
Cloud Computing
#2 - Cloud Applications

Last Session

• Types of cloud

• Drivers behind cloud

• Inside a datacenter

• IaaS & AWS
Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

This Session
• Some more on AWS
• PaaS & SaaS
• Discuss cloud applications

• Identify the important technical components
• Look some at Netflix & Googe

• Home assignments
• Participant session planning

Scaling up or Scaling out?

• Scale up (or vertical scaling)
• Adding more memory and CPUs to a single box.
• Add more threads
• Ideal for stateful components

• Scale out (or horizontal scaling)
• Adding more boxes of similar memory and CPU.
• Ideal for web-tier, and has some of the following

characteristics:

AWS CloudWatch

Monitor CPU utilization, data transfer, disk usage, latency, etc.

A metric is a time ordered set of data-points such as EC2 CPU usage

AWS CloudWatch

Set alarms to invoke an action, e.g. start, stop
or terminate a VM (EC2)

AWS Autoscaling

• Dynamically based on conditions specified by you

• Predictably according to a schedule defined by you (every Friday at 13:00:00).

• Scale-out = adding more machines

AWS Load Balancing
• The load balancer is the

only computer visible to
the outside

• Distribute traffic across
multiple VMs

• VMs may be added or
removed dynamically

• Monitors health
continuously

• Content distribution network (CDN)
• Caches S3 content at edge locations for low-latency delivery
• Some similarities to other CDNs like Akamai, Limelight, etc.

AWS CloudFront

AWS Dynamo
• A NoSQL data base

• Used for shopping cart: a very high-load application

• Built over a version of Chord DHT
• Basic idea is to offer a key-value API (like memcached, S3)
• Support for thousands of service instances

• Basic innovation?
• To speed things up (think BASE), Dynamo sometimes puts

data at the “wrong place”
• Idea is that if the right nodes can’t be reached, put the data

somewhere in the DHT, then allow repair mechanisms to
migrate the information to the right place asynchronously

Platform-as-a-Service
• Cloud provides runtime/middleware

• Java VM, Python VM, JS VM
• Databases, communication, etc.

• User does not manage/control application
infrastructure (network, servers, OS, etc.)

• PaaS handles scale-out
• Customer pays SaaS provider for the

service; SaaS provider pays the cloud for
the infrastructure

• Example: Windows Azure, Google App
Engine, Examples: Google App Engine,
Node.js, Map Reduce

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

Google App Engine

• App Engine invokes your app's servlet classes to handle
requests and prepare responses in this environment.

• Add
• Servlet classes, (*.java)
• JavaServer Pages (*.jsp),
• Your static files and data files,
• A deployment descriptor (the web.xml file)

• Auto scale to 7 billion requests per day

Lots of APIs
• A large set of scalable features:

• Mail: APIs to gmail
• Users: APIs to google user account info
• Image: APIs to manipulate images, resize, crop, …
• URLfetch: fetch other URLs
• Task Queue: support multiple threads in App, allow it to

perform background tasks while handling user request
• XMPP: APIs to google talk
• https://cloud.google.com/appengine/features/

• GAE handles all the tricky stuff
• scaling, redundancy, load balancing

https://cloud.google.com/appengine/features/

public class GuestbookServlet extends HttpServlet {
 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {

 UserService userService = UserServiceFactory.getUserService();
 User currentUser = userService.getCurrentUser();

 if (currentUser != null) {
 resp.setContentType("text/plain");
 resp.getWriter().println("Hello, " + currentUser.getNickname());
 } else {
 resp.sendRedirect(userService.createLoginURL(req.getRequestURI()));
 }
 }
}

import webapp2

class MainPage(webapp2.RequestHandler):
 def get(self):
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.write('Hello, World!')

application = webapp2.WSGIApplication([('/', MainPage),], debug=True)

application: your-app-id
version: 1
runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /.*
 script: helloworld.application

• App Master
• Schedules applications
• Manage the replication of the applications

• Front Ends
• Route dynamic requests to

• Static files: if accessing static web pages
• App Servers: if accessing dynamic contents

• Load balancing
• Select the nearest and lightest-loaded server (for both static and dynamic contents)

Features

App Server
• Datastore provides persistent storage

• Replicated for fault tolerance (geographically distributed)
• Cache is maintained automatically

• App server deployment
• One process per app, many apps per CPU
• Inactive processes are killed eventually

• Busy apps (many QPS) get assigned to multiple CPUs
• This is automatically assigned, as long as CPUs are available

• Constrain direct OS functionality for security
• No processes, threads, dynamic library loading
• No sockets (use urlfetch API)
• Can’t write files (use datastore)

• Limited quota to avoid DoS (denial of service) attacks
• Constraints on CPU time and storage size

Software-as-a-Service

• Cloud provides an entire application
• Often running in the browser

• Application and data hosted centrally
• No installation, zero maintenance
• No control (no need for a sysop)

• Example:
• Google Apps, Word processor,

presentation, spreadsheet, calendar,
photo, CRM

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

Differences between SaaS
and traditional model

Configuring the Datacenter
“Metal-as-a-Service”

IPMI - Intelligent Platform Management

Server

Server

.

.

.

MaaS Server

• start, stop, reboot
• configure BIOS
• PXE TFTP boot

Image Server

download
OS image

• health

Virtual	
 Machine	
 (VM),	
 VM	
 Management	
 and	
 Deployment	

QoS	
 Negotiation,	
 Admission	
 Control,	
 Pricing,	
 SLA	
 Management,	

Monitoring,	
 Execution	
 Management,	
 Metering,	
 Accounting

Cloud	
 Hosting	
 Platforms

Web	
 2.0,	
 Mashups,	
 Concurrent	
 and	
 Distributed	
 Programming,	
 	

Workflows	
 ,	
 Libraries,	
 Scripting

Cloud	
 Programming	
 Environment	
 and	
 Tools

User	
 	

Applications Social	
 Computing,	
 Enterprise	
 ISV,	
 Scientific	
 Computing,	
 CDNs

Cloud	
 Applications

Cloud	
 Resources

User-­‐level	

Middleware

Core	

Middleware

System	

Infrastructure

Sa
aS

Pa
aS

Ia
aS

The Size of It
• Large data sets

• ~50 billion web pages index by Google
• Average size of webpage = 20KB
• 50 billion * 20KB = 1 PB (1^15 B)
• Disk read bandwidth = 1 GB/sec
• Time to read = 10^6 seconds = 11+ days

• Node failures:
• A single server can stay up for 3 years (1000 days)
• 1000 servers in cluster => 1 failure/day
• 1M servers in cluster => 1000 failures/day

• Network
• Network bandwidth = 1 Gbps => Moving 10TB takes ~1 day
• Solution: Push computation to the data

• Round trip between Europe & US ~200 ms

Cloud Native Applications

• Design for failure Avoid single points of failure
• Assume everything fails, and design backwards

• Goal: Applications should continue to function even if the
underlying physical hardware fails or is removed or replaced

• Couple loosely to make it scale
• Independent components
• Design everything as a black box
• De-couple interactions
• Load-balance clusters  

eBay Architecture
Guidelines

• Scale Out, Not Up
• Horizontal scaling at every tier.
• Functional decomposition.

• Prefer Asynchronous Integration
• Minimize availability coupling.
• Improve scaling options.

• Virtualize Components
• Reduce physical dependencies.
• Improve deployment flexibility.

• Design for Failure
• Automated failure detection and notification.
• “Limp mode” operation of business features.

Stateless Software
Architecture

• Do not retain information about the last session into the
next – e.g. user data, parameters, logic outcomes.

• Don’t keep any state in the quickly scalable part of the
application

• Idempotence - The property of an operation whereby it can
be applied multiple times without changing the result
beyond the initial application. It keeps you “safe” because
executing the same thing twice (or more) has no more
affect than doing it once.

[Decomposing consistency]

Geo-replication

Consistency of shared mutable data

Data Replication

Slide: Marc Shapiro

Causal-order delivery

u

u v

v

v uBob

Alice @home

Alice @phone

Don’t show
photos to Bob

post photo

Causal gap

Slide: Marc Shapiro

Example: Facebook

• Read from closest server
• Write to California
• Other servers update cache every 15 minutes
• After write: read from CA for 15 minutes

+ Luleå

Slide: Marc Shapiro

[Decomposing consistency]

Not Available

Strong Eventual
Consistency

Causal
Consistency

Non-Monotonic
SI

Parallel SI
Update

Serialisability

Snapshot
Isolation Serialisability

Strict
Serialisability

Transactional
Causal Cons.

Hard to
program

Easy to
program

Total order writes

Total order reads
Real Time

Total order reads & writes
Real time

Total Order Writes

Total order reads

Total order reads &
writes

High
performance

Low
performance

Wait-Free Queries
Minimum

Commitment Sync

Relaxed read
ordering

Genuine Partial
Replication

Forward Freshness

Minimum Commitment Sync
Relaxed read ordering

Genuine Partial Replication
Forward Freshness

Wait-Free Queries
Decoupled read/writes

Slide: Marc Shapiro

Service Job

Client Load balancer

App Server Cache Storage

App Server Cache Storage

App Server Cache Storage

task

search (“justin bieber”)
shop
streaming (“Netflix”)

Latency sensitive
External workload

tier 1 tier 2 tier 3

Can be a set of microservices

soft state

messaging
service

worker

worker

worker

worker

worker

worker

worker

worker

worker

Batch Job

Client

Scheduler

f1(…) f2(…)

f1(…) f2(…)

f1(…) f2(…)

f3(…)

f3(…)

f3(…)
data + fi()

Optimize for throughput
wave 1 wave 2 wave 3

Frameworks: MapReduce, Spark, Dryad, Pregel

• Data parallel
• Data locality

MPI Jobs

• Can be either service or batch jobs
• MPI = Message Passing Interface

• Standardized and portable message-passing system

• Does not automatically scale well, static in nature.
• High Performance Computing (HPC) / Grid computing

• Legacy type applications

Cloud Applications

• Service Jobs
• Duration ~30 days*
• 12-20 min* inter arrival time

• Batch Jobs
• Duration ~2-15 minutes*
• 4-7 seconds* inter arrival time

*80th percentile, from Omega presentation

Netflix 1.0

Netflix
Home

Amazon.com

Movies:
Master
copies

Source: Ken Birman

source: Adrian Cockcroft

Netflix Media Management
• 5 Regional catalogs
• 4 formats supported (VC-1, 3 H.264) at multiple bit rates
• Uses 6000 virtual machines (EC2) for transcoding
• Petabytes of storage

• Stores the originals at “cold storage” (Amazon Glacier)

How does Google do it?

‘instant search’ really is
instant most of the time

What does it look like
under the hood?

We don’t know, but let’s
guess a little

Google Search

• In 2003 a single query on Google reads 100 of MB,
and consumes tens of billions of CPU cycles

• And that was before ‘instant search’
• Design factors: energy efficiency & price-performance

• Power & cooling are limiting factors for DCs
• Easy parallelization: Different queries can run on different

processors, and the a single query can use multiple
processors. => commodity hardware will do just fine

Getting there

• DNS load balancing

• TTL < 5 minutes

• 500+ IP addresses for ‘Search’

lanhost496:~ johan$ dig +noall +answer google.com
google.com. 1 IN A 173.194.78.102
google.com. 1 IN A 173.194.78.100
google.com. 1 IN A 173.194.78.138
google.com. 1 IN A 173.194.78.101
google.com. 1 IN A 173.194.78.113
google.com. 1 IN A 173.194.78.139
lanhost496:~ johan$
lanhost496:~ johan$ dig +noall +answer google.com
google.com. 300 IN A 173.194.65.113
google.com. 300 IN A 173.194.65.101
google.com. 300 IN A 173.194.65.102
google.com. 300 IN A 173.194.65.138
google.com. 300 IN A 173.194.65.100
google.com. 300 IN A 173.194.65.139
lanhost496:~ johan$ dig +noall +answer google.com
google.com. 299 IN A 173.194.65.139
google.com. 299 IN A 173.194.65.100
google.com. 299 IN A 173.194.65.138
google.com. 299 IN A 173.194.65.102
google.com. 299 IN A 173.194.65.101
google.com. 299 IN A 173.194.65.113

Network

Hardware

OS

Back-end services

Application services

Applications

The Datacenters
• 36+ data centers worldwide (probably lots more)
• Estimated 900.000 machines in 2011
• Energy footprint 2010

• Less than 1% of all energy for data centers

• All IPv6 inside
• Zero trust inside
• Everything’s compressed
• Everything’s cached

http://www.datacenterknowledge.com/archives/2012/05/15/google-data-center-faq/
http://www.koomey.com/post/8323374335

http://www.datacenterknowledge.com/archives/2012/05/15/google-data-center-faq/
http://www.koomey.com/post/8323374335

Google Servers Oct’12

source:	
 http://nsl.cs.usc.edu/Talks/?action=download&upname=calder_imc13_mapping.pdf

http://nsl.cs.usc.edu/Talks/?action=download&upname=calder_imc13_mapping.pdf

Google Servers Oct’13

source:	
 http://mappinggoogle.cs.usc.edu/

http://mappinggoogle.cs.usc.edu/

Google Global Cache (GGC)
• GGC was designed for eyeball-heavy networks with greater than 300Mbps peak

Google traffic.
• Cache hit rate will vary by network based on the number of users served by the

cache, their usage patterns, the size and type of GGC node, and the number of
nodes deployed in your network. We have typically seen hit rates of 70% to 90%.

• Typically, a majority of the traffic routed through the GGC node is static content such
as YouTube videos and Android Market downloads. Other Google web services,
such as Google Search, may also be proxied and/or cached based on a number of
factors, including legal requirements, available capacity and expected improvement
in performance for end users. These services could include (but are not limited to):

• YouTube
• Google Search
• Google Plus
• Google Maps (including map tiles and street view)
• Google Earth
• Google Docs
• Google Scholar
• Google News
• Android Market
• Picasa Web Albums
• DoubleClick by Google

Source	
 https://peering.google.com/about/faq.html

https://peering.google.com/about/faq.html
https://peering.google.com/about/faq.html

The Google Network(s)
• External network

• Heterogenous
• Internal network - B4

• Few nodes, well known traffic
• More traffic than external

• Traffic engineering using SDN
• 2-3x efficiency improvement

The Servers

• Clusters of unreliable commodity hardware,
not server grade

• Focus on price
• Everything is automized, minimize staff

Network

Hardware

OS

Back-end services

Application services

Applications

http://www.wired.com/2012/06/google_makes_servers/

“Google spent about $3.4 billion on capital expenditures last year, and a
large chunk of that went to the x86 servers that run its data centers. To put
that in perspective, number-four X86 server vendor Fujitsu sold $1.3
billion worth of servers in 2011, according to research firm Gartner.”

http://www.wired.com/2012/06/google_makes_servers/

The Node OS

• Linux - Started with Red Hat 6.2 (2000) and moved to 7.1(2001)
(2.6.X kernel) and stayed with that until 2013

• Updates using file level sync from gold master (rsync-ish)
• Kernel stayed the same besides security patches

• Now home-cooked Linux by called ProdNG based on Debian
• All software is in-house or open-source

• No licenses makes scaling cheap

Network

Hardware

OS

Back-end services

Application services

Applications

source: http://marc.merlins.org/linux/talks/ProdNG-LISA/

http://marc.merlins.org/linux/talks/ProdNG-LISA/

Network

Hardware

OS

Back-end services

Application services

Applications

source: P. Krzyzanowski cs.rutgers.edu

The Datacenter OS

Cluster
scheduler

http://cs.rutgers.edu

Distributed File System

Network

Hardware

OS

Back-end services

Application services

Applications

source: P. Krzyzanowski cs.rutgers.edu

Designed for writes!

http://cs.rutgers.edu

The Cluster Scheduler

Network

Hardware

OS

Back-end services

Application services

Applications

Lock Service
• Chubby lock server

• Implementation of Paxos
• Cluster of 5

• Locks with varying levels of durability
• Leadership election
• Store configuration data

Collecting the Pages

The task of the GoogleBot

Network

Hardware

OS

Back-end services

Application services

Applications

Link Reversal
page #1
page #2

…

page #
page #

…

<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>

…

Worker#1 Worker# …

…

<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>

…

…

Input is all the web pages in
the world stored on GFS
chunks

<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>

…

<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>
<URL, CALL-URL>

…

…

Reshuffle

Worker#2 Worker# …
<URL, CALL-URL,>
 CALL-URL>

…

<URL, CALL-URL>
 , CALL-URL>
<URL, CALL-URL>

…

url

url

url

url

Network

Hardware

OS

Back-end services

Application services

Applications

GFS

Rank the Pages

p1

p2

p3

Network

Hardware

OS

Back-end services

Application services

Applications

Compute Page Rank
• Recreate the web in Pregel

• A google graph language

• Pages as vertices
• Links as edges
• Stepwise iteration

Network

Hardware

OS

Back-end services

Application services

Applications

BigTable
• Sparse distributed database
• A big map <Row, Column, Timestamp> ⇒ value

• Arbitrary “columns” on a row-by-row basis
• No multirow transactions (reads or writes)
• Per row mutation

• Garbage collected
• Row are lexically ordered

Network

Hardware

OS

Back-end services

Application services

Applications

GFS

Bigtable Master
Bigtable
Server

Client

Servers can be added/removed dynamically

Search

• A web search touches 50+ separate services, 1000s machines
• Everything is heavily cached

Network

Hardware

OS

Back-end services

Application services

Applications

Latency

• Latency sources
• Resource sharing

• Local & cluster
• SSD GC & compactations

• Server response
• Typical: 10 ms
• One out of x: 1000 ms

• Hedging

Network

Hardware

OS

Back-end services

Application services

Applications

Building Our Own
• Linux & KVM
• HDFS GFS: Google File System
• Mesos instead of Borg
• Memcached
• Riak instead of Dynamo
• Cassandra instead of BigTable
• Zookeeper instead of Chubby
• Hadoop instead of MapReduce

Enabling Technologies
• Distributed computing

• Consensus, time, locks, failure detection
• Networking

• Traffic engineering, multi tenancy, migration
• Virtualization

• Compute density, isolation, management/migration, security
• Storage

• Replication, caching, DB, key-value, block storgae
• Datacenter OS & Application architecture

• Microservices, utilization
• Programming models

• Huge data sets, non reliable environment

Summary
• Utility computing not really new

• Share the access time of mainframes (1960’s)
• Build large datacenter and rent access to customers

• Sun, IBM, HP, Intel, and many others built datacenters (1990’s)
• Then, Google & Amazon selling spare capacity

• We have a new usage model:
• No initial investment; pay-as-you-go model
• No long legal negotiations of SLAs and long-term contracts
• Saving on CapEx and OpEx

• Centralization and sharing
• Reduce the overall facility costs, power consumption, etc.
• Statistical multiplexing —> Better utilization!
• Economies of scale - Bigger is better

• Scalability
• Cost associativity: 1,000 computers for 1 hour has the same

price as 1 computer for 1,000 hours
• Unbounded computational power and storage

Home Assignment #2

