
SDN
Software Defined Networks

Harald Gustafsson

REFERENCES
• “Software-Defined Networking: A

Comprehensive Survey”, Kreutz et al,
proceedings of the IEEE, vol. 103, 2015,
pp 14-76.

• “B4: Experience with a globally-deployed
software defined WAN”, Jain et al, ACM
SIGCOMM Computer Communication
Review, vol. 43, 2013, pp 3-14

SDN analogy

VS

SDN concept

Stanford, CA, USA [24]. As originally defined, SDN refers
to a network architecture where the forwarding state in the
data plane is managed by a remotely controlled plane de-
coupled from the former. The networking industry has on
many occasions shifted from this original view of SDN by
referring to anything that involves software as being SDN.
We therefore attempt, in this section, to provide a much
less ambiguous definition of SDN.

We define an SDN as a network architecture with four
pillars.

1) The control and data planes are decoupled. Con-
trol functionality is removed from network devices
that will become simple (packet) forwarding
elements.

2) Forwarding decisions are flow based, instead of
destination based. A flow is broadly defined by a
set of packet field values acting as a match (filter)
criterion and a set of actions (instructions). In the
SDN/OpenFlow context, a flow is a sequence of
packets between a source and a destination. All
packets of a flow receive identical service policies
at the forwarding devices [25], [26]. The flow
abstraction allows unifying the behavior of differ-
ent types of network devices, including routers,
switches, firewalls, and middleboxes [27]. Flow
programming enables unprecedented flexibility,
limited only to the capabilities of the implemen-
ted flow tables [9].

3) Control logic is moved to an external entity, the
so-called SDN controller or NOS. The NOS is a
software platform that runs on commodity server
technology and provides the essential resources
and abstractions to facilitate the programming of
forwarding devices based on a logically central-
ized, abstract network view. Its purpose is there-
fore similar to that of a traditional operating system.

4) The network is programmable through software
applications running on top of the NOS that in-
teracts with the underlying data plane devices.
This is a fundamental characteristic of SDN, con-
sidered as its main value proposition.

Note that the logical centralization of the control logic,
in particular, offers several additional benefits. First, it is
simpler and less error prone to modify network policies
through high-level languages and software components,
compared with low-level device specific configurations.
Second, a control program can automatically react to
spurious changes of the network state and thus maintain
the high-level policies intact. Third, the centralization of
the control logic in a controller with global knowledge of
the network state simplifies the development of more so-
phisticated networking functions, services, and applications.

Following the SDN concept introduced in [5], an SDN
can be defined by three fundamental abstractions: for-
warding, distribution, and specification. In fact, abstrac-
tions are essential tools of research in computer science

and information technology, being already an ubiquitous
feature of many computer architectures and systems [28].

Ideally, the forwarding abstraction should allow any
forwarding behavior desired by the network application
(the control program) while hiding details of the under-
lying hardware. OpenFlow is one realization of such ab-
straction, which can be seen as the equivalent to a ‘‘device
driver’’ in an operating system.

The distribution abstraction should shield SDN appli-
cations from the vagaries of distributed state, making the
distributed control problem a logically centralized one. Its
realization requires a common distribution layer, which in
SDN resides in the NOS. This layer has two essential
functions. First, it is responsible for installing the control
commands on the forwarding devices. Second, it collects
status information about the forwarding layer (network
devices and links), to offer a global network view to net-
work applications.

The last abstraction is specification, which should al-
low a network application to express the desired network
behavior without being responsible for implementing that
behavior itself. This can be achieved through virtualization
solutions, as well as network programming languages.
These approaches map the abstract configurations that the
applications express based on a simplified, abstract model
of the network, into a physical configuration for the global
network view exposed by the SDN controller. Fig. 4 de-
picts the SDN architecture, concepts, and building blocks.

As previously mentioned, the strong coupling between
control and data planes has made it difficult to add new
functionality to traditional networks, a fact illustrated in
Fig. 5. The coupling of the control and data planes (and its
physical embedding in the network elements) makes the
development and deployment of new networking features

Fig. 4. SDN architecture and its fundamental abstractions.

Kreutz et al.: Software-Defined Networking: A Comprehensive Survey

18 Proceedings of the IEEE | Vol. 103, No. 1, January 2015

“User
space”

“POSIX”

“Device
driver”

Example

• New features
introduced as:

• new box 
vs

• new app

(e.g., routing algorithms) very difficult, since it would
imply a modification of the control plane of all network
devicesVthrough the installation of new firmware and, in
some cases, hardware upgrades. Hence, the new network-
ing features are commonly introduced via expensive, spe-
cialized, and hard-to-configure equipment (also known as
middleboxes) such as load balancers, intrusion detection
systems (IDSs), and firewalls, among others. These mid-
dleboxes need to be placed strategically in the network,
making it even harder to later change the network topo-
logy, configuration, and functionality.

In contrast, SDN decouples the control plane from the
network devices and becomes an external entity: the NOS
or SDN controller. This approach has several advantages.

• It becomes easier to program these applications
since the abstractions provided by the control plat-
form and/or the network programming languages
can be shared.

• All applications can take advantage of the same
network information (the global network view),
leading (arguably) to more consistent and effective
policy decisions, while reusing control plane soft-
ware modules.

• These applications can take actions (i.e., reconfig-
ure forwarding devices) from any part of the net-
work. There is therefore no need to devise a precise
strategy about the location of the new functionality.

• The integration of different applications becomes
more straightforward [29]. For instance, load ba-

lancing and routing applications can be combined
sequentially, with load balancing decisions having
precedence over routing policies.

A. Terminology
To identify the different elements of an SDN as un-

equivocally as possible, we now present the essential
terminology used throughout this work.

1) Forwarding Devices (FD): These are hardware- or
software-based data plane devices that perform a set of
elementary operations. The forwarding devices have well-
defined instruction sets (e.g., flow rules) used to take ac-
tions on the incoming packets (e.g., forward to specific
ports, drop, forward to the controller, rewrite some
header). These instructions are defined by southbound
interfaces (e.g., OpenFlow [9], ForCES [30], protocol-
oblivious forwarding (POF) [31]) and are installed in the
forwarding devices by the SDN controllers implementing
the southbound protocols.

2) Data Plane (DP): Forwarding devices are intercon-
nected through wireless radio channels or wired cables.
The network infrastructure comprises the interconnected
forwarding devices, which represent the data plane.

3) Southbound Interface (SI): The instruction set of the
forwarding devices is defined by the southbound API,
which is part of the southbound interface. Furthermore,
the SI also defines the communication protocol between
forwarding devices and control plane elements. This pro-
tocol formalizes the way the control and data plane ele-
ments interact.

4) Control Plane (CP): Forwarding devices are prog-
rammed by control plane elements through well-defined
SI embodiments. The control plane can therefore be seen
as the ‘‘network brain.’’ All control logic rests in the appli-
cations and controllers, which form the control plane.

5) Northbound Interface (NI): The NOS can offer an API
to application developers. This API represents a north-
bound interface, i.e., a common interface for developing
applications. Typically, a northbound interface abstracts
the low-level instruction sets used by southbound inter-
faces to program forwarding devices.

6) Management Plane (MP): The management plane is
the set of applications that leverage the functions offered
by the NI to implement network control and operation
logic. This includes applications such as routing, fire-
walls, load balancers, monitoring, and so forth. Essen-
tially, a management application defines the policies,
which are ultimately translated to southbound-specific
instructions that program the behavior of the forwarding
devices.

Fig. 5. Traditional networking versus SDN. With SDN, management

becomes simpler and middleboxes services can be delivered as

SDN controller applications.

Kreutz et al. : Software-Defined Networking: A Comprehensive Survey

Vol. 103, No. 1, January 2015 | Proceedings of the IEEE 19

Forwarding device (switch)

• Run in order thru flow tables
• Match on bitmasked fields (flow)
• Do action based on flow
• Collect statistics

of open and standard interfaces (e.g., OpenFlow), a crucial
approach for ensuring configuration and communication
compatibility and interoperability among different data
and control plane devices. In other words, these open in-
terfaces enable controller entities to dynamically program
heterogeneous forwarding devices, something difficult in
traditional networks, due to the large variety of proprietary
and closed interfaces and the distributed nature of the
control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as
shown in Fig. 7. A data plane device is a hardware or
software element specialized in packet forwarding, while a
controller is a software stack (the ‘‘network brain’’) run-
ning on a commodity hardware platform. An OpenFlow-
enabled forwarding device is based on a pipeline of flow
tables where each entry of a flow table has three parts: 1) a
matching rule; 2) actions to be executed on matching
packets; and 3) counters that keep statistics of matching
packets. This high-level and simplified model derived from

OpenFlow is currently the most widespread design of SDN
data plane devices. Nevertheless, other specifications of
SDN-enabled forwarding devices are being pursued,
including POF [31], [120] and the negotiable datapath
models (NDMs) from the ONF Forwarding Abstractions
Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence
of flow tables defines how packets should be handled.
When a new packet arrives, the lookup process starts in the
first table and ends either with a match in one of the tables
of the pipeline or with a miss (when no rule is found for
that packet). A flow rule can be defined by combining
different matching fields, as illustrated in Fig. 7. If there is
no default rule, the packet will be discarded. However,
the common case is to install a default rule which tells
the switch to send the packet to the controller (or to the
normal non-OpenFlow pipeline of the switch). The
priority of the rules follows the natural sequence number
of the tables and the row order in a flow table. Possible
actions include: 1) forward the packet to outgoing port(s);

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture.

Fig. 7. OpenFlow-enabled SDN devices.

Kreutz et al.: Software-Defined Networking: A Comprehensive Survey

24 Proceedings of the IEEE | Vol. 103, No. 1, January 2015

OpenFlow Protocol
• Three information sources for controller from forwarding

device

1. Event-based messages when a link or port change is
triggered.

2. Flow statistics are generated by the forwarding devices
and collected by the controller.

3. Packet-in messages when no flow rule or explicit ‘‘send to
controller’’ action.

• Controller install flow rules in the forwarding device flow tables

Network Operating System
• The North-bound API (“POSIX”)

• Still many contending APIs

• Some pure SDN e.g. NOX, POX

• Some legacy + SDN e.g. OpenDaylight

• Handles

• Distributed/multi-threaded controllers

• Conflicts between SDN-apps e.g. priority between security and routing
flow rules

• Support of several south-bound APIs

• Simplify standard functionality e.g. collect statistics, topology,
notifications, device mgmt, shortest path fwd, security mechanisms.

Cloud SDN - Intra DC
• Tenant specific topologies,

address and control
function virtualization

• Forwarding devices (FD)
in hypervisor

• Overlay network
between hypervisors

• Pseudo-SDN since
physical switches
not SDN

• Allow “moving” FD with
VM

Cloud SDN - WAN (B4)
• Why:

• Increased utilization from 30% to
70%-100%,

• Traffic shaping e.g. user data prioritized
over remote storage,

• Elastic bandwidth needs

• Failure handling support

• Routing and Traffic Engineering (TE) separate
SDN applications

• Allows falling back on standard protocols
when TE fails

• TE use QoS levels for apps corresponding to
fair-share BW – apps cooperate to allow
shallow buffers

• Central TE makes multi-site-links QoS possible

Design Decision Rationale/Bene�ts Challenges
B� routers built from
merchant switch silicon

B� apps are willing to trade more average bandwidth for fault tolerance.
Edge application control limits need for large bu�ers. Limited number of B� sites means
large forwarding tables are not required.
Relatively low router cost allows us to scale network capacity.

Sacri�ce hardware fault tolerance,
deep bu�ering, and support for
large routing tables.

Drive links to ����
utilization

Allows e�cient use of expensive long haul transport.
Many applications willing to trade higher average bandwidth for predictability. Largest
bandwidth consumers adapt dynamically to available bandwidth.

Packet loss becomes inevitable
with substantial capacity loss dur-
ing link/switch failure.

Centralized tra�c
engineering

Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.
Perhaps most importantly, we layered tra�c engineering on top

of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).
Each B� site consists of multiple switches with potentially hun-

dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.
In the rest of this section, we describe how we integrate ex-

isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.
Even so, the main reason we chose to build our own hardware

was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required

OF: OpenFlow
OFA: OF Agent abstract FD
OFC: OF Controller
NCS: Network Control Server
Paxos: Leader election of site controller
Gateway: abstract cluster of controllers
Quagga, RAP: Routing software

SDN next
• Commercial switches only handles about 500 flow changes per second –

needs improvement

• Move stateful local actions to switch, e.g. learning switch, threshold level rules,
etc

• Reduce RTT latency between FD and controller

• Interoperability between controller applications e.g. Statesman automatically
resolve conflicts

• Utilize high availability and scalability knowledge when designing distributed
controllers

• Simplify fast fail-over flow rules

• Introduce hierarchal switches doing some of the controlling

