UNIVERSITY _

Cluster Resource Management -

JONAS DURANGO

Driving trends 1n cluster RM

Clusters of commodity servers becoming the
primary computational platform.

Emergence of frameworks that simplify cluster
computing programming (MapReduce, Dryad
etc).

No framework to rule them all: each framework
has its own merits!

Running multiple frameworks on a cluster
increases utilization and decreases
unnecessary data replication!

UNIVERSITY

Static cluster partitioning

UNIVERSITY

Static cluster partitioning

UNIVERSITY

Static cluster partitioning

UNIVERSITY

Alternative?

<4

UNIVERSITY

Alternative?

<4

UNIVERSITY

Requirements and challenges

Modern cluster RMs supporting multi-tenancy face the
following...

Requirements:

high utilization, scalability, flexibility, user-supplied placement
constraints, rapid decision making, data locality awareness,
reliability.

Challenges:

complexity, hardware failures, cluster heterogeneity, workload
heterogeneity, workload time-variability.

UNIVERSITY

Not all frameworks are equal

Frameworks have different characteristics. Modern
frameworks often are elastic, while some are rigid.

Elastic frameworks (e.g. Hadoop, Spark):

Jobs can start executing as soon as a small set of resources
have been allocated. Can scale appropriately as resources are
added or removed.

Rigid frameworks (e.g. MPI):

Must acquire a fixed set of resources before jobs can be
executed. Not scalable!

UNIVERSITY

Workload characteristics

Workloads are often very
heterogeneous.

Rough division of jobs:

- Batch: "once and done”, best
effort, small!

- Service: large, long-running,
provides end-user service!

While the majority (>80%) of the jobs
are batch jobs, service jobs consume
most resources (50-80%).

Implications for scheduling?

1.0
0.8
0.6
0.4
0.2

0.0

1s 1min 1h 1d 29d

UNIVERSITY

Workload characteristics

It can make sense to spend some time on
"clever” scheduling of long-running service

jobs.

For batch jobs, this takes too much time!

Creates "head of line blocking”

LHiHimnenim

UNIVERSITY

Some existing solutions

Focus here will be on some existing cluster resource management
systems.

Some of them have developed significantly since their publication.

Monolithic Two-level Shared state
Borg Mesos, YARN Omega

Google Chedbep (GOogle

Degree of ade-centralization %

UNIVERSITY

Monolithic scheduling

Mature technology, been around a long time, common in HPC.
Single resource manager and scheduler.

Some issues:

-Head of line blocking (adressed by multi path scheduling).
_imited scalability.

_imited flexibility.

Prominent example: Borg, used internally at Google.

UNIVERSITY

Two-level (dynamic) scheduling

Prominent example: Mesos.

No central scheduler: each framework keeps its own scheduler
and keep track of arriving jobs. Instead, framework schedulers

are offered resources by a central process and may choose to

accept or reject the offer.

The RM dynamically partitions the cluster, deciding the
allocation of resources to each framework.

Issues: suitable for short-lived jobs, not for service jobs.
Schedulers are unaware of each other. Gang scheduling by -
hoarding -> potential deadlock! Rl

UNIVERSITY

Architecture of Mesos

Add new FW:
- scheduler registers with
Mesos master Hadoop MP ZooKeeper
scheduler scheduler quorum
- executors launched on B
slave nodes to do the A o
actual work. Mesos A_| i Standby |
/maSte'ri ----- . -___”]@§t_e_r___i
Contalners for |solat|on. Mesos slave| | Mesos slave Mesos slave
Hadoop MPI Hadoop || MPI
executor executor executor||executor
Fault tolerance by making task || task || task | || [task

the master soft state.

UNIVERSITY

Example: resource offers in Mesos

1. Slave 1 reports that it has free

resources. _ — F -
ramewor ramewor
2. The master offers the newly freed Job1 | Job2 Job1 | Job2
resources to FW1 e T/ Scheduler
. <task1, s1, 2cpu: 1gb, ... >
3. FW1 responds with two tasks it = :\@\\@fasm’ s |
wants launched, along with Allocatior m::fes}
resources needed. —
("<s1, 4cpu, 4gb, ... > (1 <fw1, task1, 2cpu, 1gb, ... >]
4. The master sends the tasks to the L B e B
slave. ____Slavel ___ Slave 2
, ___Executor i Executor
: 'Lr_'l'_a_sg_:[_'l'_a_sg_: i Task || Task

Stl” free resources may be Oﬁered tO (*) adopted from Hindman et al: Mesos: A Platform for Fine-Grained
FW2 Resource Sharing in the Data Center

Data locality handled using delay
scheduling.

UNIVERSITY

Experimental results with Mesos

Share of Cluster

Share of Cluster

1

0.8
0.6 -

04 +
0.2
0

1
0.8
0.6
0.4
0.2

0

(a) Facebook Hadoop Mix

v

0 200 400

‘h»

Static Partitioning mmmm |
Mesos

MNWMWWWWWM “ m.‘W L. WMLWM wy

800 1000 1200 1400 1600
Time (s)

(c) Spark

MM mM

0

Static Partltlonlng y
esos

hummu.n I MM I ‘l T

800 1000 1200 1400 1600 1800
Time (s)

Share of Cluster

Share of Cluster

(b) Large Hadoop Mix

1
0.8 | Static Partitioning mmmm |
O. 5 Mesos
0.4 |
0.2 M

0 I I I I I

0 500 1000 1500 2000 2500 3000
Time (s)
(d) Torque / MPI

1
0.8 | Static Partitioning s |
0' 6l Mesos
0.4 | .
0.2 + |

0 e T T e e

0 200 400 600 800 1000 1200 1400 1600
Time (s)

(*) adopted from Hindman et al: Mesos: A Platform for Fine-Grained

Resource Sharing in the Data Center

LUND

UNIVERSITY

Experimental results with Mesos

CPU Utilization (%)

Memory Ultilization (%)

100 [[[[I I I
80 =T—\ =
60 f _/§ ’ e 3 ——_— " \" ”_—_\\\ /|
40 ~- N B
28 Mesos Static ----_
200 400 600 800 1000 1200 1400 1600
Time (s)
50 [[[I I I I
40
30
20
18 R RN Mesos Static ----
0 200 400 600 800 1000 1200 1400 1600
Time (s)

(*) adopted from Hindman et al: Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center

UNIVERSITY

Shared-state scheduling

Prominent example: Omega.

No central scheduler NOR resource manager! Instead, a
master copy of the cluster state.

Each framework scheduler has FULL access to the cluster and
keeps a local copy of the cluster state.

FWs operate in a FFA manner and can grab any free
resources according to their view of the cluster state.

Issues: Inherent risk for conflicts! Solved using optimistic
concurrency control. Fault tolerance?

UNIVERSITY

Resource reservation in Omega

o1 1

4 N
By § N
Ry
Ry
& /

Cluster

Resource reservation in Omega

Assume that jobs arrive to both FW1 and FW2.

Both FWs try to grab resources that are free from their POV!

/)
Ommn N
00—
OO m

0 /

* s
»‘"F&RVMIOQ
o RENE
7 23 w\2
STNES: ey 2
3 @I
UK 5
6 S

S

Resource reservation in Omega

Resource reservation in Omega

UNIVERSITY

Resource reservation in Omega

Only one transaction
can succeed. Conflict
resolved!

Incremental
reservation for FW 1.

UNIVERSITY

To conclude...

Multi-tenancy is key for modern cluster RM systems.

Several of the solutions here are in active development, open-
sourced and widely adopted.

Still, surprisingly little math behind... (I'm biased on this)

Ironically, several cases are built on assumed issues of
monolithic schedulers. Recent Borg paper shows it might not
be so...

UNIVERSITY

Retference list

Hindman et al: Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center

Schwarzkopf et al: Omega: flexible, scalable schedulers for large
compute clusters

Vavilapalli et al: Apache Hadoop YARN: Yet Another Resource
Negotiator

Verma et al: Large-scale cluster management at Google with
Borg

UNIVERSITY

