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Driving trends in cluster RM
Clusters of commodity servers becoming the 
primary computational platform. 

Emergence of frameworks that simplify cluster 
computing programming (MapReduce, Dryad 
etc). 

No framework to rule them all: each framework 
has its own merits! 

Running multiple frameworks on a cluster 
increases utilization and decreases 
unnecessary data replication! 



Static cluster partitioning



Static cluster partitioning



Static cluster partitioning

PROBLEM
load distributed 

unevenly!!



Alternative?



Alternative?

PROBLEM
Bin-packing (NP-hard!)



Requirements and challenges
Modern cluster RMs supporting multi-tenancy face the 
following… 
 
Requirements: 
high utilization, scalability, flexibility, user-supplied placement 
constraints, rapid decision making, data locality awareness, 
reliability. 

Challenges: 
complexity, hardware failures, cluster heterogeneity, workload 
heterogeneity, workload time-variability. 



Not all frameworks are equal
Frameworks have different characteristics. Modern 
frameworks often are elastic, while some are rigid. 

Elastic frameworks (e.g. Hadoop, Spark): 
Jobs can start executing as soon as a small set of resources 
have been allocated. Can scale appropriately as resources are 
added or removed. 

Rigid frameworks (e.g. MPI): 
Must acquire a fixed set of resources before jobs can be 
executed. Not scalable!



Workload characteristics

Omega, Google’s next-generation cluster management sys-
tem.

1.1 Contributions
The contributions of this paper are as follows. We:

1. present a lightweight taxonomy of the option space for
cluster scheduler development (§3);

2. introduce a new scheduler architecture using shared state
and lock-free optimistic concurrency control (§3.4);

3. compare the performance of monolithic, two-level and
shared-state scheduling using simulations and synthetic
workloads (§4);

4. explore the behavior of the shared-state approach in more
detail using code based on a production scheduler and
driven by real-world workload traces (§5); and

5. demonstrate the flexibility of the shared-state approach
by means of a use case: we add a scheduler that uses
knowledge of the global cluster utilization to adjust the
resources given to running MapReduce jobs (§6).

We find that the Omega shared-state architecture can de-
liver performance competitive with or superior to other ar-
chitectures, and that interference in real-world settings is
low. The ability to access the entire cluster state in a sched-
uler brings other benefits, too, and we demonstrate this by
showing how MapReduce jobs can be accelerated by using
spare resources.

2. Requirements
Cluster schedulers must meet a number of goals simulta-
neously: high resource utilization, user-supplied placement
constraints, rapid decision making, and various degrees of
“fairness” and business importance – all while being robust
and always available. These requirements evolve over time,
and, in our experience, it becomes increasingly difficult to
add new policies to a single monolithic scheduler. This is
not just due to accumulation of code as functionality grows
over time, but also because some of our users have come
to rely on a detailed understanding of the internal behavior
of the system to get their work done, which makes both its
functionality and structure difficult to change.

2.1 Workload heterogeneity
One important driver of complexity is the hardware and
workload heterogeneity that is commonplace in large com-
pute clusters [24].

To demonstrate this, we examine the workload mix on
three Google production compute clusters that we believe to
be representative. Cluster A is a medium-sized, fairly busy
one, while cluster B is one of the larger clusters currently
in use at Google, and cluster C is the one for which a
scheduler workload trace was recently published [24, 27].
The workloads are from May 2011. All the clusters run a

Figure 2: Batch and service workloads for the clusters A,
B, and C: normalized numbers of jobs (J) and tasks (T), and
aggregate requests for CPU-core-seconds (C) and RAM GB-
seconds (R). The striped portion is the service jobs; the rest
is batch jobs.
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Figure 3: Cumulative distribution functions (CDFs) of job
runtime and job inter-arrival times for clusters A, B, and C.
Where the lines do not meet 1.0, some of the jobs ran for
longer than the 30-day range. In this and subsequent graphs,
solid lines represent batch jobs, and dashed lines are for
service jobs.

wide variety of jobs; some are configured by hand; some by
automated systems such as MapReduce [8], Pregel [19] and
Percolator [23].

There are many ways of partitioning a cluster’s workload
between different schedulers. Here, we pick a simple two-
way split between long-running service jobs that provide
end-user operations (e.g., web services) and internal infras-
tructure services (e.g., BigTable [5]), and batch jobs which
perform a computation and then finish. Although many other
splits are possible, for simplicity we put all low priority jobs1

and those marked as “best effort” or “batch” into the batch
category, and the rest into the service category.

A job is made up of one or more tasks – sometimes
thousands of tasks. Most (>80%) jobs are batch jobs, but the
majority of resources (55–80%) are allocated to service jobs
(Figure 2); the latter typically run for much longer (Figure
3), and have fewer tasks than batch jobs (Figure 4). These
results are broadly similar to other analyses of cluster traces
from Yahoo [17], Facebook [7] and Google [20, 24, 25, 29].

Why does this matter? Many batch jobs are short, and
fast turnaround is important, so a lightweight, low-quality

1 In the public trace for cluster C, these are priority bands 0–8 [27].

���

Workloads are often very 
heterogeneous. 

Rough division of jobs: 
• Batch: ”once and done”, best 

effort, small! 
• Service: large, long-running, 

provides end-user service! 

While the majority (>80%) of the jobs 
are batch jobs, service jobs consume 
most resources (50-80%). 

Implications for scheduling?



Workload characteristics
It can make sense to spend some time on 
”clever” scheduling of long-running service 
jobs. 

For batch jobs, this takes too much time! 

Creates ”head of line blocking”!

Hmm…

ZZzzz!



Some existing solutions

Monolithic
Borg

Two-level
Mesos, YARN

Shared state 
Omega

Degree of de-centralization

Focus here will be on some existing cluster resource management 
systems. 

Some of them have developed significantly since their publication.



Monolithic scheduling
Mature technology, been around a long time, common in HPC. 

Single resource manager and scheduler. 

Some issues: 
• Head of line blocking (adressed by multi path scheduling). 
• Limited scalability. 
• Limited flexibility. 

Prominent example: Borg, used internally at Google. 



Two-level (dynamic) scheduling
Prominent example: Mesos. 

No central scheduler: each framework keeps its own scheduler 
and keep track of arriving jobs. Instead, framework schedulers 
are offered resources by a central process and may choose to 
accept or reject the offer. 

The RM dynamically partitions the cluster, deciding the 
allocation of resources to each framework. 

Issues: suitable for short-lived jobs, not for service jobs. 
Schedulers are unaware of each other. Gang scheduling by 
hoarding -> potential deadlock!



Architecture of Mesos
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Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPI).

3 Architecture
We begin our description of Mesos by discussing our de-
sign philosophy. We then describe the components of
Mesos, our resource allocation mechanisms, and how
Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy
Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters.
Because cluster frameworks are both highly diverse and
rapidly evolving, our overriding design philosophy has
been to define a minimal interface that enables efficient
resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frame-
works. Pushing control to the frameworks has two bene-
fits. First, it allows frameworks to implement diverse ap-
proaches to various problems in the cluster (e.g., achiev-
ing data locality, dealing with faults), and to evolve these
solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system,
which makes it easier to keep Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-
pect higher-level libraries implementing common func-
tionality (such as fault tolerance) to be built on top of
it. These libraries would be analogous to library OSes in
the exokernel [20]. Putting this functionality in libraries
rather than in Mesos allows Mesos to remain small and
flexible, and lets the libraries evolve independently.

3.2 Overview
Figure 2 shows the main components of Mesos. Mesos
consists of a master process that manages slave daemons
running on each cluster node, and frameworks that run
tasks on these slaves.

The master implements fine-grained sharing across
frameworks using resource offers. Each resource offer
is a list of free resources on multiple slaves. The master
decides how many resources to offer to each framework
according to an organizational policy, such as fair sharing
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Figure 3: Resource offer example.

or priority. To support a diverse set of inter-framework
allocation policies, Mesos lets organizations define their
own policies via a pluggable allocation module.

Each framework running on Mesos consists of two
components: a scheduler that registers with the master
to be offered resources, and an executor process that is
launched on slave nodes to run the framework’s tasks.
While the master determines how many resources to of-
fer to each framework, the frameworks’ schedulers select
which of the offered resources to use. When a framework
accepts offered resources, it passes Mesos a description
of the tasks it wants to launch on them.

Figure 3 shows an example of how a framework gets
scheduled to run tasks. In step (1), slave 1 reports
to the master that it has 4 CPUs and 4 GB of mem-
ory free. The master then invokes the allocation mod-
ule, which tells it that framework 1 should be offered
all available resources. In step (2), the master sends a
resource offer describing these resources to framework
1. In step (3), the framework’s scheduler replies to the
master with information about two tasks to run on the
slave, using h2 CPUs, 1 GB RAMi for the first task, and
h1 CPUs, 2 GB RAMi for the second task. Finally, in
step (4), the master sends the tasks to the slave, which al-
locates appropriate resources to the framework’s execu-
tor, which in turn launches the two tasks (depicted with
dotted borders). Because 1 CPU and 1 GB of RAM are
still free, the allocation module may now offer them to
framework 2. In addition, this resource offer process re-
peats when tasks finish and new resources become free.

To maintain a thin interface and enable frameworks
to evolve independently, Mesos does not require frame-
works to specify their resource requirements or con-
straints. Instead, Mesos gives frameworks the ability to
reject offers. A framework can reject resources that do
not satisfy its constraints in order to wait for ones that
do. Thus, the rejection mechanism enables frameworks
to support arbitrarily complex resource constraints while
keeping Mesos simple and scalable.

One potential challenge with solely using the rejec-

3

Add new FW: 
• scheduler registers with 

Mesos master 
• executors launched on 

slave nodes to do the 
actual work. 

Containers for isolation. 

Fault tolerance by making 
the master soft state.



Example: resource offers in Mesos
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Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPI).

3 Architecture
We begin our description of Mesos by discussing our de-
sign philosophy. We then describe the components of
Mesos, our resource allocation mechanisms, and how
Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy
Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters.
Because cluster frameworks are both highly diverse and
rapidly evolving, our overriding design philosophy has
been to define a minimal interface that enables efficient
resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frame-
works. Pushing control to the frameworks has two bene-
fits. First, it allows frameworks to implement diverse ap-
proaches to various problems in the cluster (e.g., achiev-
ing data locality, dealing with faults), and to evolve these
solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system,
which makes it easier to keep Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-
pect higher-level libraries implementing common func-
tionality (such as fault tolerance) to be built on top of
it. These libraries would be analogous to library OSes in
the exokernel [20]. Putting this functionality in libraries
rather than in Mesos allows Mesos to remain small and
flexible, and lets the libraries evolve independently.

3.2 Overview
Figure 2 shows the main components of Mesos. Mesos
consists of a master process that manages slave daemons
running on each cluster node, and frameworks that run
tasks on these slaves.

The master implements fine-grained sharing across
frameworks using resource offers. Each resource offer
is a list of free resources on multiple slaves. The master
decides how many resources to offer to each framework
according to an organizational policy, such as fair sharing
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or priority. To support a diverse set of inter-framework
allocation policies, Mesos lets organizations define their
own policies via a pluggable allocation module.

Each framework running on Mesos consists of two
components: a scheduler that registers with the master
to be offered resources, and an executor process that is
launched on slave nodes to run the framework’s tasks.
While the master determines how many resources to of-
fer to each framework, the frameworks’ schedulers select
which of the offered resources to use. When a framework
accepts offered resources, it passes Mesos a description
of the tasks it wants to launch on them.

Figure 3 shows an example of how a framework gets
scheduled to run tasks. In step (1), slave 1 reports
to the master that it has 4 CPUs and 4 GB of mem-
ory free. The master then invokes the allocation mod-
ule, which tells it that framework 1 should be offered
all available resources. In step (2), the master sends a
resource offer describing these resources to framework
1. In step (3), the framework’s scheduler replies to the
master with information about two tasks to run on the
slave, using h2 CPUs, 1 GB RAMi for the first task, and
h1 CPUs, 2 GB RAMi for the second task. Finally, in
step (4), the master sends the tasks to the slave, which al-
locates appropriate resources to the framework’s execu-
tor, which in turn launches the two tasks (depicted with
dotted borders). Because 1 CPU and 1 GB of RAM are
still free, the allocation module may now offer them to
framework 2. In addition, this resource offer process re-
peats when tasks finish and new resources become free.

To maintain a thin interface and enable frameworks
to evolve independently, Mesos does not require frame-
works to specify their resource requirements or con-
straints. Instead, Mesos gives frameworks the ability to
reject offers. A framework can reject resources that do
not satisfy its constraints in order to wait for ones that
do. Thus, the rejection mechanism enables frameworks
to support arbitrarily complex resource constraints while
keeping Mesos simple and scalable.

One potential challenge with solely using the rejec-
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1. Slave 1 reports that it has free 
resources. 

2. The master offers the newly freed 
resources to FW1. 

3. FW1 responds with two tasks it 
wants launched, along with 
resources needed. 

4. The master sends the tasks to the 
slave. 

Still free resources may be offered to 
FW2. 

Data locality handled using delay 
scheduling.

(*) adopted from Hindman et al: Mesos: A Platform for Fine-Grained 
Resource Sharing in the Data Center



Experimental results with Mesos
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Figure 5: Comparison of cluster shares (fraction of CPUs) over time for each of the frameworks in the Mesos and static partitioning
macrobenchmark scenarios. On Mesos, frameworks can scale up when their demand is high and that of other frameworks is low, and
thus finish jobs faster. Note that the plots’ time axes are different (e.g., the large Hadoop mix takes 3200s with static partitioning).

Figure 6: Framework shares on Mesos during the macrobench-
mark. By pooling resources, Mesos lets each workload scale
up to fill gaps in the demand of others. In addition, fine-grained
sharing allows resources to be reallocated in tens of seconds.

(ALS), a collaborative filtering algorithm [42]. This job
is CPU-intensive but also benefits from caching its input
data on each node, and needs to broadcast updated pa-
rameters to all nodes running its tasks on each iteration.

Torque / MPI Our Torque framework ran eight in-
stances of the tachyon raytracing job [35] that is part of
the SPEC MPI2007 benchmark. Six of the jobs ran small
problem sizes and two ran large ones. Both types used 24
parallel tasks. We submitted these jobs at fixed times to
both clusters. The tachyon job is CPU-intensive.

6.1.2 Macrobenchmark Results
A successful result for Mesos would show two things:
that Mesos achieves higher utilization than static parti-
tioning, and that jobs finish at least as fast in the shared
cluster as they do in their static partition, and possibly
faster due to gaps in the demand of other frameworks.
Our results show both effects, as detailed below.

We show the fraction of CPU cores allocated to each
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Figure 7: Average CPU and memory utilization over time
across all nodes in the Mesos cluster vs. static partitioning.

framework by Mesos over time in Figure 6. We see that
Mesos enables each framework to scale up during peri-
ods when other frameworks have low demands, and thus
keeps cluster nodes busier. For example, at time 350,
when both Spark and the Facebook Hadoop framework
have no running jobs and Torque is using 1/8 of the clus-
ter, the large-job Hadoop framework scales up to 7/8 of
the cluster. In addition, we see that resources are reallo-
cated rapidly (e.g., when a Facebook Hadoop job starts
around time 360) due to the fine-grained nature of tasks.
Finally, higher allocation of nodes also translates into in-
creased CPU and memory utilization (by 10% for CPU
and 17% for memory), as shown in Figure 7.

A second question is how much better jobs perform
under Mesos than when using a statically partitioned
cluster. We present this data in two ways. First, Fig-
ure 5 compares the resource allocation over time of
each framework in the shared and statically partitioned
clusters. Shaded areas show the allocation in the stat-
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(*) adopted from Hindman et al: Mesos: A Platform for Fine-Grained 
Resource Sharing in the Data Center
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Resource Sharing in the Data Center



Shared-state scheduling
Prominent example: Omega. 

No central scheduler NOR resource manager! Instead, a 
master copy of the cluster state. 

Each framework scheduler has FULL access to the cluster and 
keeps a local copy of the cluster state. 

FWs operate in a FFA manner and can grab any free 
resources according to their view of the cluster state. 

Issues: Inherent risk for conflicts! Solved using optimistic 
concurrency control. Fault tolerance? 



Resource reservation in Omega

FW 1 FW 2

Cluster



Resource reservation in Omega
Assume that jobs arrive to both FW1 and FW2. 

Both FWs try to grab resources that are free from their POV!



Resource reservation in Omega



Resource reservation in Omega

PROBLEM
conflict!



Resource reservation in Omega

Only one transaction 
can succeed. Conflict 
resolved! 

Incremental 
reservation for FW 1.



To conclude…
Multi-tenancy is key for modern cluster RM systems. 

Several of the solutions here are in active development, open-
sourced and widely adopted. 

Still, surprisingly little math behind… (I’m biased on this) 

Ironically, several cases are built on assumed issues of 
monolithic schedulers. Recent Borg paper shows it might not 
be so…
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