
cally inefficient for the service provider to provision enough spare capacity for
dealing with all failures in a satisfactory manner. This means that, in case corre-
lated failures occur, the service may saturate, i.e., it can no longer serve users in a
timely manner. This in turn leads to dissatisfied users, that may abandon the ser-
vice, thus incurring long-term revenue loss to the service provider. Note that the
saturated service causes infrastructure overload, which by itself may trigger ad-
ditional failures [Chuah et al., 2013], thus aggravating the initial situation. Hence,
a mechanism is required to deal with rare, cascading failures, that feature tem-
porary capacity shortage.

A promising self-adaptation technique that would allow dealing with this is-
sue is brownout [Klein et al., 2014]. In essence, a service is extended to serve re-
quests in two modes: with mandatory content only, such as product description
in an e-commerce website, and with both mandatory and optional content, such
as recommendations of similar products. Serving more requests with optional
content, increases the revenue of the provider [Fleder et al., 2010], but also the
capacity requirements of the service. A carefully designed controller decides the
ratio of requests to serve with optional content, so as to keep the response time
below the user’s tolerable waiting time [Nah, 2004]. From the data-center’s point-
of-view, the service modulates its capacity requirements to match available ca-
pacity.

Brownout has been successfully applied to services featuring a single replica.
Extending it to multiple replicas needs to be done carefully: The self-adaptation
of each replica may confuse commonly used load-balancing algorithms (Sec-
tion 2).

In this paper we enhance the resilience of replicated services through
brownout. In other words, the service performs better at hiding failures from
the user, as measured in the number of timeouts a user would observe. As a
first step, a commonly-used load-balancing algorithm, SQF, proved adequate for
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most scenarios. However, we found a few corner cases where the performance
of the load-balancer could be improved using two novel, queue-length-based,
brownout-aware algorithms that are fully event-driven.

Our contribution is three-fold:

1. We present two novel load-balancing algorithms, specifically designed for
brownout services (Section 3.1).

2. We provide a production-ready brownout-aware load-balancer (Section
3.2).

3. We compare fault-tolerance without and with brownout, and existing load-
balancing algorithms to our novel ones (Section 4).

Results show that the resulting service can tolerate more replica failures and
that the novel load-balancing algorithms improve the number of requests served
with optional content, and thus the revenue of the provider by up to 5%, with
high statistical significance. Note that SQF is thought to be near-optimal, in the
sense that it minimizes average response time for non-adaptive services [Gupta
et al., 2007].

To make our results reproducible and foster further research on improved re-
silience through brownout, we make all source code available online1.

2. Background and motivation

In this section we provide the relevant background and define the challenge to
address with respect to previous contributions.

2.1 Single Replica Brownout Services
To provide predictable performance in cloud services, the brownout paradigm [Klein
et al., 2014] relies on a few, minimally intrusive code changes (e.g., 8 lines of code)
and an online adaptation strategy that controls the response time of a single-
replica based service. The service programmer builds a brownout-compliant
cloud service breaking the service code into two distinct subsets: Some func-
tions are marked as mandatory, while others as optional. For example, in an e-
commerce website, retrieving the characteristics of a product from the database
can be seen as mandatory – a user would not consider the response useful
without this information – while obtaining comments and recommendations of
similar products can be seen as optional – this information enhances the quality
of experience of the user, but the response is useful without them.

For a brownout-compliant service, whenever a request is received, the
mandatory part of the response is always computed, whereas the optional part

1 https://github.com/cloud-control/brownout-lb-lighttpd
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of the response is produced only with a certain probability given by a control
variable, called the dimmer value. Not executing the optional code reduces the
computing capacity requirements of the service, but also degrades user experi-
ence. Clearly, the user would have a better experience seeing optional content,
such as related products and comments from other users. However, in case of
overload and transient failure conditions, it is better to obtain partial informa-
tion than to have increased response times or no response, due to insufficient
capacity.

Keeping the service responsive is done by adjusting the probability of ex-
ecuting the optional components [Klein et al., 2014]. Specifically, a controller
monitors response times and adjusts the dimmer value to keep the 95th per-
centile response time observed by the users around a certain setpoint. Focus-
ing on 95th percentile instead of average, allows more users to receive a timely
response, hence improve their satisfaction [DeCandia et al., 2007]. A setpoint of
1 second can be used, to leave a safety margin to the user’s tolerable waiting time,
estimated to be around 4 seconds [Nah, 2004]. While the initial purpose of the
brownout control was to enhance the service’s tolerance to a sudden increase
in popularity, it also significantly improves responsiveness during infrastructure
overload phases, when the service is not allocated enough capacity to manage
the amount of incoming requests without degrading the user experience. How-
ever, the brownout approach was used only in services composed of a single
replica, thus the service could not tolerate hardware failures.

Let us briefly describe the design of the controller. Denoting the dimmer
value with θ and using a simple and useful model, we assume that the 95th per-
centile response time of the service, measured at regular time intervals, follows
the equation

t (k +1) =α(k) ·θ(k)+δt (k), (1)

i.e., the 95th percentile response time t (k +1) of all the requests that are served
between time index k and time index k +1 depends on a time varying unknown
parameter α(k) and can have some disturbance δt (k) that is a priori unmeasur-
able. α(k) takes into account how the dimmer θ affects the response time, while
δt (k) is an additive correction term that models variations that do not depend on
the dimmer choice — for example, variation in retrieval time of data due to cache
hit or miss. Notice that the used model ignores the time needed to compute the
mandatory part of the response, but it captures the service behavior enough for
the control action to be useful. The controller design aims for canceling the dis-
turbanceδt (k) and selecting the value of θ(k) so that the 95th percentile response
time would be equal to the setpoint value.

With a control-theoretical analysis [Klein et al., 2014], it is possible to select
the dimmer value to provide some guarantees on the service behavior. The selec-
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Figure 1. Architecture of a brownout cloud service featuring multiple replicas.

tion is based on the adaptive proportional and integral controller

θ(k +1) = θ(k)+
1−p1

α̃(k)
·e(k), (2)

where the value α̃(k) is an estimate of the unknown parameter α(k) computed
with a Recursive Least Square (RLS) filter. The error e(k) is the difference mea-
sured at time index k between the setpoint for the response time and its mea-
sured value, p1 is a parameter of the controller, that allows to trade reactivity for
robustness. A formal analysis of the guarantees provided by the controller and
the effect of the value of p1 can be found in [Klein et al., 2014].

Besides computing a new dimmer value, the model parameter α is re-
estimated as α̃(k), which is computed using the last estimation α̃(k−1), the mea-
sured response time t (k) and the current dimmer θ(k), as illustrated in the fol-
lowing RLS filter equations

ε(k) =t (k)−θ(k)α̃(k −1)

g (k) =P (k −1)θ(k)
[

f +θ(k)2P (k −1)
]−1

P (k) = f −1 [
P (k −1)− g (k)θ(k)P (k −1)

]
α̃(k) =α(k −1)+ε(k)g (k),

(3)

where ε is the so called “prediction error”, g is a gain factor, f is a “forgetting
factor” and P is the covariance matrix of the prediction error.

Through empirical testing on two popular cloud applications, RUBiS [Rice
University Bidding System 2014] and RUBBoS, we found the following values to
give a good trade-off between reactivity and stability: p1 = 0.9 and f = 0.95. In
the end, making a single-replica cloud service brownout-compliant improves its
robustness to sudden increases in popularity and infrastructure overload.

2.2 Multiple Replica Brownout-Compliant Services
For fault tolerance, cloud services should feature multiple replicas. Figure 1
illustrates the software architecture that is deployed to execute a brownout-
compliant service composed of multiple replicas. Besides the addition of replica
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controllers to make it brownout-compliant, the architecture is widely accepted
as the reference one for replicated cloud services [Barroso et al., 2013].

In the given cloud service architecture, access can only happen through the
load-balancer. The client requests are assumed to arrive at an unknown but mea-
surable rate λ. Each client request is received by the load-balancer, that forwards
it to one of the n replicas. Each replica independently decides if the request
should be served with or without the optional part. The chosen replica produces
the response and sends it back to the load-balancer, which forwards it to the
original client. Since all responses of the replicas go through the load-balancer,
it is possible to piggy-back the current value of the dimmer θi of each replica i
through the response, so that this value can be observed by the load-balancer.

For better decoupling and redundancy, the load-balancer does not have any
knowledge on how each replica controller adjusts θi . Hence, the load-balancer
only stores soft state, reducing impact in case of failover to a backup load-
balancer. Also, operators can deploy our solution incrementally, first adding
brownout to replicas, then upgrading the load-balancer.

In the end, each replica i receives a fraction λi of the incoming traffic and
serves requests with a 95th percentile response time around the same setpoint
of 1 second. Each replica i chooses a dimmer θi that depends on the amount of
traffic it receives and the computing capacity available to it. Noteworthy is the
fact that by directing too many requests to a certain replica the load-balancer
may indirectly decrease the amount of optional requests served by that replica.

Preliminary simulation results [Dürango et al., 2014] compared different
load-balancing algorithms for this architecture, such as round-robin, fastest
replica first, random and two random choices. The main result of this compar-
ison is that load-balancing algorithms that are based on measurements of the
response times of the single replicas are not suited to be used with brownout-
compliant services, since the replica controllers already keep the response times
close to the setpoint. The only existing algorithm that proved to work adequately
with brownout-compliant services is Shortest Queue First (SQF) [Gupta et al.,
2007; Dürango et al., 2014]. It works by tracking the number of queued requests
qi on each replica and directing the next request to the replica with the lowest qi .

However, SQF proved to be inadequate for maximizing the optional con-
tent served, such as recommendations, hence producing lower revenues for the
service provider [Fleder et al., 2010]. Brownout-aware load-balancers do better
in maximizing the optional component served. However, to date, only weight-
based algorithms were considered, where each replica gets a fraction of the in-
coming traffic proportional to a dynamic weight. A controller periodically adjusts
the weights based on the dimmer values of each replica [Dürango et al., 2014]. Re-
sults suggested that deciding periodically gives good results in steady-state, how-
ever, the resulting service is not reactive enough to sudden capacity changes, as
would be the case when a replica fails.
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2.3 Problem Statement
The main objective is to improve resilience of cloud services. On one hand, the
service should serve requests with a 95th percentile response time as close as
possible to the setpoint. On the other hand, the service should maximize the op-
tional content served.

In this paper we propose novel brownout-aware load-balancers that are
event-based, for better reactivity. We limit the comparison to SQF, since it
was shown to be the only reasonable choice to maximize optional content in
brownout-compliant services.

3. Design and implementation

This section describes the core of our contribution, two load-balancing algo-
rithms and a production-ready implementation.

3.1 Brownout-Compliant Load-Balancing Algorithms
Here we discuss two brownout-compliant control-based load-balancing algo-
rithms. Those are based on some ideas presented in [Dürango et al., 2014], but
with two major modifications. First, all the techniques proposed in [Dürango et
al., 2014] are trying to maximize the optional content served by acting on the frac-
tion of incoming traffic sent to a specific replica, while here the algorithms are
acting in an SQF-like way but with queue-offsets that are dynamically changed in
time. The queue-offsets ui take into account the measured performance of each
replica i in terms of dimmers, and are subtracted from the actual value of the
queue length qi so as to send the request to the replica with the lowest qi −ui .

The second and most important modification is that in [Dürango et al., 2014]
all the algorithms run periodically, independently of the incoming traffic, while
in this paper we are considering algorithms that are fully event-driven, updating
the queue-offsets and taking a decision for each request. Therefore all gains in
the two following algorithms need to be scaled by the time elapsed since the last
queue-offsets update.

These two modifications highly improve the achieved performance, both in
terms of optional content served and response time, rendering the service more
reactive to sudden capacity changes, as is the case with failures. Let us now
present two algorithms for computing the queue-offsets ui .

PI-Based Heuristic (PIBH) Our first algorithm is based on a variant of the PI
(Proportional and Integral) controller on incremental form, which is typical in
digital control theory [Landau et al., 2006]. In principle, the PI control action in
incremental form is based both on the variation of the dimmers value (which is
related to the proportional part), and their actual values (which is related to the
integral part).
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As presented above, the values of the queue offsets ui are updated every time
a new request is received by the service, according to the last values of the dim-
mers θi , piggy-backed by each replica i through a previous response, and on the
queue lengths qi , using the formula

ui (k +1) = (
1−γ)[

ui (k)+γP ∆θi (k)+γI θi (k)
]+γqi (k), (4)

where γ ∈ (0,1) is a filtering constant, γP and γI are constant gains related to the
proportional and integral action of the classical PI controller.

We selected γ= 0.01 and γP = 0.5 based on empirical testing. Once γ and γP

are fixed to a selected value, increasing the integral gain γI calls for a stronger
action on the load-balancing side, which means that the load-balancer would
take decisions very much influenced by the current values of θi , therefore greatly
improving performance at the cost of a more aggressive control action. On the
contrary, decreasing γI would smoothen the control action, possibly resulting in
performance loss due to a slower reaction time. The choice of the integral gain
allows to exploit the trade-off between performance and robustness. For the ex-
periments we chose γI = 5.0.

Equality Principle-Based Heuristic (EPBH) The second algorithm is based on
the heuristic that the system will perform well in a situation when all replicas
have the same dimmer value. By comparing θi for each replica i with the mean
dimmer of all replicas, a carefully designed update rule can deduce which replica
should receive more load, in order to drive all dimmer to equality. The queue
offsets can thus be updated as

ui (k +1) = ui (k)+γe

(
θi (k)−

1

n

n∑
j=1

θ j (k)

)
, (5)

where γe is a constant gain. The gain decides how fast the controller should act.
Based on empirical tuning we chose γe = 0.1.

Since the implementation only updates the dimmer measurements in the
load balancer when responses are sent, EPBH risks ending up in a situation where
a replica gets completely starved. To remedy this, the algorithm first chooses a
random empty replica (qi = 0) if there are any, otherwise chooses the replica with
the lowest qi −ui , as described above.

3.2 Implementation
In order to show the practical applicability of the two algorithms and eval-
uate their performance, we decided to implement them in an existing load-
balancing software. We chose lighttpd2, a popular open-source web server and
load-balancing software, that features good scalability, thanks to an event-driven

2 http://www.lighttpd.net/
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design. lighttpd already included all necessary prerequisites, such as HTTP re-
quest forwarding, HTTP response header parsing, replica failure detection and
the state-of-the-art queue-length-based SQF algorithm. HTTP response header
parsing allowed us to easily implement dimmer piggy-backing through the cus-
tom X-Dimmer HTTP response header, with a small overhead of only 20 bytes.
In the end, we obtained a production-ready brownout-aware load-balancer im-
plementation featuring the two algorithms, with less than 180 source lines of C
code3.

4. Empirical evaluation
In this section we show through real experiments the benefits in terms of re-
silience that can be obtained through our contribution. First, we describe our
experimental setup. Next, we show the benefits that brownout can add to a repli-
cated cloud service which uses the state-of-the-art load-balancing algorithm,
SQF. Finally, we show the improvements that can be made using our brownout-
specific load-balancing algorithms.

4.1 Experimental Setup
Experiments were conducted on a single physical machine equipped with two
AMD Opteron™ 6272 processors4 and 56GB of memory. To simulate a typical
cloud environment and allow us to easily fail and restart replicas, we use the Xen
hypervisor [Barham et al., 2003]. Each replica is deployed with all its tiers – web
server and database server – inside its own VM, as is commonly done in prac-
tice [Sripanidkulchai et al., 2010], e.g., using a LAMP stack [Amazon, 2013]. Each
VM was configured with a static amount of memory, 6GB, enough to hold all pro-
cesses and the database in-memory, and a number of virtual cores depending on
the experiment.

Inside each replica we deployed an identical copy of RUBiS [Rice University
Bidding System 2014], an eBay-like e-commerce prototype, that is widely-used
for cloud benchmarking [Gong et al., 2010; Z. Shen et al., 2011; Zheng et al.,
2009; Stewart and K. Shen, 2005; Vasić et al., 2012; Stewart et al., 2007; Chen et
al., 2007]. RUBiS was already brownout-compliant, thanks to a previous contri-
bution [Klein et al., 2014] and adding piggy-backing of the dimmer value was
trivial5. The replica controllers are configured the same, with a target 95th per-
centile response time of 1 second. To avoid having to deal with synchronization
or consistency issues, we only used a read-only workload. However, adding con-
sistency to replicated services is well-understood [Diegues and Romano, 2013;
Cooper et al., 2010; Ardekani et al., 2013] and, in case of RUBiS, would only re-
quire an engineering effort. The load-balancer, i.e., lighttpd extended with our

3 https://github.com/cloud-control/brownout-lb-lighttpd
4 2100MHz, 16 cores per processor, no hyper-threading.
5 https://github.com/cloud-control/brownout-lb-rubis
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brownout-aware algorithms, was deployed inside the privileged VM in Xen, i.e.,
Dom0, pinned to a dedicated core.

To generate the workload, we had to choose between three system models:
open, closed or partly-open [Schroeder et al., 2006]. In an open system model,
typically modeled as Poisson process, requests are issued with an exponentially-
random inter-arrival time, characterized by a rate parameter, without waiting for
requests to actually complete. In contrast, in a closed system model, a number
of users access the service, each executing the following loop: issue a request,
wait for the request to complete, “think” for a random time interval, repeat. The
resulting average request inter-arrival time is the sum of the average think-time
and the average response time of the service, hence dependent on the perfor-
mance of the evaluated service. A partly-open system model is a mixture between
the two: Users arrive according to a Poisson process and leave after some time,
but behave closed while in the system. As with the closed model, the inter-arrival
time depends on the performance of the evaluated system.

We chose to use an open system model workload generator. Since its behavior
does not depend on the performance of the service, this allows us to eliminate
a factor potentially contributing to noise when comparing our contribution to
competing approaches. We extended this model to include timeouts, as required
to emulated users’ tolerable waiting time of 4 seconds [Nah, 2004].

Given our chosen model and the need to measure brownout-specific be-
havior, the workload generator provided with RUBiS was insufficient for three
reasons. First, RUBiS’s workload generator uses a closed system model, without
timeouts. Second, it only reports statistics for the whole experiment and does not
export the time series data, preventing us from observing the service’s behavior
during transient phases. Finally, the tool cannot measure the number of requests
served with optional content, which represents the quality of the user-experience
and the revenue of the service provider. Therefore, we extended our own work-
load generator, httpmon6, as required.

We made sure that the results are reliable and unbiased as follows:

• replicas were warmed up before each experiment, i.e., all virtual disk con-
tent was cached in the VM’s kernel;

• replicas were isolated performance-wise by pinning each virtual core to its
own physical core;

• experiments were terminated after the workload generator issued the same
number of requests;

• httpmon and the lighttpd were each executed on a dedicated core;

• no non-essential processes nor cron scripts were running at the time of the
experiments.

6 https://github.com/cloud-control/httpmon
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To qualify the resilience of the service, we chose two metrics that measure
how well the service is performing in hiding failures, or, otherwise put, how
strongly the user is affected by failures. The timeout rate represents the number
of requests per second that were not served by the service within 4 seconds, due
to overload. In production, a request that timed out will make a user unhappy.
She may leave the service to join other competitors, thus incurring long-term
losses to the service provider. The optional content ratio represents the percent-
age of requests served with optional content. Serving a request with optional
content, such as recommendations of similar products, may increase the ser-
vice provider’s revenue by 50% [Fleder et al., 2010]. Therefore, a request served
without optional content also represents a revenue loss to the provider, albeit,
a smaller one than the long-term loss incurred by a timeout. Ideally, the service
should strive to maximize the optional content ratio, without causing timeouts.
Finally, to give insight into the system’s behavior, we also report the response time,
i.e., the time it took to serve a request from the user’s perspective, including the
time required to traverse the load-balancer.

4.2 Resilience without and with Brownout
In this section, we show through experiments how brownout can increase re-
silience, even if used with a brownout-unaware load-balancing algorithm, such
as SQF. To this end, we expose both a non-brownout and a brownout service to
cascading failures and their recovery. The experiment starts with 5 replicas, each
being allocated 4 cores, i.e., the service is allocated a total computing capacity
of 20 cores. Every 100 seconds a replica crashes until only a single one is active.
Then, every 100 seconds a replica is restored. Crashing and restoring replicas are
done by respectively killing and restarting both the web server and the database
server of the replica.

We plot the timeout ratio and the optional content ratio. Note that, for the
service without brownout, the ratio of optional content is fixed at 100%, whereas
the service featuring brownout this quantity is adapted based on the available ca-
pacity, i.e., the number of available replicas. To focus on the behavior of the ser-
vice due to failure, we kept the request-rate constant at 200 requests per second.
Note that, the replicas were configured with enough soft resources (file descrip-
tors, sockets, etc.) to deal with 2500 simultaneous requests. We ran several exper-
iments in different conditions and always obtained similar results. Therefore, to
better highlight the behavior of the service as a function of time, we present the
results of a single experiment instance as time series.

Figure 2 show the results. One can observe that the non-brownout service
performs well even with 2 failed replicas, from time 0 to 300. Indeed, there are
no timeouts and all requests are served with optional content. lighttpd already
includes code to retry a failing requests on a different replica, hence hiding the
failure from the user. During this time interval, the brownout service performs al-
most identically, except negligible reductions in optional content ratio at start-up
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Figure 2. Experimental results comparing resilience without and with
brownout. Configuration: 5 replicas, each having 4 cores.

and when a replica fails, until the replica controller adapts to the new conditions.
However, starting with time 300, when the third replica fails, the non-

brownout service behaves poorly. Computing capacity is insufficient to serve
the incoming requests fast enough and response time starts increasing. A few
seconds later the service is saturated and almost all incoming requests time out.
The small oscillations and spikes on the timeout per second plot are due to the
randomness of the request inter-arrival time in the open client model.

Even worse, when enough replicas are restored to make capacity sufficient,
the non-brownout service still does not recover. This finding may seem counter-
intuitive, but repeating the experiments also in different conditions (number
of allocated cores, different workloads, etc.) gave similar results. In our experi-
ments, as common practice in production environments, user timeouts are not
propagating to the service, i.e., they do not cancel pending web requests or
database transactions. Thus, the database server is essentially filled with trans-
actions that will time out, or that may have already timed out on the user-side.
Hence, all computing capacity is wasted on “rotten” requests, instead of striv-
ing to serve new requests. The database server continues to waste computing
capacity on “rotten” requests, even after enough replicas are restored. The non-
brownout service does recover eventually, but this takes significant time, at least
10 minutes in our experiments. Of course, in production environments the ser-
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Table 1. Summary of non-brownout vs. brownout results.

Scenario Metric Non-brownout Brownout

4 cores Requests served 31.2% 99.3%
200 requests/s With optional content 31.2% 81.0%

2 cores Requests served 31.6% 99.3%
100 requests/s With optional content 31.6% 82.0%

heterogeneous Requests served 68.8% 99.5%
166 requests/s With optional content 68.8% 90.2%

vice operator or a self-healing mechanism would likely disable the service, kill all
pending transactions on the database servers and re-enable the service. Never-
theless, this behavior is still undesirable.

In contrast, the brownout service performs well even with few active replicas.
At time 300, when the third replica fails leading the service into capacity insuf-
ficiency, the replica controllers detect the increase in response time and quickly
reacts by reducing the optional content ratio to around 55%. As a results, the ser-
vice does not saturate and users can continue enjoying a responsive service. At
time 400 when the fourth replica fails, capacity available to the service is barely
sufficient to serve any requests, even with zero optional content ratio. However,
even in this case, the brownout service significantly reduces the number of time-
outs by keeping the optional content ratio low, around 10%. Finally, when repli-
cas are restored, the service recovers fairly quickly. Thanks to the action of the
replica controllers, the database servers do not fill up with “rotten” requests.

On the downside, the brownout service features some oscillations of optional
content while dealing with capacity shortage. This is due to the fact that the
replica controllers attempt to maximize the number of optional content served,
risking short increases in response time. These increases in response time are de-
tected by the controllers, which adapt by reducing the number of optional con-
tent served. This process repeats, thus causing the oscillations. Except when ca-
pacity is close to being insufficient even with optional content completely dis-
abled, these oscillations are harmless. Nevertheless, we are currently investigat-
ing several research directions to mitigate them, so as to allow brownout services
to function well even in extreme capacity shortage situations.

In addition to the 4-core scenario above, we devised two other experimen-
tal scenarios to confirm our findings, as summarized in Table 1. In the 2-core
scenario, we configured each replica with 2 cores, while in the heterogeneous
scenario the number of cores for each replica is 8, 8, 1, 1, 1, respectively. In both
scenarios, we scaled down the request-rate to maintain the same request-rate per
core as in the 4-core scenario. Noteworthy is that in the heterogeneous scenario,
the non-brownout service recovered faster than in the 4-core and 2-core scenar-
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ios. This can be observed by comparing the difference between the percentage of
requests served by the brownout service and the non-brownout service among
the three scenarios. Nevertheless, the key findings still hold.

In summary, adding brownout to a replicated service improves its resilience,
even when using a brownout-unaware load-balancing algorithm. The increase
in resilience that can be obtained is specific to each service and depends on
the ratio between the maximum throughput with optional content disabled and
the one with optional content enabled. Hence, by measuring these two values a
cloud service provider can either estimate the increase in resilience during ca-
pacity shortages given the current version of the service, or may decide to de-
velop a new version of the service, with more content marked as optional, so as
to reach the desired level of resilience.

4.3 SQF vs. Brownout-Aware Load-Balancers
In this section, we compare the two brownout-aware load-balancing algorithms
proposed herein, i.e., PIBH and EPBH, to the best brownout-unaware one,
SQF [Dürango et al., 2014]. We shall use the word better in the sense that we have
statistical evidence that the average performance is significantly higher with a p-
value smaller than 0.01, by performing a Welch two sample t-test [Welch, 1947]
on the optional component served and on the response time. In other words, the
probability that the difference is due to chance is less than 1%. Analogously, we
use the word similarly to denote that the difference is not statistically significant.

For thorough comparison, we tested the three algorithms using a series of
scenarios, each having a certain pattern of request rate over time and amount
of cores allocated to each replica. Each scenario was executed several times, to
collect enough results to draw statistically significant conclusions. We were un-
able to find any scenario in which SQF would perform better, which supports
the hypothesis that our algorithms are at least as good as SQF. In fact, in most
scenarios, such as those featuring high request rate variability or many replicas
failing at once, SQF performed similarly to our brownout-aware load-balancers
(not shown for briefness). However, we observed that in scenarios featuring ca-
pacity heterogeneity, our algorithms performed better than SQF with respect to
the optional content ratio.

As a matter of fact, in cloud computing environments, replicas may end up
being allocated heterogeneous capacity, e.g., one replica is allocated 2 cores,
while another replica is allocated 8 cores. This may happen due to several factors.
For example, the cloud infrastructure provider may practice overbooking and the
machine on which a replica is hosted becomes overloaded [Tomás and Tordsson,
2013]. As another example, previous elasticity (auto-scaling) decisions may have
resulted in heterogeneously sized replicas [Sedaghat et al., 2013]. Hence, it is of
uttermost importance that a load-balancing algorithm is able to deal efficiently
with such cases. As illustrated below on two scenarios, both PIBH and EPBH per-
form better than SQF.
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Figure 3. Comparison of SQF and brownout-aware load-balancing algorithms
when two replicas have 1 core and three replicas have 8 cores.

“2×1+3×8 cores” Scenario The first scenario consists of a constant request rate
of 400 requests per second. The service consists of 5 replicas, two of which are
allocated 1 core, while the other three are allocated 8 cores. This scenario leaves
the service with insufficient capacity to serve all requests with optional content.
Furthermore, the constant workload and capacity allows us to eliminate sources
of noise and obtain statistically significant results with 30 experiments for each
algorithm, a total of 90 experiments.

Figure 3 presents the results of the first scenario as scatter plots: The x-axis
represents response time (average and 95th percentile respectively in the top and
the bottom graph), while the y-axis represents optional content ratio, each exper-
iment being associated with a point. The results of the paired t-test comparing
the optional content ratio of the three algorithms are presented in Table 2. As
can be observed, when compared to SQF, the novel brownout-aware algorithms
PIBH and EPBH improve optional content ratio by 5.34% and 4.52%, respectively,
with a high significance (low p-value). This is due to the fact that the brownout-
aware algorithms are able to exploit the replicas with a higher optional content
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Table 2. Improvement in amount of optional content served, after 120000 re-
quests (summary of Figure 3, “2×1+3×8 cores” scenario).

Algorithms (# Optional content) Impr. Statistical conclusion

PIBH (105646) SQF (100273) 5.34% PIBH significantly better
(p < 10−15)

EPBH (104816) SQF (100273) 4.52% EPBH significantly better
(p < 10−15)

Table 3. Improvement in amount of 95th percentile of the response time
(summary of Figure 3, “2×1+3×8 cores” scenario).

Algorithms (95th perc. [ms]) Impr. Statistical conclusion

PIBH (637ms) SQF (648ms) -1.7% PIBH and SQF similar (p = 0.992)

EPBH (690ms) SQF (648ms) 6.4% SQF significantly better(p < 10−9)

ratio, at the expense of somewhat higher response times. Slightly increasing the
average response time (Figure 3 top) yet improving the optional content served
to the end user is an acceptable tradeoff, also considering that we have control
on the target 95th percentile of the response time (Figure 3 bottom).

Recall that the replica controllers are configured with a target response time
of 1 second. Furthermore, improved optional content ratio does not interfere
with the self-adaptation of the replicas. As can be seen in Figure 3, all three al-
gorithms obtain a similar distribution of response times. In Table 3 the paired
t-test is applied also to the 95th percentile of the response time. The results con-
firm that PIBH behaves in a similar way with respect to the SQF, but producing
better performance in terms of optional content served. When comparing EPBH
to SQF, the average 95th percentile is 42ms higher in the former with quite a low
p-value. However, it is to be noticed that the setpoint for the 95th percentile is
set to 1 second, which is way higher than all of the presented results. Thus, the
higher 95th percentile response time is not a concern.

“3×1+2×8 cores” Scenario For the second scenario, we maintain the same re-
quest rate, but configure three replicas with 1 core and two replicas with 8 cores.
This means that the service has even less capacity available than in the first sce-
nario, thus being forced to further reduce the optional content ratio. Scatter plots
of response time and optional content ratio are presented in Figure 4, analo-
gously to the previous scenario, while pair-wise comparison of algorithms is pre-
sented in Table 4. PIBH and EPBH outperform SQF with respect to optional con-
tent ratio by 5.17% and 3.13%, respectively.
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Figure 4. Comparison of SQF and brownout-aware load-balancing algorithms
when three replicas have 1 core and two replicas have 8 cores.

Table 4. Improvement in amount of optional content served, after 120000 re-
quests (summary of Figure 4, “3×1+2×8 cores” scenario).

Algorithms (# Optional content) Impr. Statistical conclusion

PIBH (83360) SQF (79244) 5.17% PIBH significantly
better (p < 10−15)

EPBH (81735) SQF (79244) 3.13% EPBH significantly
better (p < 10−15)

Again, this is achieved without interfering with the self-adaptation of the
replicas: 95th percentile response times are distributed similarly for all three al-
gorithms close to the target. This is also proven by the paired t-test presented in
Table 5, where both PIBH and EPBH appear to be comparable with SQF in terms
of 95th percentile of the response time. In this case, since the capacity of the sys-
tem is reduced, this quantity is increased, but on average still lower than the set-
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Table 5. Improvement in amount of 95th percentile of the response time
(summary of Figure 4, “3×1+2×8 cores” scenario).

Algorithms (95th perc. [ms]) Impr. Statistical conclusion

PIBH (963ms) SQF (959ms) 0.4% PIBH and SQF similar (p = 0.3778)

EPBH (969ms) SQF (959ms) 1.0% EPBH and SQF similar(p = 0.2265)

point (set to 1 second). The same holds for the average response time, which is
slightly increased with respect to the previous scenario.

4.4 Discussion
To sum up, our novel brownout-aware load-balancing algorithms perform at
least as well as or outperform SQF by up to 5% in terms of optional content
served, with a high statistical significance. This improvement translates into bet-
ter quality of experience for users and increased revenue for the service provider.
Hence, our contribution helps cloud services to better hide failures leading to
capacity shortages, in other words, services are more resilient.

Noteworthy is that the competitor, SQF has been found to be near-optimal
with respect to response time for non-adaptive services [Gupta et al., 2007]. Thus,
besides improving resilience of cloud services, our contribution may be of inter-
est to other communities, to discover the limits of SQF, and sketch a possible way
to design new dynamic load-balancing algorithms.

5. Related work

The challenge of building reliable distributed systems consists in providing var-
ious safety and liveness guarantees while the system is subject to certain classes
of failures. Our contribution closely relates to multi-graceful degradation [Y. Lin
and Kulkarni, 2013], in which the requirements that the service guarantees vary
depending on the magnitude of the failure. However, due to the conflicting
nature of requirements – maintaining maximum response time and maximiz-
ing optional content served, in the presence of noisy request servicing times
– brownout does not provide formal guarantees. Instead, thanks to control-
theoretical tools, the service is driven to a state to increase likelihood of meeting
its requirements.

Brownout can be seen as a model revision, i.e., an existing service is ex-
tended to provide new guarantees. Specifically, we deal with crashes but also
with limplocks [Do et al., 2013], the latter implying that a machine is working,
but slower than expected.

In the context of self-stabilization, a new metric has been proposed to mea-
sure the recovery performance of an algorithm, the expected number of recovery
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steps [Fallahi et al., 2013]. An equivalent metric, the number of control decisions
to recovery, could be used by a service operator for tuning the service to the ex-
pected capacity drop and the request servicing time of the replicas.

Our contribution is designed to deal with failures reactively. Failure predic-
tion [Guan and Fu, 2013], if accurate enough, could be used as a feed-forward
signal to improve reactivity and reduce the number of timeouts after a sudden
drop in computing capacity.

Since the service’s data has to be replicated an important issue is ensur-
ing consistency. Various algorithms have been proposed, each offering a differ-
ent trade-off between performance and guarantees [Diegues and Romano, 2013;
Cooper et al., 2010; Ardekani et al., 2013]. Our contribution is orthogonal to con-
sistency issues, hence our methodology can readily be applied no matter what
consistency the service requires. However, a future extension of brownout could
consist in avoiding service saturation by reducing consistency.

In replicated cloud services, load-balancers have a crucial role for ensuring
resilience but also maintain performance [Barroso et al., 2013; Hamilton, 2007].
Load-balancing algorithm can either be global (inter-data-center) or local (intra-
data-center or cluster-level). Global load-balancing decides what data-center to
direct a user to, depending on geographic proximity [M. Lin et al., 2012] or price
of energy [Doyle et al., 2013]. Once a data-center has been selected a local algo-
rithm directs the request to a machine in the data-center. Our contribution is of
the local type.

Various local load-balancing algorithms have been proposed. For non-
adapting replicas, Shortest Queue First (SQF) has shown to be very close to
optimal, despite it using little information about the state of the replicas [Gupta
et al., 2007]. Our previous simulation results [Dürango et al., 2014] show that for
self-adaptive, brownout replicas, SQF performs quite well, but can be outper-
formed by weight-based, brownout-aware solutions. In this article, we combine
the two approaches and produce queue-length-based, brownout-aware load-
balancing algorithms and show that they are practically applicable for improving
resilience in the case of failures leading to service capacity shortage.

6. Conclusion and future work

We present a novel approach for improving resilience, the ability to hide fail-
ures, in cloud services using a combination of brownout and load-balancing
algorithms. The adoption of the brownout paradigm allows the service to au-
tonomously reduce computing capacity requirements by degrading user expe-
rience in order to guarantee that response times are bounded. Thus, it provides
a natural candidate for resilience improvement when failures lead to capacity
shortages. However, state-of-the-art load-balancers are generally not designed
for self-adaptive cloud services. The self-adaptivity embedded in the brownout
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service interferes with the actions of load-balancers that route requests based on
measurements of the response times of the replicas.

In order to investigate how brownout can be used for improving resilience,
we extended the popular lighttpd web server with two new brownout-aware
load-balancers. A first set of experiments showed that brownout provides sub-
stantial advantages in terms of resilience to cascading failures, even when em-
ploying SQF, a state-of-the-art, yet brownout-unaware, load-balancer. A second
set of experiments compared SQF to the novel brownout-aware load-balancers,
specifically designed to act on a per-request basis. The obtained results indicate
that, with high statistical significance, our proposed solutions consistently out-
perform the current standards: They reduce the user experience degradation,
thus perform better at hiding failures. While designed with brownout in mind,
PIBH and EPBH may be useful to load-balance other self-adaptive cloud services,
whose performance is not reflected in the response time or queue length.

During this investigation, we highlighted the difference between load-
balancers that act whenever a new request is received and algorithms that pe-
riodically update the routing weights, finding out that the formers are far more
effective than the latter ones. However, the brownout paradigm periodically up-
dates the dimmer values to match specific requirements. A future improvement
is to react faster also to events happening at the replica level, therefore redesign-
ing the local replica controller to be event based. In the future, we would also
like to design a holistic approach to replica control and load-balancing, extend-
ing our replica controllers with auto-scaling features [Ali-Eldin et al., 2012], that
would allow to autonomously manage the number of replicas, together with the
traffic routing, to obtain a cloud service that is both resilient and cost-effective.
Finally, some control parameters were chosen empirically based on the many
tests we have conducted. Ongoing work will quality the robustness of the system
given the chosen parameters in a more systematic way and for a larger scenario
space.
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celerating resource allocation in virtualized environments”. In: 17th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). DOI: 10.1145/2189750.2151021.

Welch, B. (1947). “The generalization of ‘student’s’ problem when several differ-
ent population variances are involved”. Biometrika 34:1-2. DOI: 10.1093/
biomet/34.1-2.28.

Yigitbasi, N., M. Gallet, D. Kondo, A. Iosup, and D. H. J. Epema (2010). “Analysis
and modeling of time-correlated failures in large-scale distributed systems”.
In: 11th IEEE/ACM International Conference on Grid Computing (GRID). DOI:
10.1109/GRID.2010.5697961.

Zheng, W., R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner (2009). “Jus-
tRunIt: experiment-based management of virtualized data centers”. In: 2009
USENIX Annual Technical Conference (ATC), pp. 18–28.

75





Paper III

Model-based deadtime compensation of
virtual machine startup times

Manfred Dellkrantz Jonas Dürango Anders Robertsson Maria Kihl

Abstract

Scaling the amount of resources allocated to an application according to the
actual load is a challenging problem in cloud computing. The emergence of
autoscaling techniques allows for autonomous decisions to be taken when
to acquire or release resources. The actuation of these decisions is however
affected by time delays. Therefore, it becomes critical for the autoscaler to
account for this phenomenon, in order to avoid over- or under-provisioning.

This paper presents a delay-compensator inspired by the Smith predic-
tor. The compensator allows one to close a simple feedback loop around a
cloud application with a large, time-varying delay, preserving the stability
of the controlled system. It also makes it possible for the closed-loop sys-
tem to converge to a steady-state, even in presence of resource quantization.
The presented approach is compared to a threshold-based controller with a
cooldown period, that is typically adopted in industrial applications.

Originally published at 10th International Workshop on Feedback Computing,
Seattle, USA, April 2015. The article has been reformatted to fit the current docu-
ment.
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1. Introduction

1.1 Background
Cloud computing has in the recent years become the standard for quickly deploy-
ing and scaling Internet applications and services, as it gives customers access to
computational resources without the need for capital investments. In the IaaS
service model, cloud providers rent resources to customers in the form of phys-
ical or VMs, which can then be configured by the customers to run their specific
application. For a cloud customer aiming at providing a service available to the
public, this poses the challenge of renting enough resources for the service to
remain available and provide high QoS, and the cost of allocating too much re-
sources. Pair this with a workload that is time-varying due to trends, weekly and
diurnal access patterns and the challenge becomes more complex.

For this reason, to cope with varying load, cloud services often make use
of autoscaling, where decisions to adjust resource allocation are made au-
tonomously based on measurements of relevant metrics. There is currently
a plethora of different autoscaling solutions available, reaching from simple
threshold-based to highly sophisticated based on for example control theory or
machine learning. The solutions are commonly categorized as either reactive or
proactive to their nature. In the former case, decisions are based on current met-
ric measurements relevant to the load of the cloud service, while in the latter case
on a prediction of where the metrics are heading.

Both approaches have in common that they usually do not distinguish be-
tween cases where the metrics are only indirectly related to the actual QoS of the
cloud service, such as the arrival rate, or metrics that are directly coupled to the
QoS, such as response times. From a control theoretical point of view, we could
therefore further categorize the first case as feedforward approaches and the sec-
ond case as feedback approaches. Feedforward control schemes can in many
cases give good performance, but generally requires excellent a priori knowledge
of the system to be controlled, and lack the ability to detect any changes or distur-
bances that affect the system. Feedback solutions on the other hand are generally
more forgiving when it comes to system knowledge requirements. They can also
compensate for unforeseen changes since they base their decisions on metrics
directly related to the QoS.

For cloud services, decisions to add more resources usually requires start-
ing up a new VM. This in turn means that the cloud provider needs to place the
machine, transfer the OS data it needs and boot it up. Overall, the time from de-
cision to a VM to get fully booted typically ranges from a few tens of seconds up
to several minutes [Mao and Humphrey, 2012]. The long time delays this leads to
are an inherently destabilizing factor in feedback control. The key reason is the
following: long time delays from a scale up decision to a full actuation prompts
the feedback controller to continue commanding increased resource provision-
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ing due to the fact that it cannot yet see the effect of its earlier decisions.
In practice, these time delays need to be considered when designing feed-

back based autoscaling solutions in order to avoid destabilizing the closed loop
system. Possible existing solution include having a low gain in the feedback loop,
essentially making the autoscaler very careful with continuing adding more re-
sources before the effect of past decisions start showing up. Another solution is
to implement a so-called cooldown period, as implemented in [Amazon, 2014;
Google, 2014; Rackspace, 2014]. In autoscalers employing cooldown, any deci-
sion to scale resources activates the cooldown period, during which subsequent
scaling attempts are ignored.

In the current paper, we take a different approach and adopt a solution that
has similarities to the Smith predictor, a technique commonly used in control
theory for controlling systems with long time delays. In essence, the Smith pre-
dictor works by running a model-based simulation of the controlled system with-
out the delays, and use the outputs from this simulation for feedback control.
Only if there is a deviation between the true system output and a delayed version
of the simulated output are actual measurements from the real system used for
control.

1.2 Related work
As cloud computing has grown more popular, the autoscaling challenge has at-
tracted attention and resulted in numerous proposed solutions, for example [Ur-
gaonkar et al., 2008; Gong et al., 2010; Shen et al., 2011]. A thorough review of ex-
isting autoscaling solutions can be found in [Lorido-Botran et al., 2014]. The level
at which reconfiguration delays are explicitly considered in existing autoscaling
solutions varies depending on the underlying assumption of the magnitude of
the delays and choice between feedforward and feedback control structures. [Ali-
Eldin et al., 2012] use an approach where scaling down is done reactively and
scaling up proactively, but otherwise assumes that any reconfiguration decision
is actuated immediately. Similarly, [Lim et al., 2009] design a proportional thresh-
olding controller with hysteresis where a feedback loop from response times to
the number of allocated VMs is closed. Also here the assumption is that VMs can
be started instantaneously.

[Berekmery et al., 2014] use an empirically identified linear time-invariant
model with a time delay to design a controller for deploying resources in a
MapReduce cluster to handle incoming work. The time delay corresponds to
the reconfiguration delay and is assumed to be constant. As shown [Mao and
Humphrey, 2012], VM startup times can vary heavily, both depending on appli-
cation and infrastructure.

In [Gandhi et al., 2012] the authors identify reconfiguration delays as the main
reason for poor performance in many reactive and proactive approaches. In their
proposed solution, a feedback scheme from the number of concurrently running
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jobs in a key-value based cloud application is used for scaling up the number of
allocated physical servers. Since starting servers usually takes longer time than
shutting them off, they then pack the incoming work on as few servers as possible
and equip each server with a timer. If no requests arrive at an empty server during
the timer duration, the server is shut down.

1.3 Contribution
In this paper, we present an autoscaling solution using inspiration from the Smith
predictor. The result is a feedback controller for cloud services that can quickly
reconfigure allocated resources when faced with load variations that leads to a
lowered QoS. It also avoids the low controller gains and cooldown solutions oth-
erwise commonly used in feedback autoscalers.

In section 2 we present how a cloud application can be seen as a dynamic
mapping from resources to a set of performance metrics, and the proposed
delay-compensator. In section 3 we focus on a specific case where we apply our
proposed solution to control response times. Simulation results from this sce-
nario are shown in section 4. Section 5 concludes the paper.

2. Delays in cloud applications

2.1 Dynamic mapping
Cloud applications can generally be regarded as software executing on a set of
virtualized resources. Their purpose is often to compute a response to requests
made to them. This arrival of requests, usually time-varying in its nature, gener-
ates a load on the cloud application, which affects the performance and QoS of a
cloud application and can be quantified by a number of relevant metrics, such as
response times. In order to keep the performance metrics close to some specific
value, as specified by a Service Level Objective (SLO), when facing time-varying
load, cloud applications are required to be reconfigurable in terms of resources
allocated. We have already outlined how a main challenge for this is the long de-
lays when reconfiguring the deployed amount of resources. Further complicat-
ing is the fact that virtual resources usually only can be provisioned in a quan-
tized fashion or are available in preset configurations. For example, the number
of VMs provisioned must be integer, memory might only be configured in whole
gigabytes, etc.

With this in mind, we view a cloud application as a dynamic mapping from
deployed resources and incoming load to a set of performance metrics. This gives
us the setup shown in Figure 1. Input is the desired amount of resources m and
outputs are the actual deployed resources mr , the metric denoted T , and also we
assume that we can measure the incoming load λ. The amount of resources also
needs quantization before being actuated.
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Cloud Ap-
plication

Reconf.
delay

mr
m

mr

T

λ

λ

Figure 1. Schematic diagram of the cloud application as a dynamic mapping
from desired amount of resources m via deployed resources mr to the perfor-
mance metric T . λ is the incoming load of the application and is assumed to
measurable. The signal m is also subject to quantization before being sent to the
infrastructure.

2.2 Delay compensation
The Smith predictor [Smith, 1957] is commonly used for controlling processes
with long time delays, and was originally intended for stable, linear, time-
invariant SISO systems with a well-known constant time delay. A key assumption
for the Smith predictor is the availability of a delay-free model of the system to
be controlled. Using this model, the system’s response to a given input can be
predicted by running a simulation. An identical, but delayed, simulation is also
done using the model. Finally, an aggregated measurement signal T̂ that adds the
output of the real system T and the delay-free model output T2 and subtracts the
delayed model output T1 can be formed and used for designing a feedback con-
troller. The result is a situation where the feedback only consists of the delay-free
model output if the delayed model and system output perfectly matches each
other, allowing for higher control gains. Only when there is a mismatch between
model and system is the actual system output used for feedback control.

The Smith predictor usually assumes the actuation delays to be constant,
which however, as already mentioned, is generally not true for cloud services.
For cloud applications, the delays when reconfiguring the deployed resources are
stochastic and may even vary during the day [Mao and Humphrey, 2012]. For this
reason we modify the original formulation of the Smith predictor so that the de-
layed model instead uses mr , the amount of actually deployed resources, as it is
not problematic to measure. This gives the setup shown in Figure 2.

As previously mentioned, resources can usually only be deployed in a quan-
tized fashion. But assuming the delay-free model can handle non-quantized
amount of resources (m), our setup also comes with the benefit that even
changes in m too small to change the output of the quantization actually has
an impact on the compensated response time T̂ through the delay-free model.

For the remainder of this paper, we focus on applying our solution to a case
where we scale the number of homogeneous VMs allocated to a cloud applica-
tion to ensure that response times are kept bounded. Note that the key assump-
tion in our approach is that we can model the application. Therefore the com-
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T2
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Figure 2. Smith-inspired delay-compensator for cloud applications. The de-
layed model uses the measured mr from the cloud application instead using an
implementation of a estimate of the delay.

pensation should be applicable also to other types of resources and applications
than the one considered here, such as heterogeneous VMs or MapReduce jobs.

3. Response time control

In this section we present a case where the delay compensation described in Sec-
tion 2.2 is used. The application under consideration is stateless and the VMs are
assumed to be homogeneous. A continuous time dynamic model is derived using
queueing theory and the feedback loop for controlling the mean response time
is closed using a PI controller. For comparison we also implement a threshold-
based autoscaler with cooldown based on [Amazon, 2014].

3.1 Queueing model
Queueing theory is a commonly used approach for modeling servers. For exam-
ple, in [Cao et al., 2003] measurements from web servers were found to be con-
sistent with an M/G/1 queueing system. In this paper we model each VM as an
M/M/1 queueing system with service rateµ. Traffic is assumed to arrive to the ap-
plication according to a Poisson process with intensity λ. A load balancer is then
used to spread the traffic randomly over mr currently running VMs, leading to an
arrival rate of λ

mr
per VM. A schematic diagram of the model is shown in Figure 3.

Response times are recorded and sent to the feedback controller, responsible for
reconfiguration decisions. Decisions to scale up come with a stochastic startup
delay for each VM. Decisions to scale down are effective immediately, as it can be
carried out by simply reconfiguring the load balancer and terminating the VM.
The quantization effect in this case consists of a ceiling function to make sure
that we get the lowest integer value greater than the desired number of VMs.
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Load
Balancer

µλ
mr

µ
λ

mr

µ

λ
mr

T

...
λ

mr

Figure 3. Schematic diagram of the load balancing of mr running VMs.

3.2 Continuous dynamic approximation
Queueing models are generally mostly concerned with the stationary behavior
of a system. However in our case, we are also interested in the cloud application
dynamics. By viewing the queueing models considered here as systems of flow,
we can use the results from [Agnew, 1976; Rider, 1976; Wang et al., 1996] to for-
mulate the following approximative model of the dynamics of a M/M/1 queueing
system:

ẋ = f (x,m,λ) =α
(
λ

m
−µ x

x +1

)
T = g (x,m,λ) =µ−1(x +1)

(1)

where x corresponds to the queue length, λ/m the arrival rate per running VM, µ
the service rate of each VM, T the mean response time and α is a constant used
in [Rider, 1976] to better fit the transients of the model to experimental data. It
is easy to verify that the equilibrium points of the system (1) for any 0 ≤ λ < µ

coincide with the results from a stationary analysis of a M/M/1 system. In [Tip-
per and Sundareshan, 1990], it is shown how the system given by Equation (1) in
the case α = 1 provides a reasonable approximation to the exact behavior of the
non-stationary M/M/1 queue as found by numerically solving the correspond-
ing Chapman-Kolmogorov equations under certain conditions. Based on the sta-
tionary queue length and the stationary response time of the M/M/1 we can find
the output response time T of the flow model.

From now on we will be using the system (1) and its state variable x as the
average state of all VMs. Since all virtual machines are equal it is straight-forward
to show that

˙̄x = 1

m

m∑
i=1

ẋ ≈ f (x̄,m,λ)

if we assume all xi (the states of the individual virtual machine) are the same. This
is not true for transients in newly started machines, but as an approximation it is
good enough. Note that system (1) is not dependent on m being integer.
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3.3 Control analysis
For control synthesis purposes, we linearize the system equations (1) around
the stationary point corresponding to a traffic level λ0 and response time ref-
erence Tref, where we can make use of the fact that stationary queue length x0

and the stationary number of machines m0 can be uniquely determined through
the other variables as

x0 = Tr e f µ−1

m0 =
Trefλ0

Trefµ−1

The linearization yields the following system:

∆ẋ =− α

µTref
2∆x −α (Trefµ−1)2

Tref
2λ0

∆m +αTrefµ−1

Trefλ0
∆λ

∆T =µ−1∆x.

(2)

Note that the dynamics of the linearized system does not change with varying
load, while the input gains do. The transfer function from number of machines
m to response time T becomes

Gp (s) = ∂g

∂x

(
s − ∂ f

∂x

)−1 ∂ f

∂m

∣∣∣∣ x=x0
m=m0
λ=λ0

=− A

s +a
(3)

with A =α(Trefµ−1)2/(Tref
2λ0µ) and a =α/(µTref

2) both greater than zero.
Since the system is of order one, we conclude that a PI controller of the form

Gc (s) = Kp + Ki

s
(4)

should suffice, leading us to the following closed loop dynamics from Tref to T :

G1(s) = Gc Gp

1+Gc Gp
= A(Kp s +Ki )

s2 + s(a − A Kp )− A Ki
. (5)

The closed loop dynamics from λ to T is given by the transfer function

G2(s) = Gp

1+Gc Gp
=− As

s2 + s(a − A Kp )− A Ki
. (6)

We require of the controller that G1 and G2 are asymptotically stable. Further-
more we require that the zero in G1 is not non-minimum phase. Since this zero
also shows up in the transfer function from ∆λ to ∆m this would otherwise lead
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to the controller responding to a step increase in traffic by transiently turning
off VMs. Lastly, we require that the transfer functions be fully damped, i.e. that
all closed loop poles are real. This is because we want to avoid overshoots in the
control signal when faced with a step shaped disturbance or reference change, as
it would lead us to starting up VMs that are almost immediately turned off again.
Combining these requirements puts the following constraints on the controller
parameters:

Ki < 0

Kp ≤ 0

−4AKi ≤ (a − AKp )2.

In order to simplify controller design, we can reparameterize the closed loop
poles in the following way:

s =−a − AKp

2
±

√
(a − AKp )2

4
+ AKi =−ϕ±ξ, ϕ≥ ξ≥ 0

allowing us to find the following expression for the controller parameters:

Kp = a −2ϕ

A
, ϕ≥ a

2

Ki =
ξ2 −ϕ2

A
where the condition on ϕ makes sure that the zero in G1(s) is minimum phase.

3.4 Threshold-based controller
For comparison we also implement a threshold-based controller with cooldown,
based on the autoscaling solution used in Amazon Web Services [Amazon, 2014].
The controller measures the average response times over a time period h, and
compares it to two given thresholds, one upper Tupper and one lower Tlower.
Whenever ht measurements in a row are either above the upper or below the
lower threshold, an autoscaling event is triggered, either trying to start or shut
down one VM.

Successfully executing an autoscaling event (shutting down or starting up a
VM) also starts a cooldown period, with length hcooldown. Whenever a cooldown
period is running no new autoscaling events are triggered.

4. Experimental results

4.1 Delay-compensated control
To evaluate the delay-compensator described in Section 2.2 we run a set of dis-
crete event-based simulation experiments. The cloud application is an imple-
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Figure 4. Response time results from simulation of step up. The compensated
response times reach the reference much before the actual response times.
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Figure 5. Control signals from simulation of step up. The controller manages to
respond to the change in load with little overshoot, which is important.

mentation of the model described in Section 3.1. The PI controller derived in
section 3.3 is implemented in discrete time as such:

ek = Tref − T̂k

ik = ik−1 +Ki h ek

mk = Kp ek + ik

(7)

where mk is the control signal, ik is the integrator state and T̂k is the mean of all
delay-compensated response times between sampling points k−1 and k. For this
implementation we omit anti-windup since the only saturation in the system is
m > 0, and all experiments are designed to stay far away from that point. The
VMs have a service rate µ = 22 and uniformly distributed startup delays in the
interval [80,120] seconds, while shutting down a VM is immediate. The lineariza-
tion point is chosen as λ0 = 630 and Tref = 0.5 s, and the controller parameters
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are chosen so that ϕ = 0.0545, ξ = 0.0432. The controller runs every h = 2 s. Ex-
perimental trial showed that using α = 0.5 in our cases provided a reasonable
transient fit.

The delay compensator updates the state of the delayed and the delay-free
model on every request leaving the cloud application. The continuous models
are discretized using the Runge-Kutta method.

In the first experiment, the incoming traffic to the application is changed as
a step from 630 to 690 requests per second. We perform a set of 25 step response
experiments, and aggregate the results to calculate the average response times
and number of VMs over a window of 4 seconds. The results are shown in Fig-
ures 4 and 5.

As we can see in Figure 4 the real response times reach its highest point about
the same time as the first newly started VM becomes active. Figure 5 shows the
average control signal (m) and running VMs (mr ). The controller manages to re-
spond to the change in load, without significant overshoot, which is the typical
problem caused by actuation delays.

Plots of simulations of the step down from 690 to 630 per second is shown
in Figures 6 and 7. The difference between delayed and delay-free model while
scaling down is that the delay-free model has no quantization. In less than 300
seconds we reach the theoretical stationary value mr = 32.

Shown in Figure 8 is a plot of the average behavior when the system is ap-
proaching steady state with λ= 630. As can be seen, response times are not vary-
ing around Tref, but slightly below. This is because m0 = Trefλ0/(Trefµ−1) = 31.5
is not an integer. Since we can only run integer number of machines and the
ideal number is a fraction, an uncompensated PI controller would oscillate be-
tween the two values 31 and 32 for mr . The compensated controller on the other
hand finds the smallest integer mr larger than m0 and compensates away the
part of the error that can not be removed without exceeding Tref. T approaches
T0 =µ−1( λ0

µdm0e−λ0
+1) ≈ 0.43 s instead of Tref = 0.5 s.

With this controller, for all 25 experiments, we use on average 33.7 machine
hours per hour. The mean response time during scale-up is 0.804 seconds and
during scale-down 0.373 seconds.

4.2 Threshold-based controller
For comparison we also run the same experiment as previously described with
the threshold controller described in 3.4. The controller is run with the parame-
ters Tlower = 0.35 s, Tupper = 0.6 s, ht = 20 s

h , hcool down = 120 s.
The mean response times and number of running VMs are shown in Figures 9

and 10 respectively. As we can see the controller does not even manage to get the
response times back to the reference value before 400 seconds have passed. Due
to the fact that the controller cannot act while in a cooldown period, we respond
too slowly to the increase in traffic.
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Figure 6. Response time results from simulation of step down. The difference
between delayed and delay-free is that the delay-free model has no quantization.
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Figure 7. Control signals from simulation of step down. The controller gradually
turns off machines to find the equilibrium.
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Figure 8. Steady state with λ = 630. The controller finds the lowest number of
machines to come below Tref and then compensates for the difference.
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Figure 9. Response times for the step up scenario when using the threshold con-
troller with cooldown.
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Figure 10. Number of machines for the step up scenario when using the thresh-
old controller with cooldown.

With this controller, for the full experiment, we use 33.3 machine hours per
hour. Mean response time during scale-up is 1.224 seconds and during scale-
down 0.327 seconds.

4.3 Discussion
As can be seen in Figures 4, 5, 9 and 10 the delay-compensated controller man-
ages to quickly respond to changes in the incoming load. The control signal m
reaches its final value of 34 < m < 35 before the first actual machine has even
started. Since the threshold controller needs to wait for its cooldown to pass it
is slow to respond. This is also why the delay-compensated controller uses more
resources on average.

In Figure 8 we see how we are left with a stationary offset between the re-
sponse times T and Tref. Since no integer number of virtual machines will result
in stationary response times at Tref, the controller finds the lowest amount of
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machines needed to stay below Tref and then compensates away the error which
can’t be controlled away.

5. Conclusion

In this paper we have extended the, in the control community, commonly used
Smith predictor for compensating for VM startup delay. The classic Smith predic-
tor needs knowledge about the length of the time delay, but since it is reasonable
to assume that we can at all times know the number of currently running VMs we
don’t need to know or implement the delay. The only thing we need is a model of
the behavior of the cloud application after the delay.

Through simulations we show that the compensator can compensate for the
startup delay of VMs and that the resource management can be solved using a
simple PI controller. Thanks to the delay-compensation the controller can reach
the final number of machines before the first machine has even started. The com-
pensator picks the lowest number of VMs which gives response times below the
reference.
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Paper IV

A control theoretical approach to
non-intrusive geo-replication for cloud

services
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Abstract

Complete data center failures may occur due to disastrous events such as
earthquakes or fires. To attain robustness against such failures and reduce
the probability of data loss, data must be replicated in another data center
sufficiently geographically separated from the original data center. Imple-
menting geo-replication is expensive as every data update operation in the
original data center must be replicated in the backup. Running the applica-
tion and the replication service in parallel is cost effective but creates a trade-
off between potential replication consistency and data loss and reduced ap-
plication performance due to network resource contention. We model this
trade-off and provide a control-theoretical solution based on Model Predic-
tive Control to dynamically allocate network bandwidth to accommodate
the objectives of both replication and application data streams. We evalu-
ate our control solution through simulations emulating the individual ser-
vices, their traffic flows, and the shared network resource. The MPC solution
is able to maintain the most consistent performance over periods of persis-
tent overload, and is quickly able to indiscriminately recover once the system
return to a stable state. Additionally, the MPC balances the two objectives of
consistency and performance according to the proportions specified in the
objective function.

Submitted to the 55th IEEE Conference on Decision and Control (CDC), Las Vegas,
December 2016.
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1. Introduction

Today, there is an ever increasing reliance on cloud services for business criti-
cal operations. Outsourcing operational applications to one vendor expose busi-
nesses to potential revenue losses incurred by for example downtime due to fail-
ures [Patterson et al., 2002]. In cloud computing, failures are the norm rather
than an exception. Failures are unpredictable and may happen at any time, as
exemplified by the cascading power blackout that swept cities from Detroit to
New York City in 2003 [Barron, 2003]. The interruption in business continuity
and the information lost when storage devices or a complete DC hosting an ap-
plication fail can even put entire enterprises out of business [Keeton et al., 2004].
Two out of five enterprises that experience a disaster are out of business within
five years [R. Witty, 2001] from the outage. Furthermore, cost estimations for data
unavailability can reach millions of Euros per hour [Ji et al., 2003]. These events
and revelations have incited the development of DR schemes that provide re-
duced interruption of service in case of disasters.

Current DR schemes typically achieve redundancy by mirroring all relevant
data on the application’s primary operational node to one or multiple secondary
replicas. The replicas are persistently standing by to assume the responsibility for
hosting the applications, in the event the primary fails. In order to be tolerant to
disasters severe enough to bring down an entire DC, such as a fire or an earth-
quake, replicas are kept geographically separated, known as geo-replication. As
a result, the applications can stay available even as the primary replica is lost
or becomes unreachable [Ji et al., 2003]. However, such DR solutions increase the
overall network traffic from the primary node shared between the replication ser-
vice and the applications. The additional traffic can lead to network contention
between the occupants on the primary node during high loads. To mitigate this
potential contention, the system administrators typically assign a static quota for
the network bandwidth allotted to the replication service traffic. As an example,
the Distributed Replicated Block Device (DRBD) replication tool documentation
recommends a 30% bandwidth allotted to the replication service traffic1.

Such solutions are inherently inflexible, as they do not cope well with irreg-
ular traffic patterns and the heterogeneous objectives of the different streams,
manifested in their different goals. The replication service will seek to maintain
the replicas as closely synchronized as possible to minimize potential data loss
and unavailability in case of a failure. It does so by attempting to minimize the
delay imposed to each write operation. On the other hand, the application traffic
needs to be served at a certain rate to meet performance objectives, e.g., end-
user response time. Therefore, there is an inherent trade-off between data con-
sistency and delivered application performance, which strongly depends on the
available bandwidth. We argue in this paper that these conflicting goals can be

1 https://drbd.linbit.com/en/users-guide/s-configure-sync-rate.html
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managed using a dynamic bandwidth allocation approach.
In this paper, we propose a dynamic bandwidth allocation solution for DR

systems based on MPC. We propose a two fold solution: (1) differentiating be-
tween different traffic flows and concurrently use different replication modes;
and (2) an MPC solution that dynamically adjusts resource allocations for the
different traffic flows over time based on the prevailing conditions in an attempt
to meet their individual performance objectives. Our proposed solution dynami-
cally adapts to changes in egress (outgoing) traffic and provides a cost-optimized
scheduling of bandwidth, in order for the replication service traffic to be handled
with low latency at the same time as the ordinary application traffic can keep its
performance objectives. The fundamental principal is a holistic one, we allow
the controller to compromise the throughput of one the services while main-
taining its performance goals to meet the objectives of achieving better overall
system performance and cost-efficiency, with the resources at hand. We validate
our strategy with a simulator that executes a variety of workloads and measures
the amount of data loss in case of a disaster. Finally, to evaluate the replication
performance of our solution, we formulate a performance metric that captures
the momentary disaster recovery readiness of the system.

2. Related work

In this section we provide an overview of fault tolerance and disaster tolerance
techniques for cloud services, and of replication challenges in general. We begin
by discussing prevalent replication techniques, their inherit challenges, and the
current state of the research in that area. We then tie it into the problem we are
addressing.

Making DR cost-efficient is a significant research area [Ji et al., 2003]. More
and more companies are focusing on recovery plans, in an attempt to achieve
what is generally known as business continuity [Wood et al., 2010]. The main
principal of business continuity is to offer application owners the assurance that
their applications will have as few service interruptions as possible. To achieve
this, many business services utilize (1) fault tolerance techniques and (2) disas-
ter recovery techniques. Fault tolerance techniques, such as Remus [Cully et al.,
2008] or COLO [Dong et al., 2013] are used to recover from sporadic failures by
synchronizing what a VM is doing into a secondary copy of the VM.

Other work highlight the importance of data replication and try to reduce the
incurred cost of replication. One example is [Cidon et al., 2015]. In this case, the
main objective is data durability and how to protect against both independent
and correlated node failures by means of a tiered replication scheme that splits
the cluster into a primary and a backup tier. Regarding disaster recovery tech-
niques, in [Wood et al., 2010] the authors propose to use a public cloud to recover
in case of a disaster instead of a backup site.
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Replication incurs additional operations during the normal execution of the
DC. In general, in response to client-issued requests, applications continuously
write data onto their attached virtual disks. As part of the DR solution, a repli-
cation service is then responsible for mirroring the write operations at the sec-
ondary replica. Such mirroring can be carried out by either synchronous or asyn-
chronous write operations. Synchronous writes provide a higher degree of data
consistency between replicas as each write operation at the primary replica has
to be verified to have been carried out also at the secondary replica before com-
pleting. Pipecloud [Wood et al., 2011] is a synchronous backup strategy that ad-
dresses the impact of replication latency on performance by efficiently overlap-
ping replication with application processing for multi-tier servers. However, as
write operations must await response from the backup site before completing,
synchronous backup guarantees consistency at the expense of collocated ser-
vices sharing the same resource.

In a MAN or WAN setting however, bandwidth limitations and high latency
can make replication unacceptably slow, as the network connectivity between
replicas becomes a performance bottleneck. To avoid this, performance can be
improved at the expense of consistency guarantees by using asynchronous repli-
cation. In this case, the primary replica is essentially allowed to pull ahead of the
secondary replica by completing write operations when they have been made to
the local file system, without waiting for the secondary replica. The replication
service is then responsible for carrying out the write operations at the secondary
replica. This clearly creates some inconsistencies, until the write operations have
been propagated to the secondary replica, but at the same time avoids perfor-
mance bottlenecks. For instance, in SnapMirror [Patterson et al., 2002], batches
of updates are periodically sent to the backup site, aiming at trading off cost and
performance. SnapMirror’s asynchronous solution does, however, not offer con-
tinuous mirroring but only guarantees that the copies are in sync at the backup
instants. The degree of replica consistency is thus proportional to the delay in-
curred by the intermediate network and the availability of shared resources.

One frequently employed service for replicating file systems in Linux systems
is DRBD [Reisner and Ellenberg, 2005] and DRBD Proxy, which have support for
both synchronous and asynchronous replication modes. The DRBD [Reisner and
Ellenberg, 2005] asynchronous replication mode sends data continuously but
only waiting for the acknowledge that the packages has reached the send-TCP
buffer in the local server, unlike synchronous mode that waits for the acknowl-
edgement of the write operation at the remote location. DRBD is our choice as
an enabling technology for the design of our DR solution.

As regards to the interference between the replication service traffic and the
normal DC operation, besides the well known techniques to differentiate traffic
flows at routing level (such as DiffServ or IntServ2), there are tools available for

2 https://tools.ietf.org/html/draft-ietf-diffserv-rsvp-02
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traffic sharing, allowing to differentiate traffic per process or flow at server level.
For instance, Dusia et al. present a network quality of service guaranteeing ap-
proach [Dusia et al., 2015] capable of prioritizing some processes (in their case
containers) by making use of the Linux traffic control (TC) utility. However, they
define an static setting, not aware of current buffer status or data flow needs.

3. System architecture model

In this section we outline the system architecture model used in this paper. Em-
phasis is given to describing traffic streams and system components through
which they can be managed. We consider applications that are hosted as typi-
cally for cloud applications, i.e. in a primary replica executing in either a VM or
container that in turn is hosted on a PM in a DC. Requests from clients are re-
ceived by the application, in turn prompting the computation of responses that
are returned to the issuers.

3.1 Dynamic control for concurrent flows transmission
Apart from mirroring the data that the application writes during runtime, the
DR service also needs to transfer the information regarding the VMs running the
application, including the VMs image and meta-data on its current state such
as virtual disks attached (known as volumes) and network configurations. Since
such configurations usually are not frequently updated, the transfer of the corre-
sponding data to the remote site is usually initiated at set time intervals. Figure 1
provides an overview of the observed system.

To reduce cost, the replication service is not given a dedicated interface for
its traffic. Instead, the network resources are shared between the application and
replication service. This introduces inherent conflicting goals, since the QoS of an
application is typically directly related to the rate at which it can serve requests
from clients. On the other hand, the degree to which the application remains
disaster tolerant is subject to the rate at which the application write operations
can be mirrored to the remote replica and how expediently the transfer of VM
images and related meta-data can be completed. By not considering this trade-
off, high load situations can lead to unacceptable service degradation or disaster
tolerance. On the other hand, existing solutions to addressing said trade-off can
prove too inflexible in a dynamic setting where traffic conditions are subject to
unpredictable changes. Hence the need for a dynamic solution.

3.2 Flows differentiation and traffic model
The solution proposed in this paper builds on differentiating the three traffic
flows described previously, denoted Application, Replication service, and VM im-
age, and taking into account their different time-variant features when man-
aging them. Note that the approaches considered here are agnostic to and de-

97



Paper IV. A control theoretical approach to non-intrusive geo-replication

ReplicaReplicaReplica
Replication 

service

Application 

service

VM

Network 

resource
Volume

Physical machine

Replication traffic VM image & 

metadata 

Volume writes
Application

request traffic

Application

reply traffic

End-

users

Figure 1. System abstraction for the set-up considered from the primary replica’s
viewpoint. The application replies to incoming client requests, while the replica-
tion service is responsible for mirroring the data written by the application as well
as the state of the VM at the remote replica. The application and replication ser-
vice need to share a common network resource.

coupled from the actual application and the replication service. This is to make
the approaches as general and as portable as possible, and to facilitate easier
deployment in a future testbed. Separating the solution from the nature of the
application means that traffic sent by the Application and Replication service
from the traffic management component’s point of view can be seen as exoge-
nously generated. The Application and Replication service traffic streams gen-
erally have time-varying rates at which data need to be sent. In this paper, we
assume the traffic streams to be non-homogeneous Poisson processes [Harchol-
Balter, 2013]. The VM image flow is also exogenous to the traffic management,
but for reasons outlined earlier it can be assumed to instead arrive in bulks at
given time intervals. An illustration of the structure of the traffic management
solutions discussed here is given in Figure 2.

When there is data ready for transmission, the system needs to decide which
differentiated traffic stream will get access to the network resource. In Linux and
other operating systems, egress network traffic can be managed, policed, and
shaped through a QDisc [Dusia et al., 2015], which acts as a scheduler on the
outgoing interface. By default most systems do no traffic differentiation and the
QDisc acts as a simple FIFO buffer. This can be disadvantageous in some cir-
cumstances as it allows one traffic stream to grab an unproportionally large share
of the bandwidth by sending packets at a high rate. A more competent alterna-
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Figure 2. Structural overview of system components relevant to traffic manage-
ment. The Replication service, Application and individual VM image copy streams
are differentiated. Multiple VM image copies are kept differentiated from each
other. Streams try to deposit packets in target QDisc buffers and will wait if the
target buffer is full.

tive, QDiscs such as Hierarchical Token Bucket (HTB) [Devera and Cohen, 2002]
employ filters to give the system administrator large freedom in managing out-
going traffic per traffic type. Combining differentiation to classify traffic streams
and HTB filters, individual traffic streams can be allotted a share of the network
bandwidth over a certain time period, and bandwidth sharing hierarchies can be
constructed. This way, each traffic stream is guaranteed to receive its share of the
bandwidth and is not vulnerable to bandwidth hoarding streams in the way the
FIFO solution is. Yet another commonly used approach for traffic management is
to prioritize traffic streams, where higher ranked streams persistently pre-empts
lower ranked streams. This is supported by default in the QDisc structure in most
Linux distributions, pfifo_fast, which combines FIFO scheduling with three pri-
ority levels. Traffic streams are given a priority, and packets are buffered in three
FIFO buffers, one for each priority level. The QDisc then schedules packets for
transmission from buffers in falling priority order. This type of traffic manage-
ment is ideal for allowing interactive latency-sensitive applications transmitting
relatively little data to still access the network resource while larger bulk-type
transfers also are active.

It is worth noting that by their nature, buffer sizes of QDiscs are relatively
small, typically ranging from kilobytes to a few megabytes. Accordingly, the QDisc
buffers cannot be expected to be able to accommodate all traffic at all times,
in particular during sudden bursts and when the system is intermittently over-
loaded. In a real system, when a buffer fills up, the transportation layer would
incur back-pressure in the QDisc, thereby forming a closed loop. In this paper we
do not explicitly consider back-pressure as it goes against the application agnos-

99



Paper IV. A control theoretical approach to non-intrusive geo-replication

tic approach taken. Instead each traffic stream is kept in its own infinite buffer
that deposits its content into the target QDisc buffer. For VM image traffic this
has some implications. In our set-up, whenever the DR system schedules a VM
image copy, it is treated as a bulk arrival of packets that are deposited in its own
buffer, which in turn tries to make deposits in the target QDisc buffer. If a copy
is scheduled to start before a previous one is finished, two streams would try to
deposit in the same target buffer. Effectively, this halves the potential bandwidth
available to each VM image copy stream until one of them is finished. It is again
worth noting that as the proposed method is agnostic to the hosted services it
cannot control the arrival of VM image copies.

4. Control design

This section describes our proposal for dynamically adjusting bandwidth shares
to the traffic streams identified in Section 3. It is based on the HTB filter ap-
proach, where traffic streams are differentiated and allocated a guaranteed min-
imum share of the available network bandwidth. Typically, the guaranteed mini-
mum share is set statically depending on some knowledge of the system require-
ments. In contrast to that, our MPC controller dynamically adjusts the guaran-
teed minimum share for each of the traffic stream using feedback of the current
state of the system.

Letλi (k), i ∈ I = {a,r, vm} denote the amount of data that the DC is requested
to transmit in the sampling interval [k,k +1] for each of the streams: Application
(a), Replication service (r ) and VM image traffic (vm). These requests are con-
sidered to be exogenous to the traffic management system. Also, based on the
total available network bandwidth for the primary replica, let C denote the total
amount of data that can be sent during a sampling period, C being dependent on
the DC network link.

We denote with ui the control signal that we use, which is the fraction of net-
work bandwidth reserved for each of the traffic streams. We actuate that via a
minimum share of the bandwidth Cui (k), ui = {ui |ui ≥ 0,

∑
ui = 1}. It is im-

portant to notice that ui is only a minimum guaranteed share, which helps us
avoiding wasting available bandwidth3. Bandwidth left unused by streams that
did not have enough data to transmit can then be used by other streams, thus
maximizing total bandwidth utilization. On the contrary, if the allocated band-
width for a stream is insufficient to complete the transmission, the exceeding
data is buffered.

Let xi (k) denote the buffer levels at time k for each traffic stream, i.e., the data
that is ready to be sent at time k for each stream. For each of the streams, ∀i ∈ I ,

3 In other words, the traffic shaping is work preserving, meaning that shares are only enforced if
there is enough data to transmit for each traffic stream.
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we can then define the following linear integrator dynamics for the system:

xi (k +1) = xi (k)+λi (k)−Cui (k)−di (k). (1)

In Equation (1), the disturbance terms di (k) model actions that are not in
direct relationship with the control signal, for example taking into account the
situation in which buffers are emptied because there was not enough traffic in
one of the other streams. The actual sent traffic for traffic stream i in the time
interval [k,k +1] is therefore

µi (k) =Cui (k)+di (k). (2)

We assume the buffer levels to be measurable4. Indeed, in real implementa-
tions, a measurement of the amount of data sent per traffic streamµi (k) is usually
also available. Using that, measurements of the data arrival processes λi (k) can
be reconstructed as follows:

λi (k) = xi (k +1)−xi (k)+µi (k). (3)

We model the arrival processes as standard input disturbances. VM image
traffic is modeled as impulses arriving at fixed intervals while for Application and
Replication service traffic one of two possible disturbance models is used. In one
case, traffic is assumed to be slowly varying, with the following state space repre-
sentation:

zi (k +1) = zi (k)+ei (k) = F zi (k)+ei (k)

λi (k) = zi (k)+ vi (k) =Gzi (k)+ vi (k).
(4)

In the second case, we extend the previous model with a local linear trend,
with corresponding state space representation

zi (k +1) =
(
1 1
0 1

)
zi (k)+ei (k) = F zi (k)+ei (k)

λi (k) = (
1 0

)
zi (k)+ vi (k) =Gzi (k)+ vi (k),

(5)

where ei (k) ∼ N (0,Σe ) and vi (k) ∼ N (0,Σv ). A Kalman filter is used to estimate
the states of the disturbance models, which are then used as initial conditions
for predicting future traffic by the MPC controller. Among the traffic streams, VM
image stands out in the sense that the marginal benefit from allocating band-
width to it is zero up until the point the transfer of a full image is completed.
Bandwidth spent on servicing an image transfer without completing it is there-
fore essentially wasted. For this reason, we augment the system description with

4 The lack of distinction between traffic stream buffers and QDisc buffers in Equation (1) is due to
the fact that traffic streams are differentiated. This means that they are the only actor depositing
packets in their target QDisc buffers. Therefore it is possible to aggregate data residing in each
QDisc buffer and model it as one larger, measurable, buffer.
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an integral state ivm for the VM image buffer to incentivize the controller to fin-
ish image transfers. By setting Fd = diag(F, F ) we get a complete state space de-
scription of the system, augmented with corresponding disturbance and integral
states, as

x(k +1) =
 I Gd 0

0 Fd 0
Z 0 1

x(k)−C ·
 I

0
Z

u(k)−
 I

0
Z

d(k)

Gd =
(
GT 0 0

0 GT 0

)T

, Z = (
0 0 −1

)
,

(6)

with the state vector x = (
xa xr xvm za zr ivm

)
. We then use Equa-

tion (6) in our MPC controller design to predict the evolution of the system, as-
suming that the disturbances di are zero-mean and uncorrelated. In the design
of the MPC controller, we use a standard quadratic cost function with penalties
on buffer sizes and control signal variations ∆ui (k) = ui (k)−ui (k −1)

J =
Hp∑

k=1

∑
i∈I

(
qi x2

i (k +1)+ ri ∆u2
i (k +1)

)+qn ivm(k +1). (7)

Hp is here the prediction horizon, while qi and ri are the penalties on buffer
lengths and control signal variations, respectively and qn the penalty on the inte-
grator state. Neither buffer lengths nor control signals can be negative, so those
properties enter as natural constraints to the problem. The controller formula-
tion then takes the form

minimize
Hp∑

k=1

∑
i∈I

(
qi x2

i (k +1)+ ri∆u2
i (k +1)

)+qn ivm(k +1)

subject to Equation (6),

0 ≤ xi ≤ x̄i ,

ui ≥ 0,∑
i∈I

ui ≤ 1,

(8)

where the upper limits x̄i on buffer levels represent a tunable maximal amount
of buffered data we can tolerate for each traffic type. The controller then selects
∆ui (k +1) and therefore ui (k +1) in order to minimize the cost function. In turn,
this allows us to trade data consistency (bandwidth share given to the Replication
service and the VM image traffic) and performance (bandwidth assigned to the
Application).
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5. Evaluation
This section discusses the evaluation of the proposed solution and the compar-
ison of the results obtained with the MPC controller, and comparing them with
the other alternatives we introduced in Section 3. We tested the different strate-
gies with a simulator and in many different scenarios, two of which are reported
in the following. To compare the results, we have identified three metrics that
summarize the behavior of the system and permit a comparison of the solutions.
At the end of this section, we present some general conclusions that can be drawn
from the experiments shown in this paper and from our experience with other
scenarios.

5.1 Simulation Framework
In order to evaluate our proposed solution we have designed an event-based sim-
ulator using Python and SimPy5. The simulator is based on the system model de-
tailed in Section 3. It includes implementations of a set of alternative traffic man-
agement solutions, the foundations of which are outlined in Section 3, together
with the MPC controller introduced in section 4. The policies that complement
our solution are the following:

• In FIFO, all traffic streams deposit packets in a shared QDisc buffer that is
served by the network resource in a FIFO manner. When the buffer is full,
the packet waits until further space in the buffer is available. This particu-
lar strategy mirrors a system’s default behavior when no deliberate traffic
shaping effort has been made by the system administrator.

• The STATIC solution implements a static bandwidth assignment, similar
to the HTB filter approach described in Section 3. Each traffic stream is
guaranteed a set share of the network bandwidth at all times. In our case
we devote 30% of the bandwidth to the Replication service traffic, following
the guidelines for DRBD. For the VM image traffic, we calculate the amount
of bandwidth necessary to finish a session copy before the next is initiated.
The remaining bandwidth is devoted to the application traffic.

• The PRIO strategy relies on priorities, assigned to each traffic stream. The
priorities are fixed and assigned by the system administrator, based on a
ranking of which traffic stream would benefit most from receiving prior-
itized access to the network. In the simulator, we have given the highest
priority to the Application traffic in order for it to be minimally negatively
impacted by the presence of Replication service traffic. The second high-
est priority is given to the Replication service traffic, with VM image traffic
having the lowest priority. As previously described, each priority level has
its own FIFO buffer in the QDisc that is served by the network resource only
if higher prioritized buffers are empty.

5 http://simpy.readthedocs.org
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All these solutions are work preserving, thereby maximizing bandwidth utiliza-
tion. The total traffic is therefore the same with all the solutions, the difference
being how much of the shared resource is allocated to the different traffic types.

5.2 Performance metrics
In order to evaluate the behavior of each bandwidth allocation strategy, we per-
form simulations recording a set of relevant performance metrics. The set of met-
rics assesses the behavior of the traffic shaping solutions along different axes: the
performance delivered to the application, the traffic needed for replication pur-
poses and the data loss in case a disaster happens, it being data that has been
buffered for replication but never sent out.

For Application and Replication streams, we observe the mean level i _µ and
95th percentile i _λ0.95, ∀i ∈ {App,Rep} of buffered traffic over the entire experi-
ment. The VM image transfer process is evaluated based on the average vm_σµ
and 95th percentile vm_σλ of the time passed since the creation of the most re-
cent VM image available at the secondary replica. This reflects the state to which
a system could roll back in case a disaster happens. We also observe the mean
vm_µ and 95th percentile vm_λ of the transfer times for the completed VM im-
age transfers.

Together with statistics, we evaluate the application performance based on
the waiting time spent in the system by each packet that belongs to the Appli-
cation stream. To provide a measure of the effort required to restore a service
following a disaster, at each point in time we take the last available VM image at
the backup site and sum the amount of write operations that have been made
since the timestamp associated with the image. This gives us an indication of
the amount of data that should be recreated in case a replica should be fired up
at a third site. We refer to this metric as the Disaster Recovery Overhead (DRO).
Finally, we measure the amount of data currently in the replication buffer. This
data is considered lost at the moment of a failure (Data loss) since it has not been
transferred to the replication site.

5.3 Experiment 1
Scenario: In this first experiment, we explore the behavior of the system in a 3-
hour long experiment. In this experiment, the traffic mix changes slowly, pro-
ducing periods in which the DC is overloaded and periods in which the network
capacity is enough to serve the incoming traffic and the replication traffic. More
specifically, the significant contributor to overload alternates between Applica-
tion traffic and Replication service traffic. This traffic composition models the
normal operation of a DC with which daily patterns (for example, a news web-
site usually receives more visits during the lunch break).

The total available bandwidth to the system C is 100 Mbps, and the Applica-
tion outputs on average 62.5 Mbps, while Replication service operations are made
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Table 1. Statistics for experiment 1

Application MPC FIFO STATIC PRIO

App_µ [MB] 1616 3077 2076 183
App_λ0.95 [MB] 6988 8185 8100 1245

Replication

Rep_µ [MB] 3442 2336 3168 2976
Rep_λ0.95 [MB] 6989 7944 9863 6807

VM image

vm_σµ [sec] 1203 377 607 5388
vm_σλ [sec] 2275 650 931 10126
vm_µ [sec] 935 81 321 5211
vm_λ [sec] 1881 90 433 9992

on average at 32.5 Mbps. Every 10 minutes, a VM image copy is initiated with a
fixed size of 375 MB, which corresponds to an average rate of 5 Mbps over a 10
minute period. The first plot in Figure 3 shows the Application, Replication ser-
vice streams and the moments in which VM images are transmitted.

We configure STATIC and PRIO as outlined in Section 5.1. For the MPC, we set
the state penalties to (qa , qr , qvm , qn) = (600, 250, 50, 1) and for control signal
variations (ra , rr , rvm) = (106, 106, 106) with the prediction horizon Hp = 30,
corresponding to 5 minutes as the sampling time is 10 seconds. Lastly, FIFO is
configuration-free.

Results: Figure 3 illustrates the metrics for experiment 1, while Table 1
presents the resulting statistics of the experiment’s outcome. The second plot in
Figure 3 shows the waiting time for the read operations. In many time instants
the DC is overloaded and there is not enough bandwidth to transmit the data
belonging to all the streams. In this case, the time that each packet belonging to
the Application stream waits in the system becomes larger. The FIFO strategy re-
sults in a significant increase of the waiting time, therefore reducing application
performance. With FIFO, the system recovers only after a large enough period of
under load is experienced. Conversely, when employing STATIC as traffic shap-
ing mechanism the Application’s performance is quickly able to recover as soon
as the arrival rate for the read traffic does not exceed the static capacity allotted
to it. The PRIO is also penalized during overload — for example in the time inter-
val t = [1800,4200]. However, the Application penalty is only due to the overload
generated by the Application traffic itself, which temporarily exceeds the capac-
ity of the DC. The proportionality of the overload contributed by the Applica-
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Figure 3. Results from experiment 1. Top figure shows the rates at which Appli-
cation, Replication and VM image traffic arrives. Next figure shows the recorded
waiting time before being sent for Application traffic. Thereafter the DRO is
shown, while the potential data loss in case of a disaster is shown at the bottom.

tion is a common factor for both the STATIC and PRIO methods, although the
waiting time is penalized to different extents. The MPC solution here provides a
middle-ground with acceptable buffering proportional to the aggregate overload.
The MPC is able to indiscriminately accommodate both types of overload (read
arrival rate exceeding the capacity and total arrival rate exceeding the capacity)
with a consistent level of Application performance.
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The third plot in Figure 3 shows the DRO. As can be seen, FIFO and STATIC
are able to accommodate the replication traffic and provide good replication per-
formance. On the contrary, the priority given to the read traffic for PRIO comes at
a significant DRO. Not only does the overhead fast exceed any other method but
is divergent in this time-frame. The MPC solution is able to quickly recover also
in terms of DRO. The last plot of Figure 3 shows the amount of data that is not
recoverable in case a disaster happens at a specific time. When the read traffic is
generating the overload conditions, only the PRIO and MPC method suffer from
the possibility of data loss. On the contrary, when the write traffic is higher than
the static channels allocated for FIFO and STATIC, the data loss of all the alterna-
tives are comparable. In Table 1 it is possibile to see that while PRIO is the best in
terms of Application performance, the MPC controller is the second best (App_µ,
App_λ0.95), with STATIC and FIFO not being a good fit to handle the read traffic.
While FIFO is on average good for Replication performance (Rep_µ), it is not
consistently better (the 95th percentile Rep_λ0.95 is higher than with PRIO and
MPC). The MPC solution is better at exploiting the trade-off between different
traffic conditions, and is able to trade consistency for performance and vicev-
ersa. FIFO and STATIC the best at transfering the VM images, while PRIO is not
capable of handling this part of the traffic (vm_σµ, vm_σλ, vm_µ, vmλ).

5.4 Experiment 2
Scenario: In this second scenario we show long periods of stable traffic levels in-
terpreaded with abrupt changes with resulting high and low network load. This
could for example correspond to an application switching between different op-
erating modes — e.g., computing statistics and applying changes to the data. In
contrast to the previous experiment, the overload in this scenario is less extreme.
Here, the contribution to the contention is more uniform across the traffic types.
The simulation experiment is run for total duration of two hours, and the to-
tal available bandwidth to the system C is 100 Mbps. Application traffic arrives
at an average rate of 71 Mbps, Replication service operations to be replicated at
22 Mbps and VM image copies are again initiated every 10 minutes with an im-
age size of 375 MB. The various policies are configured as done for the previous
experiment. The STATIC shares are equal to the traffic rates, as if the operator
could perfectly know the traffic composition. For the MPC we use the penalties
(qa , qr , qvm , qn) = (104, 2·103, 3·104, 1) and (ra , rr , rvm) = (5·106, 5·106, 5·106),
while the prediction horizon is again Hp = 30.

Results: The results from this experiment are summarised in Figure 4 and Ta-
ble 2. The second plot in Figure 4 shows the waiting time for the read requests,
while the third plot shows the DRO. Both FIFO and STATIC sacrifice the Applica-
tion’s performance in favour of significant Replication service traffic. As a result,
both of these methods persistently achieve the lowest disaster recovery overhead.
In this scenario the Application traffic generally does not exceed the capacity C .
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Table 2. Statistics for experiment 2

Application MPC FIFO STATIC PRIO

App_µ [MB] 32 386 306 0.33
App_λ0.95 [MB] 100 1089 1083 1.03

Replication

Rep_µ [MB] 222 23 18 86
Rep_λ0.95 [MB] 681 223 84 401

VM image

vm_σµ [sec] 939 369 642 1231
vm_σλ [sec] 1720 643 975 3019
vm_µ [sec] 680 75 374 1003
vm_λ [sec] 1460 79 429 2748

As a result the PRIO method almost fully accommodates the Application across
the entire observed time period. However, the PRIO method reaches a very high
DRO, which recovers only when the Application traffic is significantly below the
system capacity, with significant lag.

In the observed scenario, the MPC method is able to maintain a negligible
Application performance degradation under periods of overload. The MPC solu-
tion’s ability to balance the two objectives is made clear by the small sacrifice
in Application performance for a significant reduction disaster recovery over-
head. This specific ability to negligibly sacrifice Application performance also
contributes to accelerating the recovery of the momentary disaster recovery over-
head once the system return to an aggregate stable load, proportionally regard-
less to the composition of the load. Table 2 confirms these results.

5.5 Summary of findings
The primary objective of this evaluation is to determine the effectiveness of a
dynamic solution to cope with the different type of traffic combinations and
changes that happens in a real DC. The second aim of the experimental analy-
sis is to determine how our MPC solution fits as a means to this end.

After trying a multitude of workloads, we can conclude that some of these
workloads highlight features and weaknesses of all the different traffic schedul-
ing solution that we have described. The FIFO solution has proven to be effective
at accommodating all applications needs for streams when under loaded, and in-
discriminately penalising when over loaded. Especially, in the scenarios we have
rendered, a large portion of the traffic is Application traffic, which makes FIFO
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Figure 4. Results from experiment 2. Figures as in Figure 3.

unsuitable since the end users will suffer from buffering thus inhibiting the end-
to-end performance of the Application. On the other hand, with FIFO, the repli-
cation traffic and the VM image traffic are able to indiscriminately gain access to
the the shared resource and are therefore served with a reasonable and fair delay
which is in line with what queuing theory tells us [Harchol-Balter, 2013]. Further-
more, the STATIC solution manages to isolate the VM image traffic and guarantee
that the images are transferred timely, but is sensitive to any changes in the other
traffic streams. Its evident inability to accommodate the individual objectives of
the tenants make FIFO unsuitable for this system.
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The PRIO solution is inherently the most successful in terms of accommo-
dating Application performance, but fails at accommodating the other tenant’s
objectives. In most of the scenarios we have run, it performs well for the Replica-
tion service traffic but fails at containing and recovering the momentary disaster
recovery overhead in a timely manner.

From the experiments above, we can conclude that our dynamic method is
the best to achieve the most desirable balance between Application performance
and disaster fault tolerance readiness in an intermittently overloaded system.
Furthermore, the MPC method is able to capture the trade-off between deliv-
ering acceptable Application performance and accommodating the Replication
service. The MPC solution is able to maintain the most consistent performance
over periods with persistent overload, and is quickly able to indiscriminately re-
cover once the system return to a stable state. Additionally, the MPC is able to
persistently balance the two objectives according to the proportions specified in
the objective function.

6. Conclusion and future work

In this paper we design an MPC controller to determine the amount of band-
width to be allocated to different streams in a cloud computing infrastructure.
Our investigation starts from the detection of an inherent trade-off between data
consistency in case of disasters and performance delivered by applications to end
users.

In fact, the outgoing bandwidth in the data center is used concurrently both
to replicate the changes operated by the users in the secondary backup, target-
ing consistency, and to respond to the user requests, targeting performance. The
available outgoing bandwidth is however limited. So, while one would want to
serve the user requests timely, it is also important to ensure that the amount of
data loss in case of a disaster is limited.

We have developed a dynamic solution for this problem, in the form of an
MPC controller, that we compared to the static solutions that are currently the
best practice. The result of our investigation is that a dynamic solution is more
flexible and it is capable of exploiting the mentioned trade-off. Future work in-
cludes implementation and evaluation of our solution in a real environment.
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