
Hardware-assisted
virtualization

• Why hardware-assisted virtualisation?

• Higher demand for virtualization

• Increase performance, lower cost of virtualization

• Lower Virtual Machine Monitor(VMM) complexity

• Mostly used hardware for virtualization is x86 and
maybe soon also ARM

Timeline x86
• Before 2005

• Binary translation

• After 2005, CPU virtualization

• Trap and emulate, Intel VT-x, AMD-V

• After 2010, Memory virtualization

• Second Level Address Translation, Intel Extended Page Table(EPT), AMD Rapid
Virtualization Indexing(RVI)

• Device virtualisation, Intel VT-d, AMD-Vi

• After 2013, CPU virtualization

• Nested virtual machines, Intel Virtual machine Control Structure(VMCS) shadowing

http://en.wikipedia.org/wiki/Rapid_Virtualization_Indexing

• Classically means virtualized with trap and emulate

• Visibility of privilege state(Ring, %cs)

• Lack of trap on privileged instructions running at
user-level(Ring 3)

• Example: popf instruction
• Same instruction behaves differently

depending on privileged state
• User Mode(Ring 3): changes ALU flags like

the ZeroFlag(ZF)
• Kernel Mode(Ring 0): changes ALU and

system flags like Interrupt Flag(IF)
• Does not generate a trap in user mode(Ring

3)

Why can't x86 be classically
virtualized?

Binary Translation

• Interpret the binary code

• x86 ➝ x86 assembly

• Most instructions remain identical, except control flow
(calls, jumps, branches, ret, etc.), and privileged
instructions

• Avoids traps, which can be expensive

• Translation cache is used to speed up

Trap & Emulate
• Run guest VM in

unprivileged mode
• Execute guest instructions

on real CPU when possible
• E.g., addl %eax, %ex

• Privileged instructions trap,
and VMM emulates
• E.g., movl %eax, %cr3
• Traps into VMM so the

effect can be emulated 
resource

 vmm

privileged
instruction

trap

GuestOS

resource

emulate change

change

5

• A new set of CPU protection rings for guest(non-root) mode in
addition to the old host(root) mode

• New instructions for moving between host and guest mode
called “VMRUN” and also instructions for setting the new Virtual
Machine Control Structure(VMCS) pointer.

• VMM fills the VMCS and execute “VMRUN”

• VMM software emulation still needed.

Enable trap and emulate

Memory Virtualization
• Traditionally, Host OS fully controls all physical memory space and

provides a continuous addressing space(virtual addresses) to each
process

• Guest OS is just one of many user space processes, but under VMM
control

• In system virtualization, VMM should make all virtual machines share the
same physical memory space

• Before HW support, Shadow Page Tables

• Second Level Address Translation(SLAT), Intel EPT, AMD RVI

• Virtual memory and MMU

Virtual Memory
• Each process has its own space

(usually starting at 0x0)

• A memory page is a fixed
length contiguous block (4KB, 2 MB)
of data used for memory allocation

• A page table keeps all mapping
between the virtual blocks and
physical blocks where data is
stored. It also contains read, write
and execute flags on the blocks.

• Virtual memory enables memory
isolation between user processes

Memory Management Unit
• A hardware component responsible for handling

accesses to memory requested by the CPU
• Address translation: virtual address to physical

address (VA to PA)
• Memory protection(read/write/execute)
• Cache control
• Bus arbitration

• The MMU keeps a in-memory(RAM) table called page
table that maps logical pages to physical pages.

Page Tables
• A page table is the data structure used by a virtual

memory system to store the mapping between
virtual addresses and physical addresses

• Page table base register(PTBR, %cr3 on x86)
• Stores the address of the base page table for MMU

10

• Translation look-aside buffer
• A CPU cache that MMU hardware uses to improve virtual

address translation speed
• Avoid accessing and walking the page table in main memory
• The search key is the virtual address and the search result is a

physical address

Translation Look-aside
Buffer(TLB)

Memory Virtualization
Architecture

Software memory
virtualization

• VMM creates and maintains page tables that map guest virtual
pages directly to machine pages, called the shadow page table

• Shadow page table is the one used by the MMU

• In each VM, OS creates and manages its own page table

• Not used by MMU Hardware

• Guest page table is protected from writing with MMU by VMM

• Manipulation of the guest page table is tracked, and the
VMM updates the shadow page table and the guest page
table accordingly

Shadow page table

Copyright © 2008-2009 VMware, Inc. All rights reserved. 2

Performance Evaluation of Intel EPT Hardware Assist

MMU Architecture and Performance
In a native system the operating system maintains a mapping of logical page numbers (LPNs) to physical page

numbers (PPNs) in page table structures (see Figure 1). When a logical address is accessed, the hardware walks

these page tables to determine the corresponding physical address. For faster memory access the x86 hardware

caches the most recently used LPN->PPN mappings in its translation lookaside buffer (TLB).

Figure 1. Native System Memory Management Unit Diagram

In a virtualized system the guest operating system maintains page tables just as the operating system in a

native system does, but in addition the VMM maintains a mapping of PPNs to machine page numbers

(MPNs), as described in the following two sections, “Software MMU” and “Hardware MMU.”

Software MMU
In shadow paging the VMM maintains PPN->MPN mappings in its internal data structures and stores

LPN->MPN mappings in shadow page tables that are exposed to the hardware (see Figure 2). The most

recently used LPN->MPN translations are cached in the hardware TLB. The VMM keeps these shadow page

tables synchronized to the guest page tables. This synchronization introduces virtualization overhead when

the guest updates its page tables.

Figure 2. Shadow Page Tables Diagram

Process 1 Process 2

Logical
Pages

Physical
Pages

Virtual Machine #1 Virtual Machine #2

Logical
Pages

Physical
Pages

Machine
Pages

Process 1 Process 2Process 2Process 1

Shadow Page Table
Entry

Hardware memory
virtualization

• Second Level Address Translation(SLAT), Intel EPT, AMD RVI

• Shadow page tables now handled by hardware.

• Two page tables are exposed to hardware

• The EPT its set with an entry in the VMCS

• One walker does Guest VA - PA on page table managed by VM

• One walker does Guest PA - MA on page table managed by
VMM

• TLB miss create extra penalty due to the extra walk in nested
page table

15

Extended Page Table
• Memory operation :

8

9

6

4

7

8

Data

Cost
• Binary translation vs VT-x(2005), VMWare

Gain
• Second level address translation(EPT) gain

Copyright © 2008-2009 VMware, Inc. All rights reserved. 8

Performance Evaluation of Intel EPT Hardware Assist

Apache Compile
The Apache compile workload compiles and builds the Apache web server. This particular application is at an
extreme of compilation workloads in that it is comprised of many small files. As a result many short-lived
processes are created as each file is compiled. This behavior causes intensive MMU activity, similar to the
MMU-intensive kernel microbenchmarks, and thus benefits greatly from EPT in both 32-bit and 64-bit guests,
as shown in Figure 6 and Figure 7, respectively. The improvement provided by EPT increases with larger
numbers of vCPUs; in the four vCPU case EPT performed 48% better than VT.

Figure 6. 32-bit Apache Compile Time (Lower is Better)

Figure 7. 64-bit Apache Compile Time (Lower is Better)

1.00

0.67

0.46

0.37

0.66

0.40

0.27
0.19

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1vCPU 2vCPUs 4vCPUs 8vCPUs
Number of Virtual CPUs

Ti
m

e
(N

or
m

al
iz

ed
 to

 1
 v

C
PU

 S
W

 M
M

U
)

EPT
SW MMU

1.00

0.65

0.48
0.43

0.62

0.38

0.25
0.19

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1vCPU 2vCPUs 4vCPUs 8vCPUs
Number of Virtual CPUs

Ti
m

e
(N

or
m

al
iz

ed
 to

 1
 v

C
PU

 S
W

 M
M

U
)

EPT
SW MMU

Cost
• Bare metal comparison 2012, CPU, IPC, filesystem

5.9. FUTURE WORK

Again VMWare performance better than KVM and very close to Bare Metal. KVM
added more overhead in file system throughput and is needed improvement in this area
for better results.

5.8.4 Composite Throughput score

Figure 5.33: UnixBench composite throughput score

CPU composite throughput performance 5.33 has shown that Bare Metal was at top
performance with highest score of 4.7. Whereas both the virtualized technologies re-
mained 4.4 and 3.7 in case of VMWare and KVM respectively.

The UnixBench tests focus on different system resources including CPU, file systems,
pipes and processes. These processes communicate with system kernel services and
activate kernel-level memory events. All the benchmark test in UnixBench uses aggre-
gate timing for performance measurement and for this purpose it uses shell command
time. The abstraction layer added by virtualization in different technology have differ-
ent effects, some are using hypervisor while other are using virtual machine monitor.
Difference in architecture effects the difference in performance. In system composite
performance VMWare far ahead than KVM and near to Bare Metal guest system.

5.9 Future work

Iozone have maximum of 1 GB file size for test. However, it would be interested
to benchmark the guests with larger file than 1 GB. Similar with Ram speed, that
have maximum of 2 GB block size to test the guest. By using the larger block size,
some interesting facts cab be unfold. The performance comparison of the KVM and
VMWare was made by using Iozone for I/O, ram speed for memory and UnixBench for

75

Device virtualization
• Needs CPU, chipset and system firmware support

• I/O MMU virtualization(Intel VT-d, AMD-Vi)

• For full control over devices with DMA and interrupt remapping.

• Devices on PCI bus must support Function Level Reset(FLR)

• Network virtualization(Intel VT-c)

• Intel I/O accelerated Technologies for reduction of CPU loads

• Virtual machine device queues(VMDq)

• Single root I/O virtualization(SR-IOV)

• Allows PCIe devices to appear to be multiple separate physical devices, good for
NIC.

• Network interface with support can get up to 95% performance of bare metal.

20

Device Virtualization

Device Driver

I/O Stack

Guest OS

Device Driver

Device Emulation

Device Driver

I/O Stack

Guest OS

Device Driver

Device Emulation Device Emulation

Host OS/Dom0/
Parent Domain

Guest OS

Device Driver

Device
Manager

Hosted or Split Hypervisor Direct
Passthrough I/OEmulated I/O

Timeline ARM

• Before 2013

• Binary translation, if any :)

• After 2013

• Trap and emulate, ARMv7 with extensions and
ARMv8

ARM vs x86
• CPU virtualization

• Introduces hyp mode below kernel mode.

• No hardware support for saving and restoring guest states.

• Memory virtualisation

• More or less the same function as EPT

• I/O virtualization

• Uses MMU to trap access to non RAM memory

• x86 uses special instructions(inl, outl) for accessing MMIO

ensuring its wide adoption and use given the dominance
of Linux on ARM platforms. Based on our open source
experiences, we offer some useful hints on transferring
research ideas into implementations likely to be adopted
by existing open source communities.

Third, we demonstrate the effectiveness of
KVM/ARM on real multicore ARM hardware. Our
results are the first measurements of a hypervisor using
ARM virtualization support on real hardware. We
compare against the standard widely-used Linux x86
KVM hypervisor and evaluate its performance overhead
for running application workloads in virtual machines
(VMs) versus native non-virtualized execution. Our
results show that KVM/ARM achieves comparable
performance overhead in most cases, and significantly
lower performance overhead for two important appli-
cations, Apache and MySQL, on multicore platforms.
These results provide the first comparison of ARM
and x86 virtualization extensions on real hardware to
quantitatively demonstrate how the different design
choices affect virtualization performance. We show
that KVM/ARM also provides power efficiency benefits
over Linux x86 KVM.

Finally, we make several recommendations regarding
future hardware support for virtualization based on our
experiences building and evaluating a complete ARM
hypervisor. We identify features that are important and
helpful to reduce the software complexity of hypervisor
implementation, and discuss mechanisms useful to max-
imize hypervisor performance, especially in the context
of multicore systems.

This technical report describes our experiences de-
signing, implementing, and evaluating KVM/ARM. Sec-
tion 2 presents an overview of the ARM virtualization
extensions and a comparison with x86. Section 3 de-
scribes the design of the KVM/ARM hypervisor. Sec-
tion 4 discusses the implementation of KVM/ARM and
our experiences releasing it to the Linux community and
having it adopted into the mainline Linux kernel. Sec-
tion 5 presents experimental results quantifying the per-
formance and energy efficiency of KVM/ARM, as well
as a quantitative comparison of real ARM and x86 vir-
tualization hardware. Section 6 makes several recom-
mendations about designing hardware support for virtu-
alization. Section 7 discusses related work. Finally, we
present some concluding remarks.

2 ARM Virtualization Extensions
Because the ARM architecture is not classically virtual-
izable [20], ARM has introduced hardware virtualization
support as an optional extension in the latest ARMv7
architecture [4] and a mandatory part of the upcoming

64-bit ARMv8 architecture. The Cortex-A15 [2] is an
examples of current ARMv7 CPUs including hardware
virtualization extensions. We present a brief overview of
the ARM virtualization extensions.

2.1 CPU Virtualization
Figure 1 shows the CPU modes on the ARMv7 archi-
tecture, including TrustZone (Security Extensions) and
a new CPU mode called Hyp mode. TrustZone splits the
modes into two worlds, secure and non-secure, which are
orthogonal to the CPU modes. A special mode, monitor
mode, is provided to switch between the secure and non-
secure worlds. Although ARM CPUs always power up
starting in the secure world, ARM bootloaders typically
transition to the non-secure world at an early stage and
secure world is only used for specialized use cases such
as digital rights management. TrustZone may appear
useful for virtualization by using the secure world for hy-
pervisor execution, but this does not work because there
is no support for trap-and-emulate. There is no means to
trap operations executed in the non-secure world to the
secure world. Non-secure software can therefore freely
configure, for example, virtual memory. Any software
running in the non-secure world therefore has access to
all non-secure memory, making it impossible to isolate
multiple VMs running in the non-secure world.

Non-Secure state

PL0
 User

PL1
 Kernel

PL2
 Hyp

Monitor Mode (Secure PL1)

Secure state

PL0
 User

PL1
 Kernel

Figure 1: ARMv7 CPU modes.

Hyp mode was introduced as a trap-and-emulate
mechanism to support virtualization in the non-secure
world. Hyp mode is a CPU mode that is strictly
more privileged than other CPU modes, user and ker-
nel modes. Without Hyp mode, the OS kernel running
in kernel mode directly manages the hardware and can
natively execute sensitive instructions. With Hyp mode
enabled, the kernel continues running in kernel mode but
the hardware will instead trap into Hyp mode on various
sensitive instructions and hardware interrupts. To run
VMs, the hypervisor must at least partially reside in Hyp
mode. The VM will execute normally in user and ker-

2

ARM vs x86
• Interrupt virtualization

• ARM extends the Global interrupt Controller(GIC) with
virtualization support(VGIC)

• VMM can program GIC to trap directly to guest kernel mode for
virtual and physical interrupts.

• Shared device access must trap to hyp mode.

• Timer virtualization

• Virtual timers and counters.

• Controlled from guest without trap to hyp mode.

ARM vs x86 cost

• FIX ME

25

Virtual end

ARM vs x86

ensuring its wide adoption and use given the dominance
of Linux on ARM platforms. Based on our open source
experiences, we offer some useful hints on transferring
research ideas into implementations likely to be adopted
by existing open source communities.

Third, we demonstrate the effectiveness of
KVM/ARM on real multicore ARM hardware. Our
results are the first measurements of a hypervisor using
ARM virtualization support on real hardware. We
compare against the standard widely-used Linux x86
KVM hypervisor and evaluate its performance overhead
for running application workloads in virtual machines
(VMs) versus native non-virtualized execution. Our
results show that KVM/ARM achieves comparable
performance overhead in most cases, and significantly
lower performance overhead for two important appli-
cations, Apache and MySQL, on multicore platforms.
These results provide the first comparison of ARM
and x86 virtualization extensions on real hardware to
quantitatively demonstrate how the different design
choices affect virtualization performance. We show
that KVM/ARM also provides power efficiency benefits
over Linux x86 KVM.

Finally, we make several recommendations regarding
future hardware support for virtualization based on our
experiences building and evaluating a complete ARM
hypervisor. We identify features that are important and
helpful to reduce the software complexity of hypervisor
implementation, and discuss mechanisms useful to max-
imize hypervisor performance, especially in the context
of multicore systems.

This technical report describes our experiences de-
signing, implementing, and evaluating KVM/ARM. Sec-
tion 2 presents an overview of the ARM virtualization
extensions and a comparison with x86. Section 3 de-
scribes the design of the KVM/ARM hypervisor. Sec-
tion 4 discusses the implementation of KVM/ARM and
our experiences releasing it to the Linux community and
having it adopted into the mainline Linux kernel. Sec-
tion 5 presents experimental results quantifying the per-
formance and energy efficiency of KVM/ARM, as well
as a quantitative comparison of real ARM and x86 vir-
tualization hardware. Section 6 makes several recom-
mendations about designing hardware support for virtu-
alization. Section 7 discusses related work. Finally, we
present some concluding remarks.

2 ARM Virtualization Extensions
Because the ARM architecture is not classically virtual-
izable [20], ARM has introduced hardware virtualization
support as an optional extension in the latest ARMv7
architecture [4] and a mandatory part of the upcoming

64-bit ARMv8 architecture. The Cortex-A15 [2] is an
examples of current ARMv7 CPUs including hardware
virtualization extensions. We present a brief overview of
the ARM virtualization extensions.

2.1 CPU Virtualization
Figure 1 shows the CPU modes on the ARMv7 archi-
tecture, including TrustZone (Security Extensions) and
a new CPU mode called Hyp mode. TrustZone splits the
modes into two worlds, secure and non-secure, which are
orthogonal to the CPU modes. A special mode, monitor
mode, is provided to switch between the secure and non-
secure worlds. Although ARM CPUs always power up
starting in the secure world, ARM bootloaders typically
transition to the non-secure world at an early stage and
secure world is only used for specialized use cases such
as digital rights management. TrustZone may appear
useful for virtualization by using the secure world for hy-
pervisor execution, but this does not work because there
is no support for trap-and-emulate. There is no means to
trap operations executed in the non-secure world to the
secure world. Non-secure software can therefore freely
configure, for example, virtual memory. Any software
running in the non-secure world therefore has access to
all non-secure memory, making it impossible to isolate
multiple VMs running in the non-secure world.

Non-Secure state

PL0
 User

PL1
 Kernel

PL2
 Hyp

Monitor Mode (Secure PL1)

Secure state

PL0
 User

PL1
 Kernel

Figure 1: ARMv7 CPU modes.

Hyp mode was introduced as a trap-and-emulate
mechanism to support virtualization in the non-secure
world. Hyp mode is a CPU mode that is strictly
more privileged than other CPU modes, user and ker-
nel modes. Without Hyp mode, the OS kernel running
in kernel mode directly manages the hardware and can
natively execute sensitive instructions. With Hyp mode
enabled, the kernel continues running in kernel mode but
the hardware will instead trap into Hyp mode on various
sensitive instructions and hardware interrupts. To run
VMs, the hypervisor must at least partially reside in Hyp
mode. The VM will execute normally in user and ker-

2

