
Cloud Computing 
#8 - Datacenter OS

Johan Eker



Outline

• What is a Datacenter OS? 

• OpenStack 

• Kubernetes 

• Resource Management



What is an OS?



What is an OS?

• Manage hardware resources such as 
• CPU, RAM, disk, I/O, etc. 

• Provide services 
• Communication, authentication, synchronization, etc. 

• An application program 
• A set of threads that communicate using e.g. shared memory 
• Uses OS services for disk, network, etc.



A Datacenter OS
• Manage hardware resources such as 

• Compute servers (CPU, RAM), storage servers, (disks), I/O, 
network, etc. 

• Some services 
• Communication, authentication, synchronization, etc. 

• Application program 
• A set of VM that communicate using message passing 
• Use OS services for disk, communication, etc. 

• Multiple tenants



OS for the Cloud

• OpenStack 

• Kubernetes 

• Mesosphere 

• VMware vCloud Air



OpenStack
• OpenStack is a set of open source software 

projects to setup a cloud 
• Launched in 2010 by Rackspace and NASA with 

initial contributions 
• OpenStack consortium has 125+ members  

• (Few tier 1 players) 
• Open source under Apache license 
• A lot of Python code 
• A number of distributions (SUSE, RH, Mirantis, etc.)



Object 
Store Image 

Store Compute Block  
Storage Networking

Authentication

Dashboard



Dashboard: “Horizon”



Compute: “Nova”
• Manage and automate pools of computer resources 

• Life cycle of VM instances 
• Keeps track of resources (virtual & real) 

• Nova does not provide any virtualization capabilities, by 
itself; instead, it uses libvirt API to interact with supported 
hypervisors. 

• Hypervisor agnostic 
• Xen, XenServer/XCP, KVM, UML, VMware vSphere and 

Hyper-V, LXC containers, Dockers 
• REST-based API 

• Asynchronous eventually consistent communication 
• Decides where to allocate instances (Nova-Schedule) 
• API compatible with the EC2 API of AWS



#!/usr/bin/env python 
 import time 
 from credentials import get_nova_credentials_v2 
 from novaclient.client import Client 

 try: 
     credentials = get_nova_credentials_v2() 
     nova_client = Client(**credentials) 

     image = nova_client.images.find(name="cirros") 
     flavor = nova_client.flavors.find(name="m1.tiny") 
     net = nova_client.networks.find(label="private") 
     nics = [{'net-id': net.id}] 
     instance = nova_client.servers.create(name="vm2", image=image, 
                                       flavor=flavor, key_name="keypair-1", nics=nics) 
     print("Sleeping for 5s after create command") 
     time.sleep(5) 
     print("List of VMs") 
     print(nova_client.servers.list()) 
 finally: 
     print("Execution Completed")

Many ways to use the OpenStack REST API



Object Store: “Swift”
• Swift is a highly available, distributed, eventually 

consistent object/blob store 
• Unstructured data store. Swift simply stores bits. Swift is 

not a database. Swift is not a block-level storage 
system. Swift stores blobs of data.  

• Scales to thousands of servers with tens of 
thousands of hard drives. Horizontally scalable w/o 
no single point of failure. 

• Redundancy by multiple copies in different 
availability zones.



• Swift provides a REST API over HTTP 
• A swift storage URL looks like 

• swift.example.com/v1/account/container/object 

Object Store: “Swift”

List of all containers: GET http://swift.example.com/v1/account/ 

Create new container: PUT http://swift.example.com/v1/account/new_container 

List all object in a container: GET http://swift.example.com/v1/account/container/ 

Create new object: PUT http://swift.example.com/v1/account/container/new_object.

• API similar to AWS S3

http://swift.example.com/v1/account/container/new_object


Block Storage: Cinder

• Persistent block storage for VMs  
• Three services: 

• Volumes (virtual raw block devices) 
• Snapshots (quick) 
• Backups (full copy stored in Swift). 

• Implemented in top of: Ceph, GlusterFS, XFS, NFS, 
NetApp, SMB, etc (long list of drivers) 

• API similar to the AWS Elastic Block Storage (EBS)



Orchestration: “Heat”
• Automated configuration of cloud resources in an application: 

• Servers, Load Balancers, Databases, Block Storage, DNS, Auto 
Scaling, Init scripts,  

• A Heat template describes the infrastructure for a cloud 
application 

• Autoscaling service 
• Heat manages the whole lifecycle of the application - launch, 

update, terminate 
• Compatible with AWS CloudFormation 
• Version control of distributed applications



Metering: “Ceilometer”
• Provide counters for utilisation of the physical and 

virtual resources comprising deployed clouds 

• Keep database of metering data 

• Setup conditions for triggering actions 

• For billing, scaling, etc 

• Think: AWS CloudWatch, AWS CloudMetrics



Networking: “Neutron”
• Networking as a service  

• Manages IP addresses, (static/dynamic/floating) 

• Users can create their own networks, control traffic, 
and connect servers and devices 

• Based on software-defined networking (SDN) to 
provide high levels of multi-tenancy and scale 



Object 
Store 

“Swift”
Image 
Store 

“Glance”

Compute 
“Nova”

Block  
Storage 
“Cinder”

Networking 
“Neutron”

Authentication 
“Keystone”

Dashboard 
“Horizon”





Compute “Nova”

Compute “Nova” (API)

Image “Cinder”

Authentication “Keystone”

Network “Neutron”

Compute “Nova” (API)

Image “Cinder”

Authentication “Keystone”

Network “Neutron”

Storage “Cinder”

Image “Cinder”

Authentication “Keystone”

Network “Neutron” Compute “Nova”ComputeCompute “Nova”Compute

Compute “Nova”Compute “Nova”ComputeCompute “Nova”Storage

Storage “Swift”

Compute “Nova”

xen

Mirantis Fuel





Total Cost of Cloud Ownership 

Servers

Energy

Cooling

Networking

Other



Dynamic cluster management using Mesos Dynamic cluster management using Borg

Resource Scheduling

FB in Luleå will consume 1 TWh/year



Next

• RESTful APIs (Ola Angelsmark) 

• Resource Management (Jonas Dürango)


