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ABSTRACT

This paper combines the Metropolis-Hastings Improved

Particle Smoother (MHIPS) with marginalized models. It

demonstrates the effectiveness of the combination by looking

at two examples; a degenerate model of a double integrator

and a fifth order mixed linear/nonlinear Gaussian (MLNLG)

model. For the MLNLG model two different methods are

compared with the non-marginalized case; the first marginal-

izes the linear states only in the filtering part, the second

marginalizes during both the filtering and smoothing pass.

The results demonstrate that marginalization not only im-

proves the overall performance, but also increases the rate of

improvement for each iteration of the MHIPS algorithm. It

thus reduces the required number of iterations to beat the per-

formance of a Forward-Filter Backward Simulator approach

for the same model.

Index Terms— Metropolis-Hasting Improved Particle

Smoother, Rao-Blackwellized smoothing, Particle Smooth-

ing, Particle Filter

1. INTRODUCTION

During the last decade particle filters have become popular

for solving nonlinear estimation problems. For linear Gaus-

sian systems the Kalman filter [1] provides the optimal es-

timate, and some extensions such as the Extended Kalman

Filter [1] and Unscented Kalman Filter [2] have been pro-

posed to handle nonlinear systems. These make simplifying

assumptions such as that the system can be locally approxi-

mated by a linearized model or that the resulting distribution

will be Gaussian. For models where these assumptions do

not hold particle filters [3] can provide superior performance,

some examples are multi-target tracking [4] and Simultanous

Localization and Mapping (SLAM) [5]. Instead of assuming

a Gaussian distribution the true distribution is approximated
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using a set of weighted point estimates, or particles,

p̂(xt|y1:t) =

N
∑

i=1

w
(i)
t δ(xt − x

(i)
t ) (1)

where x
(i)
t are particles and w

(i)
t the weights. As the num-

ber of particles increases the approximation approaches the

true distribution.. A typical particle filter implementation is

shown in algorithm 1, a common choice of proposal distribu-

tion is r(xt+1|xt, yt+1) = p(xt+1|xt) which leads to some

simplifications during the computations. For a more detailed

introduction to the particle filter see [3]. A drawback with

Algorithm 1 Particle Filter

1: for i = 1 to N do

2: Sample x
(i)
1 ∼ r(x1).

3: Set w̃
(i)
1 = p(x

(i)
1 )p(y1|x

(i)
1 )/r(x

(i)
1 )

4: end for

5: Set w
(i)
1 = w̃

(i)
1 /(

∑N

j=1 w̃
(j)
1 ), ∀i ∈ [1, N ].

6: for t = 2 to T do

7: for i = 1 to N do

8: Sample ancestor indices, ai
t, with P

(

ai
t = j

)

= w
(j)
t−1.

9: Sample x
(i)
t+1 from r(xt+1|x

(ai
t)

t , yt+1)
10: Calculate weights:

w̃
(i)
t+1 = p(yt+1|x

(i)
t+1)p(xt+1|x

(ai
t)

t )/r(xt+1|x
(ai

t)
t , yt+1)

11: end for

12: Set w
(i)
t = w̃

(i)
t /(

∑N

j=1 w̃
(j)
t ), ∀i ∈ [1, N ].

13: end for

particle filters is that the number of particles needed increases

with the dimension of the problem [6] [7], because of this it

is of interest to marginalize over some of the states if pos-

sible to reduce the dimension of the estimation problem and

thus the computational complexity. A typical example of this

are models where some of the states only occur linearly and

are only affected by additive Gaussian noise. Conditioned on

the remainder of the states those could thus be optimally esti-

mated using a Kalman filter. Filters exploiting this is typically

referred to as Rao-Blackellized Particle Filters (RBPF) [8].

Conceptually by storing the ancestral paths of the par-

ticles the filter also provides a smoothed state estimate, i.e



p(xt|y1:T ) where t < T . However, due to the resampling step

in the particle filter, in practice for all t ≪ T the ancestral path

will be identical, thus providing a very poor approximation of

the true posterior distribution [9]. Because of this a number of

particle smoothing algorithms have been proposed, the most

commonly used is the Forward Filter Backward Simulator

(FFBSi). The FFBSi complements the particle filter by per-

forming a backwards sweep where the ancestor of each parti-

cle is sampled using updated weights that depend on both the

old filter weights, as well as the probability p(xt+1|xt). For

a more thorough introduction to particle smoothing see [10]

and for the Rao-Blackwellized particle smoothing see [11].

A weakness with the FFBSi is that it only reuses the sam-

ples from the forward filter, this is something the Metropolis-

Hastings Backward Proposer (MHBP) [12] and Metropolis-

Hastings Improved Particle Smoother (MHIPS) addresses.

The rest of this paper will focus on how to combine MHIPS

with marginalized models, showing how to combine it with

a previously published method [13] [11] for marginaliza-

tion of mixed linear/nonlinear Gaussian models (MLNLG).

First it briefly discusses the, in general non-Markovian, fil-

tering/smoothing problem then shows a trivial example of a

model where the computational cost of the general solution

can be avoided through the introduction of extra variables.

These variables are propagated backwards during the smooth-

ing step in similar manner as the mean and covariance are

propagated forward in a RBPF. Section 2 introduces the ex-

ample models used in this article, section 3 discussed MHIPS

in detail and shows how to extend it for marginalized models

and section 4 presents some results of applying the method

to the example models and finally section 5 summarizes the

paper.

2. MODELS

Two models are used in this paper, a degenerate double inte-

grator and a fifth order MLNLG model. The double integrator

is included to illustrate how the methods are affected by de-

generacy and to introduce the concept used for the marginal-

ization of MLNLG models in a simpler setting.

2.1. Double integrator

Due to the noise only acting on the input there is a determinis-

tic relation between the two states making the model degener-

ate and not suitable for the standard particle smoothing meth-

ods. This coupling means that p(x
(i)
t+1|x

(j)
t ) = 0, ∀j 6= ai

where ai is the index of the ancestor for particle x
(i)
t+1.

xt+1 =

(

1 1
0 1

)

xt +

(

0
1

)

wt (2a)

yt =
(

1 0
)

xt + et (2b)

wt ∼ N(0, Q), et ∼ N(0, R) (2c)

The model in (2) can be rewritten as a first order system with

a non-Markovian structure, for notational brevity the nota-

tion xt = (pt vt)
T is introduced and the model can then be

rewritten as

vt+1 = vt + wt (3a)

yt = p0 +

t−1
∑

i=0

vi + et (3b)

wt ∼ N(0, Q), et ∼ N(0, R) (3c)

The estimation problem could now be solved using a non-

Markovian particle smoother [14]. For this particular model it

is possible to reduce the computational effort by propagating

additional information in the forward and backward steps of

the algorithms. During the filtering each particle also stores

the sum of all its previous states. At a quick glance this looks

like simply reintroducing the p-state from the original model,

but the key distinction is that this new variable is a function

of the past trajectory, and not included as a state in the model.

vt+1 = vt + wt (4a)

st+1 = st + vt (4b)

yt = st + et (4c)

s0 = p0 (4d)

wt ∼ N(0, Q), et ∼ N(0, R) (4e)

The (non-Markovian) smoother will need to evaluate the

probability density (5), but only up to proportionality which

allows it to be rewritten as (6). Evaluating this directly leads

to a computational effort for each time-step that grows with

the length of the full dataset

T
∏

k=t+1

p(yk|vk)p(vk|v1:k−1, y1:k−1) (5)

∝
v1:t

p(vt+1:T , yt+1:T |v1:t, y1:t)

= p(yt+1:T |v1:T , y1:t)p(vt+1:T |v1:t)

∝
v1:t

p(yt+1:T |v1:T )p(vt+1|vt) (6)

This is clearly undesirable, but utilizing the same approach as

the authors of [13] and noticing that (6) only needs to be eval-

uated up to proportionality (with regard to v1:t) it is possible

to propagate information backwards during the smoothing in

the same way as the st variables propagates the sum during

filtering. The first factor of (6) can be evaluated up to propor-

tionality as follows

p(yt+1:T |st, vt:T ) =
T
∏

k=t+1

p(yk|st, vt:T ) (7a)

∝
st,vt

T
∏

k=t+1

e(st+vt)
2
−2(yk−

∑k−1

j=t+1
vj)(st+vt) (7b)

= e(T−t)(st+vt)
2
−2

∑
T
k=t+1

(yk−
∑k−1

j=t+1
vj)(st+vt) (7c)



Through the introduction of two new variables Nt, γt that are

propagated backwards during the smoothing this allows (7) to

be evaluated as

log p(yt+1:T |st, vt, vt+1:T ) + constant =

1

2R
(Nt+1(st + vt)

2 − 2γt+1(st + vt)) (8a)

Nt = Nt+1 + 1, NT = 1 (8b)

γt = γt+1 + yt −Nt+1vt, γT = yT (8c)

Using (8) it is now possible to evaluate the required smooth-

ing density in constant time.

2.2. Mixed Linear/Nonlinear Gaussian

This model was introduced in [11] as an extension to the com-

monly used standard nonlinear model, the difference is that

the constant 25 has been replaced by the output of a fourth

order linear system.

ξt+1 = 0.5ξt + θt
ξt

1 + ξ2t
+ 8 cos 1.2t+ vξ,t (9a)

zt+1 =









3 −1.691 0.849 −0.3201
2 0 0 0
0 1 0 0
0 0 0.5 0









zt +

+ vz,t (9b)

yt = 0.05ξ2t + et (9c)

θt = 25 +
(

0 0.04 0.044 0.008
)

zt (9d)

ξ0 = 0, z0 =
(

0 0 0 0
)T

(9e)

vξ,t ∼ N(0, Qξ), vz,t ∼ N(0, Qz) (9f)

et ∼ N(0, R) (9g)

The z-states are not fully observable, but the affine combi-

nation θ is. The four z-states appear affinely and given the

trajectory ξ1:T the remaining estimation problem could eas-

ily be solved using a regular Kalman filter. Several solutions

have been proposed to utilize this fact when performing parti-

cle smoothing, in this paper two of these are compared. In the

forward step both methods work the same way, marginaliz-

ing the linear states by computing the sufficient statistics, i.e.

the mean value (z̄t) and the covariance (Pt), instead of sam-

pling the z-states. This allows the densities p(ξt+1|ξ1:t, y1:t)
and p(yt|ξ1:t, y1:t−1) to be expressed as p(ξt+1|ξt, z̄t, Pt) and

p(yt|ξt, z̄t, Pt) respectively. The differences are in the back-

ward smoothing recursions; the first method [11] samples the

linear states during the smoothing step, the second instead

fully marginalizes the model resulting in a non-Markovian

smoothing problem [13]. The first method thus effectively

only uses marginalization during the filtering. The smoothing

for the second method is accomplished using the concept of

propagating information backwards that was demonstrated in

section 2.1. This allows p(ξt+1:T , yt+1:T |ξ1:t, y1:t) to be eval-

uated in constant time, for the details the reader is referred to

the original paper [13].

3. ALGORITHM

This section shows how to combine MHIPS [15] with the

type of marginalized models shown in section 2. Algorithm

2 summarizes the MHIPS algorithm for Markovian models.

It is initialized with the ancestral trajectories, denoted x̃1:T ,

from the forward particle filter, it then iterates over the tra-

jectories from end to beginning R times, and for every time-

step a new sample, x′, is proposed from the proposal density

q(x′

t|x̃t+1, yt, x̃t−1). This new sample is accepted with prob-

ability given by

1 ∧
pf (x̃t+1|x

′

t)

pf (x̃t+1|x̃t)

pg(yt|x
′

t)

pg(yt|x̃t)

pf (x
′

t|x̃t−1)

pf (x̃t|x̃t−1)

q(x̃t|x̃t+1, yt, x̃t−1)

q(x′

t|x̃t+1, yt, x̃t−1)
.

(10)

where (a ∧ b) denotes the minimum value of a and b. When

a sample is accepted it replaces the previous value in x̃1:T by

setting x̃t = x′

t. For the non-Markovian case the proposal and

acceptance probabilities have to be extended in the same way

as for the backward simulator type of smoother [16] [9]. This

results in the proposal density q(x′

t|x̃t+1:T , y1:T , x̃1:t−1) and

the acceptance probability is now given by

1 ∧
pf (x̃t+1:T , yt+1:T |x

′

t, x̃1:t−1, y1:t)

pf(x̃t+1, yt+1:T |x̃1:t, y1:t)

×
pg(yt|x

′

t, x̃1:t−1, y1:t−1)

pg(yt|x̃1:t, y1:t−1)

×
pf (x

′

t|x̃1:t−1, y1:t−1)

pf (x̃t|x̃1:t−1, y1:t−1)

q(x̃t|x̃t+1:T , y1:T , x̃1:t−1)

q(x′

t|x̃t+1:T , y1:T , x̃1:t−1)
. (11)

At each time-step t, the MHIPS is choosing between two

complete trajectories x1:t, they are however identical except

for the last state (xt). Algorithm 3 gives the extended algo-

rithm exemplified using the propagation of backwards vari-

ables as derived for the marginalized double integrator in (8),

the concept is the same for other models where the neces-

sary information can be back-propagated in a similar manner.

For models where that is not possible it is of course possible

to evaluate the required densities by iterating over the future

parts of the trajectory, however the poor scaling properties of

that approach makes it an unattractive method.

4. RESULTS

All the experiments have been done using the proposal den-

sity q(x′

t|x̃t+1:T , y1:T , x̃1:t−1) = p(x′

t|y1:t−1, x̃1:t−1) for the

marginalized case and q(x′

t|x̃t+1, yt, x̃t−1) = p(x′

t|x̃t−1) for

the Markovian case. The Python source code for the exam-

ples can be downloaded from [17], all simulation have been

done using the pyParticleEst [18] software framework.



Algorithm 2 MHIPS

1: Sample {x̃
(j)
1:T }

M
j=1 from the ancestral paths of the forward filter,

drawing each trajectory with probability ω
(i)
T .

2: for r = 1 to R do

3: for t = T to 1 do

4: for j = 1 to M do

5: Sample x′(j)
t ∼ qt(xt|x̃

(j)
t+1, yt, x̃

(j)
t−1)

6: With probability given by (10) set x̃
(j)
t = x′(j)

t

7: end for

8: end for

9: end for

Algorithm 3 MHIPS non-Markov

1: Sample {x̃
(j)
1:T }

M
j=1 from the ancestral paths of the forward filter,

drawing each trajectory with probability ω
(i)
T .

2: for r = 1 to R do

3: for t = T to 1 do

4: for j = 1 to M do

5: Sample x′(j)
t ∼ qt(xt|x̃

(j)
t+1:T , yt, x̃

(j)
1:t−1)

6: With probability given by (11) set x̃
(j)
t = x′(j)

t

7: Calculate backward propagating variables (N
(j)
t , γ

(j)
t )

8: end for

9: end for

10: for t = 1 to T do

11: for j = 1 to M do

12: Update forward propagating variables (s
(j)
t )

13: end for

14: end for

15: end for

4.1. Double integrator

The methods are tested against an example with Q = R = 1
and initial state x1 = (−10 1)T and using 50 particles in the

forward filter and 10 smoothed trajectories. Fig. 1 shows the

RMSE for the double integrator example as a function of the

number of iterations of the MHIPS algorithm. As expected

there is no improvement for the degenerate case. For the

marginalized case there is clear improvement using MHIPS

and after only 9 iterations it yields better average RMSE than

the FFBSi smoother. It would of course have been possible to

initialize the MHIPS algorithm using the trajectories obtained

from the FFBSi smoother instead of the ancestral paths from

the particle filter, giving a lower initial RMSE, but to clearly

demonstrate the initial rate of improvement of the MHIPS al-

gorithm this was not done.

4.2. MLNLG model

The methods are tested against an example with Qe = 0.005,

Qz = 0.01I4x4, R = 0.1 and initial state (ξT1 zT1 )
T = 05x1

and using 100 particles in the forward filter and 10 smoothed

trajectories. Fig. 2 shows the average RMSE of the ξ-state

as a function of the number of iterations of the MHIPS al-
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Fig. 1. Average RMSE over 10000 realizations in logarithmic

scale. The dotted black line is for the degenerate model, as

expected it shows no improvement using MHIPS. The solid

red line is for MHIPS on the marginalized model and dashed

line when for using FFBSi

gorithm, Fig. 3 shows the average RMSE of θ, the affine

function of the z-states. Both figures include results for three

different methods; the case when all the states are sampled,

when the z-states are sampled during the smoothing step and

finally when the z-states are fully marginalized for both the

filter and smoother. The figures also include the performance

of a FFBSi smoother for all three cases as a reference. It can

be seen that marginalization as expected leads to a lower aver-

age RMSE for both FFBSi and MHIPS. It also shows a higher

rate of improvement when using MHIPS and marginalization,

requiring fewer iterations to beat the performance of FFBSi.

Suggesting that proper marginalization is even more impor-

tant for MHIPS than for FFBSi.

5. CONCLUSION

This article has demonstrated how to combine MHIPS with

marginalized models and combines it with the method for

fully marginalizing the linear sub-states in a MLNLG model

using the approach presented in [13]. It compares the

marginalized MHIPS with the regular MHIPS, showing the

importance of marginalization with MHIPS since it enables

MHIPS to outperform the FFBSI smoother using fewer itera-

tions.
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