Hardware-assisted
virtualization

 Why hardware-assisted virtualisation”
* Higher demand for virtualization
* |ncrease performance, lower cost of virtualization
e [ower Virtual Machine Monitor(VMM) complexity

 Mostly used hardware for virtualization is x86 and
maybe soon also ARM

Timeline x86

Before 2005

e Binary translation
After 2005, CPU virtualization

* Trap and emulate, Intel VI-x, AMD-V
After 2010, Memory virtualization

e Second Level Address Translation, Intel Extended Page Table(EPT), AMD Rapid
Virtualization Indexing(RVI)

e Device virtualisation, Intel VI-d, AMD-V|
After 2013, CPU virtualization

* Nested virtual machines, Intel Virtual machine Control Structure(VMCS) shadowing

http://en.wikipedia.org/wiki/Rapid_Virtualization_Indexing

Whny can't x8o be classically
virtualized??

e Classically means virtualized with trap and emulate

Least privileged

 Visibility of privilege state(Ring, %cs)

* Lack of trap on privileged instructions running at
user-level(Ring 3)
 Example: popf instruction
* Same instruction behaves differently
depending on privileged state

e User Mode(Ring 3): changes ALU flags like
the ZeroFlag(ZF)

e Kernel Mode(Ring 0): changes ALU and
system flags like Interrupt Flag(lF)

* Does not generate a trap in user mode(Ring
3)

_ _ Most privileged
Device drivers

Device drivers

Applications

Binary Iranslation

Guest Code Translation Cache
. mov ebx, eax { mov ebx, eax
e |nterpret the binary code ==
and ebx, ~Oxfff { and ebx, ~Oxfff
mov ebx, cr3 e 1’ mov [CO_ARG], ebx
* X806 — x86 assembly [cet mawoe ces
ret mov [VIF], 1
test [INT _PEND], 1

...... m....................
call E!ANDI.B_IN"I'Sv

“f jmp HANDLE RET

* Most instructions remain identical, except control flow
(calls, jumps, branches, ret, etc.), and privileged
instructions

e Avoids traps, which can be expensive

e [ranslation cache is used to speed up

Trap & Emulate

GuestOS

trap

-~
~
~
~
~
~
~
~
~~
.

emulate change

change

vmm

Tesource

 Run guest VM In
unprivileged mode

* Execute guest instructions
on real CPU when possible

 £.g., addl %eax, %ex

* Privileged instructions trap,
and VMM emulates

e E.g., movl %eax, %cCr3

e Jraps into VMM so the
effect can be emulated

Enaple trap and emulate

* A new set of CPU protection rings for guest(non-root) mode in

addition to the old host(root) mode Guest 3 Guest User
‘c‘% Guest 2
> Guest 1

%O
© GuestOGuestkemel

Host 3 QEmu
Host 2

6
'p -
:O,

* New instructions for moving between host and guest mode
called "VMRUN" and also instructions for setting the new Virtual
Machine Control Structure(VMCS) pointer.

« VMM fills the VMCS and execute “VMRUN"

e VMM software emulation still needed.

Memory Virtualization

Traditionally, Host OS fully controls all physical memory space and

provides a continuous addressing space(virtual addresses) to each
Process

Guest OS is just one of many user space processes, but under VMM
control

In system virtualization, VMM should make all virtual machines share the
same physical memory space

« Before HW support, Shadow Page Tables

o Second Level Address Translation(SLAT), Intel EPT, AMD RVI

Virtual memory and MMU

Virtual Memory

Each process has its own space

Virtual address space Physical address space
(usually starting at 0x0)
A memory page is a fixed ER i "““*-~~~-liii:;;-“i::::f-
length contiguous block (4KB, 2 MB) | A
of data used for memory allocation -

ala "

A page table keeps all mapping])
between the virtual blocks and R4 “;:
ohysical blocks where data is - I_ I
stored. It also contains read, write | // -
and execute flags on the blocks. o osmok |

D page belonging to process

OX7HHHr | ﬂ page not belonging to process

Virtual memory enables memory
Isolation between user processes

Memory Management Unit

* A hardware component responsible for handling
accesses to memory requested by the CPU

 Address translation: virtual address to physical
address (VA to PA)

 Memory protection(read/write/execute)
 Cache control
 Bus arbitration

 The MMU keeps a in-memory(RAM) table called page
table that maps logical pages to physical pages.

Page lables

* A page table is the data structure used by a virtual
memory system to store the mapping between
virtual addresses and physical addresses

 Page table base register(PTBR, %cr3 on x86)
e Stores the address of the base page table for MMU

‘ page directory | page table I offset |
L physical address
—
e —

PTBR 10

Translation Look-aside
Butfer(TLB)

e Jranslation look-aside buffer

A CPU cache that MMU hardware uses to improve virtual
address translation speed

* Avoid accessing and walking the page table in main memory
* [he search key is the virtual address and the search result is a

pohysical address . o
Logical Physical Page #1
Address Address
Bo—
CPU MMO Page #2
? Page #3
Y EEE—
Page #4
TLE
—_———=
Page #5
TLE: Translation Look—-aside Buffer
MHMU: Memory Management Unit

CPU: Central Processing Unit

Memory Virtualization
Architecture

Guest OS

NI

" Guest Page Table

I N N

= Memory Slot /

L1l [l J[| hostvirtual address
T —

""Host Page Table

I | N |

Virtual Machine Monitor

Software memory
virtualization

- VMM creates and maintains page tables that map guest virtual
pages directly to machine pages, called the shadow page table

+ Shadow page table is the one used by the MMU
+ In each VM, OS creates and manages its own page table

- Not used by MMU Hardware

- Quest page table is protected from writing with MMU by VMM

- Manipulation of the guest page table is tracked, and the

VMM updates the shadow page table and the guest page
table accordingly

Shadow page table

Virtual Machine #1 Virtual Machine #2
N
Process 1 Process 2 Process 1 Process 2
NN JAS |

j
j
j

Logical
Pages

Physical
Pages

Machine
Pages

Hardware memory
virtualization

o Second Level Address Translation(SLAT), Intel EPT, AMD RVI
« Shadow page tables now handled by hardware.

* Two page tables are exposed to hardware

The EPT its set with an entry in the VMCS
* One walker does Guest VA - PA on page table managed by VM

* One walker does Guest PA - MA on page table managed by
VMM

 [LB miss create extra penalty due to the extra walk in nested
page table

15

Extended Page lable

 Memory operation :

Guest Virtual
Address

—> Data
Guest OS
VMM
EPT MMU ~\
T Host Physical Address
13
. 12
Process 1 Process 2 Guest Physical
| O A O A uest virtual address Address |
Sl DU oo o > o
LLLLLTL LT uest physical address | EPT Pointer=10 |~»
L 7 S So=_ N p

Virtual Machine Monitor

Cost

* Binary translation vs VI-x(2005), VMWare

100 - T
Software VMM s
Hardware VMM 5
80 |
5
@
el
@ 60 |
o
=
=
=
QO
=
® 40r
c
°
20 +
0

compileLin compileWin Apachelin ApacheWin LargeRAM 2DGraphics

Figure 3. Macrobenchmarks.

Gain

 Second level address translation(EPT) gain

Figure 7. 64-bit Apache Compile Time (Lower is Better)

. 12 T
=
I 1.00 m SW MMU
s EPT
7))
o
<'>’ 0.8
- 0.62 0.65
L 06+
o) 0.48
Q 0.43
H— 0.38
(4] 4
= 04
o 0.25
Z 0.19
() 0.2 T
£
-

0.0 -

1vCPU 2vCPUs 4vCPUs 8vCPUs

Number of Virtual CPUs

Cost

e Bare metal comparison 2012, CPU, IPC, filesystem

Composite Throughput score

5,000

4,500

4,000

3,500

3,000
B Bare Metal

2 500

B KVM VM

2 000

B Vrmware Wi

1,500

1,000

0,500

0,000

Final Score

Figure 5.33: UnixBench composite throughput score

Device virtualization

* Needs CPU, chipset and system firmware support

* |/O MMU virtualization(Intel VT-d, AMD-Vi)
* For full control over devices with DMA and interrupt remapping.
* Devices on PCI bus must support Function Level Reset(FLR)

* Network virtualization(Intel VI-c)
* Intel I/O accelerated Technologies for reduction of CPU loads
 Virtual machine device queues(VMDQ)
* Single root /O virtualization(SR-10V)

* Allows PCle devices to appear to be multiple separate physical devices, good for
NIC.

* Network interface with support can get up to 95% performance of bare metal.

20

Device Virtualization

Emulated I/O Passthrough 1/O
Hosted or Split Hypervisor Direct

Timeline ARM

* Before 2013
e Binary translation, it any :)

o After 2013

e Jrap and emulate, ARMv7 with extensions and
ARMv8

ARM vs x8§

cure state

PLO
User

PLO

 CPU virtualization

Kernel

PL1
Kernel

PL2
Hyp

e |Introduces hyp mode below kernel mode.

Monitor Mode (Secure PL1)

« No hardware support for saving and restoring guest states.

« Memory virtualisation
e More or less the same function as EPT
e |/O virtualization

e Uses MMU to trap access to non RAM memory

e X86 uses special instructions(inl, outl) for accessing MMIO

ARM vs x86

e Interrupt virtualization

 ARM extends the Global interrupt Controller(GIC) with
virtualization support(VGIC)

VMM can program GIC to trap directly to guest kernel mode for
virtual and physical interrupts.

e Shared device access must trap to hyp mode.
e Timer virtualization
e Virtual timers and counters.

e Controlled from guest without trap to hyp mode.

ARM vs x86 cost

15,68

10.31
12.42

10.00
000 ® ARM
. B ARM no vgic/vtimers
A - 0x86 Laptop Micro Test | ARM ARM no x86 x86
7.00 Pr— vgic/vtimers | laptop | server
6.00 \ Hypercall 4917 2,112 1,263 1,642
5.00 Trap 27 27 632 821
4.00 I/0 Kernel 6,248 2,945 2,575 3,049
3.00 I/0 User 6,908 3,971 8,226 | 10,356
2.00 IPI 10,534 - | 13,670 | 16,649
EOI 9 - 1,713 2,195
1.00 N N “WTE ? ’
0 (0 O P
I I I S Table 3: Micro-architectural cycle counts.
&K & o & >
< C " N ;o

< Q Q
(b) SMP VM normalized Imbench performance

25

Virtual end

ARM vs x86

Non-Secure state Secure state
PLO PLO
User User
PL1 PL1
Kernel Kernel
PL2
Hyp

Monitor Mode (Secure PL1)

