SDN

Software Defined Networks

Harald Gustafsson

REFERENCES

» “Software-Defined Networking: A
Comprehensive Survey”, Kreutz et al,
proceedings of the IEEE, vol. 103, 2015,
pp 14-76.

» “B4: Experience with a globally-deployed
software defined WAN™, Jain et al, ACM
SIGCOMM Computer Communication
Review, vol. 43,2013, pp 3-14

SDN analogy

ssee T 9:41 AM

..ﬁ

Messages . Cal Jandar

Weather Clock

.I B,

Notes Remimners

Newsstand iTunes Store ApoSto'e :Nt- k

Compass

T -

SDN concept

14 U
sSer
Net App 1 Net App 2 “e » Net App n iy
i @ i space
{7 Abstract network vrews <
A N ()
% @ Open northbound AP1 POS | X
[Network Abstractions (e.g., topology abstraction)
% @ < /% Global network view
8 [Network Operatmg System (SDN controllers)] . DeV| ce
A i . 1))
. :@0pen southbound API dr|Ver
= P 2
E H - =
o
S
©
o

Network Infrastructure

Conventional Networking

Software-Defined Networking

Network Applications

MAC
Learning

Routin Intrusion
. & Detection
Algorithms
_ System

Load
Balancer

g

SDN controller

e New features
INntroduced as:

e New box
VS
* New app

< v

Forwarding device (switch)

FLOW TABLE

RULE j ACTION STATS

i !
/ \ i :
j
SDN DEVICE] I Packet + counters
I i
I I
4 i / \ i
g FLOW TABLES : 1. Forward packet to port(s)
3 B I 2. Encapsulate and forward to controller
o 1
> - i 3. Drop packet
S :E' ;':_H:l:% : 4. Send to normal processing pipeline
£ H B !
\) j Switch - MAC = MAC Eth = VLAN | IP | IP | TCP | TCP |
L / | port src dst type ID src dst psrc pdst

 Run in order thru flow tables
 Match on bitmasked fields (flow)
e Do action based on flow

o Collect statistics

Openklow Protocol

* Three information sources for controller from forwarding
device

1. Event-based messages when a link or port change is
triggered.

2. Flow statistics are generated by the forwarding devices
and collected by the controller.

3. Packet-in messages when no tlow rule or explicit “send to
controller” action.

* Controller install flow rules in the forwarding device flow tables

Network Operating System
* The North-bound API (“POSIX”) 58&5

« Still many contending APIs Pox

« Some pure SDN e.g. NOX, POX [L[‘L[)
|)
« Some legacy + SDN e.g. OpenDaylight
MNOX
 Handles 42 OPEN

Distributed/multi-threaded controllers

Conflicts between SDN-apps e.g. priority between security and routing
flow rules

Support of several south-bound APIs

Simplify standard functionality e.g. collect statistics, topology,
notifications, device mgmt, shortest path fwd, security mechanisms.

Cloud SDN - Intra DC

e Tenant specific topologies
address and control
function virtualization

e Forwarding devices (FD)
IN hypervisor

e QOverlay network
between hypervisors

 Pseudo-SDN since
physical switches
not SDN

* Allow "moving” FD with
VM

Network Virtualization Platform
vmware' nicira

cloudstack
va xru i rd
2 .: Appliances
Any CMP -----

h é

‘ ‘ — . Gateway
Any Workload Any Hypervisor
Any Topology BRAD HEDLUND .com *roadmap item Remote Site
e e ——————————————

Cloud SDN - WAN

o Why:

e Increased utilization from 30% to
70%-100%,

« Traffic shaping e.g. user data prioritized
over remote storage,

e Elastic bandwidth needs
« Failure handling support

» Routing and Traffic Engineering (TE) separate
SDN applications

» Allows falling back on standard protocols
when TE fails

o TE use QoS levels for apps corresponding to
fair-share BW — apps cooperate to allow
shallow buffers

e Central TE makes multi-site-links QoS possible

I Gateway

B4

Cental TE
Server

i Quagga{ RAP| TE Agent Paxosi
| OFC |1-:|" i

Site B
Controllers

Site C

Switch Switch

Clusters

— OpenFlow

ORON®)

-C: OF Controller

—A: OF Agent abstract FD

NCS: Network Control Server
Paxos: Leader election of site controller
Gateway: abstract cluster of controllers
Quagga, RAP: Routing software

Clusters

SDN next

Commercial switches only handles about 500 flow changes per second —
needs improvement

Move stateful local actions to switch, e.g. learning switch, threshold level rules,
etc

Reduce RTT latency between FD and controller

Interoperability between controller applications e.g. Statesman automatically
resolve contflicts

Utilize high availability and scalability knowledge when designing distributed
controllers

Simplify fast fail-over flow rules

Introduce hierarchal switches doing some of the controlling

