Cloud Computing
#2 - Cloud Applications

Types of cloud

Drivers behind cloud

Inside a datacenter

laaS & AWS

L ast Session

C Application>
< Runtime >
< Databases >
C Security >
(o5)
(Virtualizatio@
C Servers)
C Storage)
(Network)

This Session

Some more on AWS
PaaS & SaaS

Discuss cloud applications
 |dentify the important technical components

* ook some at Netflix & Googe
Home assignments

Participant session planning

Scaling up or Scaling out?

» Scale up (or vertical scaling)
« Adding more memory and CPUs to a single box.
e Add more threads

 |deal for stateful components
e Scale out (or horizontal scaling)

« Adding more boxes of similar memory and CPU.

 |deal for web-tier, and has some of the following
characteristics:

AWS CloudWatch
e |

3 Actions
Amazon ‘
m CloudWatch I l' . —
Resources that —
uss CloudWatch Armaron
e — CloudWatch SNS email
Alarm notification
7 7 //
Your cusiom i > ’ ‘
o illl
Available
Statistics Auto Scaling
D —
e——
AWS Statistics
Manaocement Console Consumer
R — R

Monitor CPU utilization, data transfer, disk usage, latency, etc.

A metric is a time ordered set of data-points such as EC2 CPU usage

AWS CloudWatch

After 3 periods
over threshoid, an
action s irvoked

5T h AN 111 Onlycne perica
over threshokd no
action is invoked

= .
= s T hire shold

Set alarms to invoke an action, e.g. start, stop
or terminate a VM (EC2)

AWS Autoscaling

Auto Scaling

[ratance L Instances Removed
Terminated from Auto Scalng Growp
l""""’l

* Dynamically based on conditions specified by you ;

Amazon Schedule-based
CloudWatach Event

» Predictably according to a schedule defined by you (every Friday at 13:00:00).

» Scale-out = adding more machines

AWS Load Balancing

e The load balancer is the
only computer visible to
the outside

e Distribute traffic across
multiple VMs

* VMs may be added or
removed dynamically

* Monitors health
continuously

AWS CloudFront

AWS Edge Locatior

Avanion Coatl ot e Avas oo Raute 50 srvces ae ofered ot AWS Lage Locataorm

NP Avvaria Ba ™ Aevaraa Forvge | Mukile Tou ' Abua
Atarta OA Ao de Jarorm. Dras Armtordarm. The Netherarca
APOun, VA X 30 Pau, vas Ouoir, reana

Malan Vot Worth, TX (Y Frarabsrt. Gorvary O
A A vl PL Viadral Ny
Los Argeims, CA I Veneole frace

-
Yora
Nowars, NJ Seocnor. Seocen
s A Nariam Moad
" e
Seae. W
e Meve

xsa, MO

Content distribution network (CDN)

=
- =
! 'Qv
L, N,
" NN 9
e, s |
. o N " S
M - - .
L
-l _
" []
.‘,

amazon
webservices

S

Caches S3 content at edge locations for low-latency delivery
Some similarities to other CDNSs like Akamai, Limelight, etc.

AWS Dynamo

A NoSQL data base
e Used for shopping cart: a very high-load application

» Built over a version of Chord DHT
e Basic idea is to offer a key-value API (like memcached, S3)
e Support for thousands of service instances

 Basic innovation?

* Jo speed things up (think BASE), Dynamo sometimes puts
data at the “wrong place”

 |ldea is that if the right nodes can'’t be reached, put the data
somewhere in the DHT, then allow repair mechanisms to
migrate the information to the right place asynchronously

Platform-as-a-Service

Cloud provides runtime/middleware
e Java VM, Python VM, JS VM
 Databases, communication, etc.

User does not manage/control application
infrastructure (network, servers, OS, etc.)

PaaS handles scale-out

Customer pays SaaS provider for the
service; SaaS provider pays the cloud for
the infrastructure

Example: Windows Azure, Google App
Engine, Examples: Google App Engine,
Node.js, Map Reduce

(Application)

(Runtime)

(o)
(Vi rtualizatio@
(Servers)
(Storage)
(Network)

Google

Zo. Google App Engine

€)!

e M v

 App Engine invokes your app's servlet classes to handle
requests and prepare responses in this environment.
* Add
e Servlet classes, (*.java)
e JavaServer Pages (*.jsp),
e Your static files and data files,
* A deployment descriptor (the web.xml file)
e Auto scale to 7 billion requests per day

CO"SIC

£0. L ots of APls

* A large set of scalable features:
Mail: APls to gmail
Users: APIs to google user account info
Image: APls to manipulate images, resize, crop, ...
URLfetch: fetch other URLs
Task Queue: support multiple threads in App, allow it to
perform background tasks while handling user request
« XMPP: APls to google talk

e https://cloud.google.com/appengine/features

 GAE handles all the tricky stuft

* scaling, redundancy, load balancing

https://cloud.google.com/appengine/features/

-

public class GuestbookServlet extends HttpServlet {
@Override
public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws IOException {

UserService userService = UserServiceFactory.getUserService();
User currentUser = userService.getCurrentUser();

if (currentUser != null) {
resp.setContentType("text/plain");
resp.getWriter().println("Hello, " + currentUser.getNickname());

} else {
resp.sendRedirect(userService.createLoginURL(req.getRequestURI()));

.

/

-

import webapp2

class MainPage(webapp2.RequestHandler):
def get(self):
self.response.headers['Content-Type'] = 'text/plain'
self.response.write('Hello, World!')

application = webapp2.WSGIApplication([('/', MainPage),], debug=True)

.

A)

application: your—app-id
version: 1

runtime: python27
api_version: 1
threadsafe: true

handlers:
—url: /.x%
script: helloworld.applicationA//}

G()ugle

P~
=9, ~eatures
—
—
' ., =
Front End »ms«w Datastore
e ‘ Front End »mm >m
® App MaSteI’ Front End \Ansﬂw »mm
* Schedules applications - -\ o
e Manage the replication of the applications MLM g :'...:..:

e Front Ends —

v
'

¢ Route dynamic requests to e BT
e Static files: if accessing static web pages
e App Servers: if accessing dynamic contents

¢ | oad balancing

e Select the nearest and lightest-loaded server (for both static and dynamic contents)

20, ApPp Server

Datastore provides persistent storage
» Replicated for fault tolerance (geographically distributed)
e Cache is maintained automatically
App server deployment
* One process per app, many apps per CPU
* Inactive processes are killed eventually
e Busy apps (many QPS) get assigned to multiple CPUs
* This is automatically assigned, as long as CPUs are available
Constrain direct OS functionality for security
* No processes, threads, dynamic library loading
* No sockets (use urlfetch API)
« Can't write files (use datastore)
Limited quota to avoid DoS (denial of service) attacks
e Constraints on CPU time and storage size

Software-as-a-Service

C Application)
« Cloud provides an entire application (Runtime)
e Often running in the browser Databases)

e Application and data hosted centrally C Cocurt
. . . ecurity)
 No installation, zero maintenance

« No control (no need for a sysop) (05)

e Example: CVirtualizatiorD

« Google Apps, Word processor, C Servers)
presentation, spreadsheet, calendar,

photo, CRM (_ Storage)

| (Network)
Google

Differences be
and traditior

ween SaaS
al model

Hosted (Traditional)

Cloud (SaaS)

Price
Accessed from
Upgrades
User Adoption
Deployment
Security

Data Storage

Incentive for Software
Vendor

One time - large upfront
cost

Local hardware

Manual

Normal

IT Know-how and

resources required
Handled by local IT

Your local servers
Make initial sale

Subscription - low initial
cost

Any mobile device
Automatic

Higher, due to mobile
access

Minimal IT Setup
Required

Handled by Service
provider

Service provider’s servers
High re-subscription rate

Configuring the Datacenter
“Metal-as-a-Service”

| Image Server MaaS$ Server
download server . e start, stop, reboot
0S image -+ configure BIOS
: v o PXE TFTP boot
~ « health
Server =

IPMI - Intelligent Platform Management

SaaS

PaaS

laaS

~

&

User
Applications

User-level
Middleware

~

b b
Core
Middleware

System
Infrastructure

Cloud Applications

—

\,

Social Computing, Enterprise ISV, Scientific Computing, CDNs

—

Cloud Programming Environment and Tools

_

Web 2.0, Mashups, Concurrent and Distributed Programming,

Workflows , Libraries, Scripting

Cloud Hosting Platforms

—

Q

oS Negotiation, Admission Control, Pricing, SLA Management,
Monitoring, Execution Management, Metering, Accounting

Virtual Machine (VM), VM Management and Deployment

Cloud Resources .

SRS

The Size of It

Large data sets
« ~50 billion web pages index by Google

* Average size of webpage = 20KB
e 50 billion * 20KB = 1 PB (1215 B)
» Disk read bandwidth = 1 GB/sec
 Time toread = 10A6 seconds = 11+ days
Node failures:
* A single server can stay up for 3 years (1000 days)
e 1000 servers in cluster => 1 failure/day

1M servers in cluster => 1000 failures/day

Network
* Network bandwidth = 1 Gbps => Moving 10TB takes ~1 day

e Solution: Push computation to the data

Round trip between Europe & US ~200 ms

Cloud Native Applications

e Design for failure Avoid single points of failure
e Assume everything fails, and design backwards

« (Goal: Applications should continue to function even if the
underlying physical hardware fails or is removed or replaced

* Couple loosely to make it scale
e Independent components
« Design everything as a black box
e De-couple interactions
e |oad-balance clusters

eBay Architecture

Guidelines
Scale Out, Not Up

e Horizontal scaling at every tier.
e Functional decomposition.
Prefer Asynchronous Integration
* Minimize availability coupling.
* |Improve scaling options.
Virtualize Components
* Reduce physical dependencies.
e Improve deployment flexibility.
Design for Failure
e Automated failure detection and naotification.
e “Limp mode” operation of business features.

Stateless Software
Architecture

* Do not retain information about the last session into the
next — e.g. user data, parameters, logic outcomes.

 Don’t keep any state in the quickly scalable part of the
application

* |dempotence - The property of an operation whereby it can
be applied multiple times without changing the result
beyond the initial application. It keeps you “safe” because
executing the same thing twice (or more) has no more
affect than doing it once.

Data Replication

Consistency of shared mutable data

Slide: Marc Shapiro

Don’t show
photos to Bob

Alice @home ...

Slide: Marc Shapiro

-xample: Facebook

facebook

Read from closest server
Write to California
Other servers update cache every 15 minutes

After write: read from CA for 15 minutes
Slide: Marc Shapiro

Easy to Total order reads & writes
Real time
program
Total order reads Snapshot
Real Time Isolation
A
Parallel SI

Total order writes

Total Order Writes

Hard to
program
[Decomposing consistency]

Strict
Serialisability

Relaxed read
ordering

S

Wait-Free Queries
Minimum
Commitment Sync

writes

Total order reads &

Total order reads

Non-Monotonic
SI

A

Transactional
Causal Cons.

A

Causal

Consistency

A

Strong Eventual
Consistency

Low

performance

Genuine Partial
Serialisability Replication
= Forward Freshness
Update Wait-Free Queries

Serialisability Decoupled read/writes

Minimum Commitment Sync
Relaxed read ordering
Genuine Partial Replication
Forward Freshness

'Not Available

High
performance
Slide: Marc Shapiro

Service Job

Soft state

search (“justin bieber”) - -

streaming (“Netflix”)

essaging
service

DD D D
D D — €D

tier 1 - ,
Latency sensitive tier 2 tier 3

External workload

Can be a set of microservices

Batch Job

Frameworks: I\/IapReduce Spark, Dryad, Pregel

Scheduler

S fa(...)
worker \ / worker

data + fi()

* Data parallel
* Data locality

worker worker worker

wave 1 wave 2 wave 3

Optimize for throughput

MPI| Jobs

Can be either service or batch jobs

MPIl = Message Passing Interface

e Standardized and portable message-passing system
Does not automatically scale well, static in nature.

High Performance Computing (HPC) / Grid computing
* Legacy type applications

Cloud Applications

e Service Jobs
e Duration ~30 days”

e 12-20 min* inter arrival time

e Batch Jobs

e Duration ~2-15 minutes”

* 4-7 seconds” inter arrival time

*80th percentile, from Omega presentation

Netflix 1.0

How It Works

Akamai's globally-distributed network of
servers pulls and caches content at the edge of
the Internet for superior whole site delivery Web server maintained by Akamai
customer for publishing content

The edge server pulls fresh
content as needed via an
optimized connection

Origin Server

Nei iX Movies:
Master
Home

copie

Amazon.com

Source: Ken Birman

»

memcached

Web service

m

source: Adrian Cockcroft

Netflix Media Management

* 5 Regional catalogs
* 4 formats supported (VC-1, 3 H.264) at multiple bit rates
* Uses 6000 virtual machines (EC?2) for transcoding
* Petabytes of storage
e Stores the originals at “cold storage” (Amazon Glacier)

?.!E‘s%?e? Open

Connect
@ aspera

~S3-33-

EC2 EC2 EC2

How does Google do it”

‘instant search’ really is
instant most of the time

What does it look like
under the hood?

We don’t know, but let’s
guess a little

D30 woh - B000es KWR Cowd v U v E

COus compuing

(‘(1) (‘ mputing ‘-'.I..(. { .1.\, amazon.com
amazon.comyFree Signugp

"n(;C W ("(Hpur g
WSO soL-LDray

(_-o.: (.m:cutng Online - pluraisight. com

B Cloud-Computing

Cloud computing - Wikipedia, the free encycik

on wikpeds 0w/ Cloud_companting ~

weds

we Ciind cOmgatng

Google Clot
Choud goog ™

Cloud Comg
WWw poorsae

IMTasa$§

(‘u J S¢ hl!

Google Search

e In 2003 a single query on Google reads 100 of MB,

and consumes tens of billions of CPU cycles
« And that was before ‘instant search’

* Design factors: energy efficiency & price-performance
* Power & cooling are limiting factors for DCs

e Easy parallelization: Different queries can run on different
processors, and the a single query can use multiple
processors. => commodity hardware will do just fine

Google

Applications

Application services

Back-end services

0S

Hardware

Network

* DNS load balancing
e TTL < 5 minutes

e 500+ |IP addresses for ‘Search’

lanhost496:
google.
google.
google.
google.
google.
google.
lanhost496:
lanhost496:
google.
google.
google.
google.
google.
google.
lanhost496:
google.
google.
google.
google.
google.
google.

com.
com.
com.
com.
com.
com.

com.
com.
com.
com.
com.
com.

com.
com.
com.
com.
com.
com.

2

johan$

johan$
johan$

johan$

Getting there

dig +noall +answer
1 IN A 173.
1 IN A 173.
1 IN A 173.
1 IN A 173.
1 IN A 173.
1 IN A 173.
dig +noall +answer
300 IN A 173.
300 IN A 173.
300 IN A 173.
300 IN A 173.
300 IN A 173.
300 IN A 173.
dig +noall +answer
299 1IN A 173.
299 1IN A 173.
299 IN A 173.
299 1IN A 173.
299 1IN A 173.
299 IN A 173.

google.
194.78.
194.78.
194.78.
194.78.
194.78.
194.78.

google.
194.65.
194.65.
194.65.
194.65.
194.65.
194.65.
google.
194.65.
194.65.
194.65.
194.65.
194.65.
194.65.

com

139

The Datacenters

36+ data centers worldwide (probably lots more)
Estimated 900.000 machines in 2011
Energy footprint 2010

* Lessthan 1% of all energy for data centers

All IPv6 inside
Zero trust inside
Everything’'s compressed

Everything’s cached

http://www.datacenterknowledge.com/archives/2012/05/15/google-data-center-faq/
http://www.koomey.com/post/8323374335

http://www.datacenterknowledge.com/archives/2012/05/15/google-data-center-faq/
http://www.koomey.com/post/8323374335

Google Servers Oct’12

e 200 sites in 60 countries and 100 ASes
e Large % are in Google’'s AS

N ——

source: http://nsl.cs.usc.edu/Talks/?action=download&upname=calder imc13 mapping.pdf

http://nsl.cs.usc.edu/Talks/?action=download&upname=calder_imc13_mapping.pdf

Google Servers Oct’13

O Google AS
S0 Other AS

e 1400 (7x) sites in 130+ (2.3x) countries, 800+ (8x) ASes
e Growth is outside Google’s AS

source: http://mappinggoogle.cs.usc.edu/

http://mappinggoogle.cs.usc.edu/

Google Global Cache (GGC)

GGC was designed for eyeball-heavy networks with greater than 300Mbps peak
Google traffic.

Cache hit rate will vary by network based on the number of users served by the
cache, their usage patterns, the size and type of GGC node, and the number of
nodes deployed in your network. We have typically seen hit rates of 70% to 90%.

Typically, a majority of the traffic routed through the GGC node is static content such
as YouTube videos and Android Market downloads. Other Google web services,
such as Google Search, may also be proxied and/or cached based on a number of
factors, mcludmg legal reqwrements available capacity and expected improvement
in performance or end users. These services could include (but are not limited to):

* YouTube

« Google Search

« Google Plus

« Google Maps (including map tiles and street view)
« Google Earth

« Google Docs

« Google Scholar

« Google News

« Android Market

+ Picasa Web Albums

+ DoubleClick by Google
Source https://peering.google.com/about/fag.html

https://peering.google.com/about/faq.html
https://peering.google.com/about/faq.html

The Google Network(s)

e External network
* Heterogenous
e |[nternal network - B4
 Few nodes, well known traffic

* More traffic than external 'i‘slisé_ﬁ_céﬁil.rél!é_é o
. . _ . owonlf{RAPITE Agent] 50 | siteB i i SieC
» Traffic engineering using SDN Core JE | comion | cooten

. 2-3x efficiency improvement = =

Clusters |

Figure 2: B4 architecture overview.

Google

Applications

Application services

Back-end services

0S
Hardware Processee
Network
Me—ey
INels shrwage

TIC-C griwa/porformance

on e/ performance
(server HW only)

Price/performance
(sexver HW only)
(1m0 dacounn)

e Clusters of unreliable commodity hardware,

not server grade
* Focus on price

e Everything is automized, minimize staff

The Servers

HPINTEGRITY

SUPERDOME-ITANTUM2

64 sockens, 128 cores
(dusd-Shrendad), 1.6 GHe
Tasbernd, 12 MD
laee - bevel cache

2043 CB
10,974 GR, 7056 deiwes
8295 pelC

§1 2% vrane thovn

T mirene

$2 V% emarnactionn
per mimse

HPF PROLIANT
Ml G

1 socket, quad core,
266 Gz X5355 CPU,
£ MB Lst-level cache

MOCB

1961 G, 305 deives

0.7 Mgl
S0 10/ transs tona
et mnvete

$0.12 transactions
per mnac

Performance edge of a chuster using
high-end nodes (%)

ot COmmunication

< &

512 1024 2048 4192

Cluster size (number of cones)

Google: We're One of the World’s Largest
Hardware Makers

BY ROBMAT MOVILLAN 062212 225 Pm | MERMALINK

“Google spent about $3.4 billion on capital expenditures last year, and a
large chunk of that went to the x86 servers that run its data centers. To put
that in perspective, number-four X86 server vendor Fujitsu sold $1.3
billion worth of servers in 2011, according to research firm Gartner.”

http://www.wired.com/2012/06/gooqgle_makes_servers

http://www.wired.com/2012/06/google_makes_servers/

Google

Applications

Application services

0S

Hardware

Network

e Linux - Started with Red Hat 6.2 (2000) and moved to 7.1(2001)
(2.6.X kernel) and stayed with that until 2013
» Updates using file level sync from gold master (rsync-ish)
» Kernel stayed the same besides security patches
 Now home-cooked Linux by called ProdNG based on Debian
« All software is in-house or open-source
* No licenses makes scaling cheap

source: http://marc.merlins.org/linux/talks/ProdNG-LISA/

http://marc.merlins.org/linux/talks/ProdNG-LISA/

Google

Applications

Application services

Back-end services

0S

Hardware

Network

The Datacenter OS

)

— g

”~

T

™

=

~

v

Linux

Linux

Commodity HW

Commodity HW

GFS
Master

[Cluster
L scheduler J

(e N

Chubby

Machine 1

source: P. Krzyzanowski cs.rutgers.edu

Machine n

Loc:kSewic:eJ

http://cs.rutgers.edu

Google

Applications

~---|[)istributed File System

Back-end services

0S

file Afile...
Hardware \ 2
/ ...is made of 64MB
Network NEEEEEEEEREEEERYAREEN
\ M’ - ...that are replicated
Y\Y ¥ ¥ VY v V¥ VVVYYYVYAs Yy vy vy |forfaultolerance

J——
N

_ J
chunkserver chunkserver chunkserver chunkserver

\ /
Checkpoint Operation
master Image I | log

In-memory FS metadata

The master manages the file
system namespace

Designed for writes!

source: P. Krzyzanowski cs.rutgers.edu

http://cs.rutgers.edu

GOUS[C

Applications

---=|TNe Cluster Scheduler

Back-end services

0S 7

tasks (1,000s)

S Arriving jobs and{ ®

Network
AN

Cluster scheduler —

g |
LT e
q 11|11 1]

Cluster machines <
(10,000s)

‘| PREFERTO CALL IT THE SYSTEM THAT WILL NOT BE NAMED.'
~JOHN WILKES

rf

Lock Service

Chubby lock server
« Implementation of Paxos
o Cluster of 5

Locks with varying levels of durability
Leadership election
Store configuration data

Clients

propose - s
valuev2 / P

I3
. b propose '
\value vl) propose
\ 3 7 valuevl

s
propose .
value v2 L process

consensus problem

Google

Applications

Application services

- Collecting the Pages

0S
Hardware World Wide
Web
Network

Web pages

URLs Multi-threaded

— Scheduler .
downloader Text and
metadata
Queue |-
URLs
Storage
e/

The task of the GoogleBot

Applications

Application services

Link Reversal

Back-end services

¢

GFS

)

0S

Hardware

Network

page #1
page #2

page #
page #

<URL, CALL-URL>
< , CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>

< , CALL-URL>
< , CALL-URL>
< , CALL-URL>
<URL, CALL-URL>

< , CALL-URL,>
CALL-URL>

N A

<URL, CALL-URL>
< , CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>

< , CALL-URL>
< , CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>

N

< , CALL-URL>
, CALL-URL>
<URL, CALL-URL>

url

url

url

url

Input is all the web pages in
the world stored on GFS
chunks

Applications

Rank the Pages

Back-end services

0S

Hardware

Network

We assume page A has pages T1...Tn which point to it (i.e., are citations). The parameter d

is a damping factor which can be set between 0 and I. We usually set d to 0.85. There are 1
more details about d in the next section. Also C(A) is defined as the number of links going p
out of page A. The PageRank of a page A is given as follows:

PR(A) = (1-d) + d(PR(TI)C(TI) + ... + PR(Tn)/C(Tn)) f

Note that the PageRanks form a probability distribution over web pages, so the sum of all
web pages’ PageRanks will be one.

—

Applications

Application services

Back-end services

0S

Hardware

Network

Compute Page Rank

Recreate the web in Pregel

* A google graph language

Pages as vertices
Links as edges
Stepwise iteration

Superstep 0

Superstep 1

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelteratore nsgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 » sum;
}

if (superstep() < 30) {
const int64 n = GetOutEdgelterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}

}
};

Superstep 2

Superstep 3

Applications

Application services

Back-end services

Big lable

0S

Hardware

Sparse distributed database

Network

e Arbitrary “columns” on a row-by-row basis
 No multirow transactions (reads or writes)
Per row mutation

Garbage collected
Row are lexically ordered

A big map <Row, Column, Timestamp> = value

Columns

Timestamps

Bigtable
Server

Kachine 1

Root tablet
(1% METADATA tablet)

User Tablet 1

User Tablet N

Servers can be added/removed dynamically

Bigtable Master

“aaa.com’

“cnn.com”

“onn.comvsports hMml®
Tablets

‘website. com’

“yahoo.com/kids htmi™

“yahoo.com/kids. htmh0

“zuppa. comimenu html”

‘language:” “contents:”

Google

Applications

Application services

Back-end services

0S

Hardware

Network

Search

:

Google Web server

~+—| Spell checker

/% \ Ad server
&P JA| LN]
'//f/ Il“ \ \\

/1

A WAWAN
yAX |
1\]
\

Index servers

Document servers

* A web search touches 50+ separate services, 1000s machines
» Everything is heavily cached

Google

Applications

Back-end services

0S
Hardware
Network :
0s
e Latency sources .

* Resource sharing
* Local & cluster
« SSD GC & compactations

e Server response

o
o

w

P (service latency > 1s)
o o o o
w P

~N

e Typical: 10 ms .
e One out of x: 1000 ms
* Hedging

Probability of one-second se
of server-level high-latency outliers varies.

Latency

B the system scales and frequency

R 1 n 1:0 —_—

/—

11000 == 1linl0000

0.63

—

018

—

2.000

Building Our Own

Linux & KVM

HDFS GFS: Google File System
Mesos instead of Borg
Memcached

Riak instead of Dynamo
Cassandra instead of BigTable
Zookeeper instead of Chubby
Hadoop instead of MapReduce

Enabling Technologies

Distributed computing
 Consensus, time, locks, failure detection

Networking
* Traffic engineering, multi tenancy, migration

Virtualization
* Compute density, isolation, management/migration, security

Storage
* Replication, caching, DB, key-value, block storgae

Datacenter OS & Application architecture
* Microservices, utilization

Programming models
* Huge data sets, non reliable environment

summary

e Utility computing not really new
e Share the access time of mainframes (1960’s)
e Build large datacenter and rent access to customers
e Sun, IBM, HP, Intel, and many others built datacenters (1990’s)
e Then, Google & Amazon selling spare capacity
¢ \We have a new usage model:
¢ No initial investment; pay-as-you-go model
e No long legal negotiations of SLAs and long-term contracts
e Saving on CapEx and OpEx

e Centralization and sharing
e Reduce the overall facility costs, power consumption, etc.
e Statistical multiplexing —> Better utilization!
e Economies of scale - Bigger is better

e Scalability
e Cost associativity: 1,000 computers for 1 hour has the same

price as 1 computer for 1,000 hours
e Unbounded computational power and storage

Home Assignment #2

