
Introduction to

Particle Smoothing and pyParticleEst

Jerker Nordh

Dept. of Automatic Control

Lund University

2013-04-29

Why particle methods?

Benefits

◮ Can handle non-linear systems

◮ Can handle non-Gaussian noise

Drawbacks

◮ Approximate solutions

◮ Non-deterministic solutions

◮ Computationally demanding
◮ both processing time and/or memory depending on the specific

problem

Particle filtering algorithm

◮ For i = 1..N initialize particles such that x
(i)
0 is sampled from

the initial distribution p(x0). For each particle associate a
weight, ω(i), typically uniformly.

◮ Propagate system state forward in time, for each particle:
◮ Sample from the input and/or state noise distributions
◮ Propagate the state belief deterministically using the sampled

noise
◮ Update each particle weight as ω

(i)
t = p(yt |x

(i)
t)ω

(i)
t−1

◮ For each time instant the collection of particles with weights is
a sampled approximation of the true probability density
function for the filtering problem.

◮ p(xt |yt , ..., y0) ≈
∑

i
w

(i)
t δ(xt − x

(i)
t)

Particle filtering details

Issues

◮ Approximate solutions, guaranteed correct only for N → inf

◮ Non-deterministic solutions

◮ The approximation deteriorates when only a few particles
remain likely, so called particle depletion

Implementation details

◮ Particle depletion can be mitigated by resampling, ie.
discarding particles with low weights

◮ After every time step
◮ When the number of effective particles falls below a

threshold
◮ Neff =

1
∑

(w (i))2
<

2

3

◮ Typically it is numerically preferable to compute log(ω(i))
instead of ω(i)

What is particle smoothing?

◮ Particle method using both past and future data, want to
estimate p(xt |y0, .., yT), t ∈ (0,T)

◮ Trivial solution, use the estimate p(xt |y0, .., yt) but use the

weights w
(i)
T

.

◮ p(xt |yT , .., yt , .., y0) ≈
∑

i
w

(i)
T
δ(xt − x

(i)
t|t)

◮ Doesn’t work if the particles have been resampled

Typical smoothing algorithm

◮ Generate filter estimates using a particle filter

◮ p(xt |yt , ..., y0) ≈
∑

i
w

(i)
t δ(xt − x

(i)
t)

◮ Sample trajectories backwards

◮ randomly choose previous state, x
(i)
t , according to p(xt+1|x

(i)
t)

◮ New difficulty: need to evaluate the next-state pdf

◮ for filtering we only need to be able to sample from p(xt+1|x
(i)
t)

Not all models can benefit from smoothing

(x0, y0, θ0)

(x1, y1, θ1)

θ0

Typical differential drive model for wheel robots

◮ The bilinear transformation (the arc) is a second order
approximation of the robot motion.

◮ The orientation at the endpoint is uniquely determined by the
initial pose and the end point position

◮ By adding noise in the θ-state this uniqueness disappears,
which is essential for particle methods

◮ Helps avoid particle depletion, related to why standard particle
methods aren’t suitable for parameter estimation

Rao-Blackwellized methods

◮ The particle filter can be adapted to use a Kalman filter for
the conditionally linear/guassian states

◮ Called a Rao-Blackwellized Particle Filter
◮ Saves both memory and computation time

◮ The particle smoother is not as easily extended in this way
◮ F. Lindsten and T. Schön, "Rao-Blackwellised particle

smoothers for mixed linear/nonlinear state-space models"
◮ Lindsten, Schön assumes Gaussian noise, but the method can

be adapted for other noise models

Rao-Blackwellized smoothing

◮ Run a RBPF forward in time yielding a filtered estimate

◮ Sample the Linear-Gaussian states before evaluating

p(xt+1|x
(i)
t)

◮ Perform backward smoothing
◮ O(MN)
◮ Rejection sampling can improve this by not evaluating the

density function for all particles

◮ Run a Rauch–Tung–Striebel Kalman smoother to obtain
continuous estimates of the Linear-Gaussian states

What is pyParticleEst?

Python module/library implementing common tasks needed for
particle methods

◮ Resampling

◮ Backward smoothing (optionally using rejection sampling)

◮ Object-Oriented structure

◮ Primitives for storing commonly used structures, eg. particle
trajectories, collections of particles with weights

Code example - Setup

Create a reference which we will try to estimate using a RBPS

correct = SimpleParticle(numpy.array([1.0, −0.5]),2.5)
Create an array for our particles

particles = numpy.empty(num, type(correct))

Initialize particles

for k in range(len(particles)):

Let the initial value of the non−linear state be U(2,3)
particles[k] = SimpleParticle(numpy.array([[0.0],[0.0]]) ,

numpy.random.uniform(2, 3))

Create a particle approximation object from our particles

pa = PF.ParticleApproximation(particles=particles)

Initialise a particle filter with our particle approximation

of the initial state, set the resampling threshold to 0.67

pt = PF.ParticleTrajectory(pa,0.67)

Mathematical model

xk+1 =

1 1 0
0 1 0
0 0 1

 xk +

0 0
1 −1
0 0

 (uk + vk) + wk

yk =
(

xk(3) 0 0
)

xk + ek

vk ∼ N

(

0,

(

0.12 0
0 0.12

))

wk ∼ N

0,

0 0 0
0 0 0
0 0 0.01

ek ∼ N (0, 1)

Code example - class SimpleParticle

def __init__(self, x0, c):

Define all model variables (omitted for breivity)

self.kf = kalman.KalmanSmoother(A,B,C,x0,P0=P,Q=None,R=R)

self.c = c # Non−linear state
def sample_input_noise(self, u): #Return perturbed input

s = math.sqrt(self.Q[0,0])

tmp = numpy.random.normal(u[2],s)

return numpy.vstack((u[:2], tmp))

def update(self, data): # Update states

self.kf.time_update(u=self.linear_input(data),

Q=self.get_lin_Q ()) # Cond. Linear

self.c += data[2,0] # Non−linear
def measure(self, y):

measurement matrix C depends on the value of c

C = numpy.array([[self.c, 0.0]])

return numpy.log(self.kf.meas_update(y, C=C))

Code example - filtering+smoothing

Run particle filter using the above generated data

for i in range(steps):

u = uvec[:,i].reshape(−1,1)
tmp = numpy.random.normal((0.0,0.0,0.0),

(0.1,0.1,0.0000000001))

Run PF using noise corrupted input signal

pt.update(u+tmp.reshape((−1,1)))
Use noise corrupted measurements

pt.measure(yvec[i]+numpy.random.normal(0.0,1.))

Use the filtered estimates above to created smoothed estimates

nums = 10 # Number of backward trajectories to generate

straj = PS.do_smoothing(pt, nums) # Do sampled smoothing

straj = PS.do_rb_smoothing(straj) # RBPS

Results

0 5 10 15

−30

−20

−10

0

Implementation summary

◮ Filtering requires implementation of 3 methods

◮ Smoothing requires one additional methods
◮ Two if using rejection sampling

◮ RBPF rather clean, RBPS currently requires some more code

Why use pyParticleEst?

◮ Implements the common parts of the algorithm, you save time
and are less likely to introduce bugs

◮ Object-Oriented structure, should be easy to incorporate into
your software

◮ Base-classes for common problem type(s)
◮ Mixed Linear/Non-linear Gaussian
◮ Differential Drive wheeled robotics

◮ You are working with Python, no other toolbox available

◮ Open Source license

Why not use pyParticleEst?

◮ Object-oriented structure might introduce unnecessary
overhead for simple/performance critical problems

◮ You only work with linear Gaussian systems

◮ You don’t want to work in Python

◮ Open Source license

