
MapReduce

Jens Andersson

Lund University / Electrical and Information Technology / Jens Andersson

Agenda

• Motivation and Objectives
• MapReduce Programming model

– Example
• The Google Way
• Apache Haadop

– Pig
– Hive
– Spark

Lund University / Electrical and Information Technology / Jens Andersson

Motivation and Objectives

• Parallel processing of huge data sets
• How to distribute data to processes/processors

– Load balancing
– Parallel execution / Reduce execution time
– Fault tolerance

Lund University / Electrical and Information Technology / Jens Andersson

MapReduce: Programming model
• Two-stage, mostly disk-based, paradigm
• Map function:

– Process input key/value pairs to create intermediate key/
value pairs

– (kn,vn) -> list(ki,vi)
• Reduce function:

– Process input intermediate keys and all values for that key
into one (few) values for that key

– (ki,list(vi)) -> list(vi)
• If clusters:

– Add “Shuffle”/Distribute Map and Reduce functions 

Lund University / Electrical and Information Technology / Jens Andersson

Node Size vs Network Utilisation

Network 
Utilisation

Node Size

Lund University / Electrical and Information Technology / Jens Andersson

Example
• Usage data from Video on Demand (VoD) network

– 1 month of data
– 17,000,000 request
– 560,000 active accounts
– 20,000 requested programs
– 80 different channels
– 2 GB of data in one text file
– For each request

• Date and time, Account, Program meta data (name, season, episode, length .. …),
Channel

• Disclaimer:
– fully possible to run on a normal PC
– basic data reduction approx 2-3 hours  

of execution time

Lund University / Electrical and Information Technology / Jens Andersson

Example (cont …)

• Longitudinal study of number of request per active account
• Map all requests for one account as one set

– Key = account id
– Data = request meta data

• Distribute (“Shuffle”) sets per key to cluster nodes
• Reduce data per unique accounts

– Example: Calculate duration of sessions of consecutive
requests

• Present reduced data

Lund University / Electrical and Information Technology / Jens Andersson

Example (cont …)

• Our example:
– Map: 

(reqn,(account,start,stop)n) -> list(accounti,
(req,start,stop)i)

– Reduce: 
(accounti, list((req,start,stop)i)) ->
list(account,avg(session))i

Lund University / Electrical and Information Technology / Jens Andersson

The Google Way

• J. Dean and S. Ghemawat, ”MapReduce: Simplified Data
Processing on Large Clusters”

• Adapted to Google’s commodity cluster node and Googles File
System (GFS)

• Locality
– Keep track of physical location of stored data to minimise

network utilisation
• Task granularity

– How to distribute Map and Reduce job to the cluster
– Optimisation, f(node capacity, physical location)
– Goal: Load balancing, failure recovery

Lund University / Electrical and Information Technology / Jens Andersson

Lund University / Electrical and Information Technology / Jens Andersson

What if …?

• Worker failure (master recognises no response from worker)
– Reset to idle state
– Reschedule lost task on available worker

• Master failure
– Current master periodically writes checkpoints
– On failure

• Alt 1: Assign new master and restart at last checkpoint 
Any worker that detects dead master can be new master

• Alt 2: Since failure of master is unlikely, kill job and start
over.

Lund University / Electrical and Information Technology / Jens Andersson

Locality

• GFS stores several replicas (3) of each file 64 MB block on
different machines

• Master schedules Map task on workers that already carry a
replica.

Lund University / Electrical and Information Technology / Jens Andersson

Backup Tasks

• Not all workers perform on top
– ”Stragglers”

• When close to completion
– Master schedules backup execution of remaining in-

progress task on idle worker
– Task is marked completed whenever original or backup

has completed the task.

Lund University / Electrical and Information Technology / Jens Andersson

Apache Hadoop

• From http://hadoop.apache.org/ 
”The Apache™ Hadoop® project develops open-source software for reliable,
scalable, distributed computing.”

• Relies on two-stage disk-based MapReduce Paradigm (compare with Google)
• SW lib for distributed processing of large datasets

– Hadoop Common
• ”root”

– Hadoop Distributed File System (HDFS™)
– Hadoop YARN

• Job scheduling, cluster resource management for MapReduce
– Hadoop MapReduce

• YARN-based system for parallel processing

Lund University / Electrical and Information Technology / Jens Andersson

Pig, Hive, Spark

Apache Pig
• High-level platform on top of Haadop
• Pig Latin:

– Language for the platform, similar to SQL
– Procedural, fits well into pipe-line paradigm

• Unlike SQL Pig can split a data processing stream and
apply different operators to each split.

• Developed at Yahoo but moved to Apache Software
Foundation

Lund University / Electrical and Information Technology / Jens Andersson

Pig, Hive, Spark

Apache Hive
• Report and analysis infrastructure built on top of Haadop
• Data summarisation, query, analysis
• SQL-like language: HiveQL
• Offers basic support for indexes

• Developed by Facebook
• Included in Amazon Elastic MapReduce

Lund University / Electrical and Information Technology / Jens Andersson

Pig, Hive, Spark

Apache Spark
• Open-source cluster computing framework
• Works in memory (contrary to two-stage disk-based

paradigm), thus much faster.
• Requires cluster manager and distributed storage system

– Supports Haadop YARN
– Can interface with HDFS, Amazon S3

• Originally from AMPLab, UC Berkeley

