
Journal of Machine Learning Research 15 (2015) 1-48 Submitted 4/00; Published 10/00

A Quantitative Evaluation of Monte Carlo Smoothers

Jerker Nordh jerker.nordh@control.lth.se
Department of Automatic Control
Lund University
Box 118
SE-221 00 Lund, Sweden

Jacob Antonsson jacob.antonsson@control.lth.se

Department of Automatic Control

Lund University

Box 118

SE-221 00 Lund, Sweden

International Group for Data Analysis

Pasteur Institute

Paris, France

Editor:

Abstract

In this paper we compare the performance of several popular methods for particle smoothing
to investigate if any of the algorithms can deliver better performance for a given computa-
tional complexity. We use four different models for the evaluation, chosen to illuminate the
differences between the methods. When comparing the computational cost we avoid the
issues of implementation efficiency by instead counting the number of evaluations required
for a set of high level primitives that are common for all the algorithms. Our results give
some insight into the performance characteristics of the chosen methods, even though no
universal best choice can be identified since the cost/performance ratios of the methods
depend on the characteristics of the problem to be solved which can be clearly seen in the
results.

Keywords: Bayesian smoothing, particle Markov chain Monte Carlo, sequential Monte
Carlo, Bayesian inference, state-space models

1. Introduction

We are concerned with the problem of inferring the latent states x1:T , {xt}Tt=1, xt ∈ Rn,
given a set of observations y1:T , {yt}Tt=1, yt ∈ Rm from a state-space model,

xt+1 ∼ p(xt+1|xt), (1a)

yt ∼ p(yt|xt), (1b)

x1 ∼ p(x1). (1c)

Specifically, we want to estimate the joint smoothing density (JSD), p(x1:T |y1:T) for such
a system. An estimate of the JSD can be found by the particle filter, which approximates

c©2015 Jerker Nordh and Jacob Antonsson.

Nordh and Antonsson

the marginal densities p(xt|y1:T), t ≤ T of the JSD by a set of weighted samples, called
particles. The particle filter is a sequential Monte Carlo (SMC) algorithm applied to state-
space models. Due to the degeneracy property (Doucet and Johansen, 2011) of the particle
filter, the amount of unique samples approximating the marginal densities are decreasing
with decreasing t; the approximations are said to lack particle diversity. The filter density,
p(xt|y1:t), estimates are diverse in the particles however, and they can be used to simulate
realizations, usually called backward trajectories, from the JSD. This is the idea of the
forward filter backward simulator (FFBSi) algorithm (Godsill et al., 2004). Let N and M
be the number of particles and backward trajectories respectively. The FFBSi has O(MN)
complexity (Godsill et al., 2004), which can be prohibitive. Asymptotically in N , the
complexity can be reduced to O(N) by the use of rejection sampling, giving the FFBSi-RS
algorithm, proposed by Douc et al. (2011).

Another approach, developed by Dubarry and Douc (2011), among others, is to use the
degenerate particle approximations of the JSD in a Metropolis within Gibbs sampler to get
univariate realizations from all time points of the smoothed trajectory. In each step of the
Gibbs sampler, the state at time t is sampled using Metropolis Hastings (MH) sampling.
This algorithm is known as the Metropolis Hastings improved particle smoother (MH-IPS).

A couple of algorithms based on using the degenerate particle filter approximation of
the JSD as a pseudo likelihood in a Markov chain Monte Carlo (MCMC) sampler have
also been proposed, yielding the particle Gibbs (PG), and the particle Metropolis Hastings
algorithms. It was shown by Andrieu et al. (2010) that such samplers do indeed target
the JSD. The samplers originally proposed by Andrieu et al. (2010) have been improved
by the use of backward simulation by for example Lindsten and Schön (2012); Lindsten
et al. (2014); Olsson and Ryden (2011), giving the particle Gibbs with backward simulation
(PGBS), particle Gibbs with ancestor sampling (PGAS) and particle Metropolis Hastings
(PMMH-BS) algorithms. The particle MCMC methods generally have higher complexity
than the aforementioned smoothing algorithms, but it has been proposed (Lindsten and
Schön, 2013) that they might be more efficient, and can give better approximations of the
JSD for fewer particles.

These algorithms have a lot of subtle differences and none have been shown to clearly
perform better than the others for smoothing in general state space models. We here try
to investigate the performance of the different types of smoothing methods for some state
space models commonly used in the literature. We also include a model whose transition
kernel (1a) does not admit a density, a common case in practice. One algorithm from each
type of method is chosen to, hopefully, reflect the variety between them. The methods cho-
sen are FFBSi-RS, with an additional improvement of adaptive early stopping, proposed
by Taghavi et al. (2013), MH-IPS and PGAS. We compare the algorithms for different
parameter choices using a novel approach which is independent of implementation and
computer system. The theory of these algorithms will not be detailed, we refer the com-
prehensive introduction and review made by Lindsten and Schön (2013), and the original
articles for further details.

Smoothing in state space models is an important topic in its own right, but it also has
many applications. The smoothing distributions are for example a key component in several
parameter estimation algorithms and can thus be used to find the posterior distributions of
parameters in general state space models, or to learn the whole model itself. For example

2

A Quantitative Evaluation of Monte Carlo Smoothers

? uses PMCMC, and Wills et al. (2013) uses an FFBSi-RS smoother together with an
expectation maximization procedure, for identification of Hammerstein-Wiener systems.

2. Theoretical Preliminaries

In this section we give a brief review of the particle filter which is the basis for all the other
algorithms. We also briefly discuss the backward kernel for state space models, as both the
FFBSi-RS and PGAS uses it to simulate from the JSD.

2.1 The Particle Filter

The particle filter is an SMC sampler targeted at the marginal posterior densities p(xt|y1:t), ∀t ∈
{1, . . . , t}, which are approximated as discrete distributions,

p(xt|y1:t) ≈
N∑
i=1

witδ
(
xt − xit

)
. (2)

The sets of weighted particles targeting the filtering densities are calculated by sequential
importance sampling. Given a weighted set of particles {wit−1, xit−1}Ni=1 approximating
p(xt−1|y1:t−1), a set of particles approximating p(xt|y1:t) can be found by sampling from
an importance distribution, q(xt|xit−1, yt), chosen to satisfy the Markov property, and the
weights can be calculated as

wit ∝ wit−1
p(yt|xit)p(xit|xit−1)
q(xit|xit−1, yt)

,

after which they are normalized to sum to unity. The approach leads to an approxima-
tion with a variance that will increase toward infinity for increasing t (Doucet and Jo-
hansen, 2011). This will gradually shift all weight to one particle, leading to an effective
approximation size of only one sample. To mitigate this a resampling step is introduced
when the number of effective particles, measured by the effective sample size statistic
ESS(t) ≈ 1/

∑
(wit)

2, described by Doucet and Johansen (2011), is too low. A rule of
thumb is to resample if ESS < 2N/3, where N as before is the number of particles. The
resampling is done by sampling new equally weighted particles from the existing set of par-
ticles, where the probability of selecting the i:th particle is wit, giving samples distributed
according to the empirical distribution (2). This procedure is encoded in ancestor indices
ait that keeps track of which previous sample the particle xit originates from.

The simplest choice of importance distribution, which we use and which is often used
in practice, is to use the transition kernel (1a), giving the bootstrap filter outlined in Algo-
rithm 1. Doucet and Johansen (2011) gives more details of the particle filter and SMC for
state-space models.

2.2 The Backward Kernel

The key to a lot of the smoothing algorithms for (1), such as FFBSi and PGAS, is the
backward kernel,

p(xt|xt+1, y1:T) =
p(xt+1|xt)p(xt|y1:t)p(xt+1|y1:T)

p(xt+1|y1:t)
, t ≤ T. (3)

3

Nordh and Antonsson

Algorithm 1 Bootstrap Particle Filter for (1)

Input: Measurements {yt}Tt=1.
Output: Particle system {wi

t, x
i
t}Ni=1, t ∈ {1, . . . , T} and ancestor indices {ait}Ni=1, t ∈

{2, . . . , T} approximating the marginal filter- and the degenerate smoothing distribu-
tions.

1: for i = 1 to N do
2: Sample xi1 from p(x1).
3: Compute w̃i

1 = p(y1|xi1)
4: end for
5: Set wi

1 = w̃i
1/(
∑N

j=1 w̃
j
1), ∀i ∈ {1, . . . , N}.

6: for t = 1 to T − 1 do
7: for i = 1 to N do
8: if ESS(t) < 2N/3 then
9: Sample ancestor indices, ait+1, with P(ait+1 = j) = wj

t , j ∈ {1, . . . , N}.
10: else
11: ait+1 = i
12: end if

13: Sample xit+1 from p(xt+1|x
ai
t+1

t)
14: Compute w̃i

t+1 = p(yt+1|xit+1)
15: end for
16: Set wi

t+1 = w̃i
t+1/(

∑N
j=1 w̃

j
t+1), ∀i ∈ {1, . . . , N}.

17: end for

This expression is dependent on the filter distribution which can be approximated with
high particle diversity by the particle filter. Mark particles representing the smoothed
distribution with a tilde. Using (2) in (3), an empirical approximation to the backward
kernel is given by,

p(xt|x̃t+1, y1:T) ≈
N∑
i=1

wit|T δ
(
xt − xit

)
, (4)

with smoothing weights calculated as

wit|T ∝ w
i
tp(x̃t+1|xit).

Smoothed samples can then be drawn using the following recursive sampling scheme; start-
ing at t = T and iterating until t = 1, all the time conditioning on the already sampled
future states x̃t+1:T ,

Sample x̃T with P
(
x̃T = xiT

)
= wiT , (5a)

sample x̃t with P
(
x̃t = xit

)
= wit|T . (5b)

3. Algorithms

We chose three algorithms to represent the diversity of particle smoothing algorithms:
FFBSi-RS, MHIPS and PGAS. Here we briefly discuss these algorithms and list them as
they are implemented. For details and theoretical results we refer to references given in the
introductory section of the paper.

4

A Quantitative Evaluation of Monte Carlo Smoothers

3.1 Forward Filtering Backward Simulation with Rejection Sampling -
FFBSi-RS

The FFBSi-RS algorithm uses the recursive scheme (5) to sample smoothed trajectories.
However, to avoid evaluating all the smoothing weights (2.2), it samples from the categori-
cal distribution defined by wit|T , i ∈ {1, . . . , N}, using rejection sampling. It uses the filter

weights, wit, i ∈ {1, . . . , N}, as proposal distribution. When the number of particles is large,
this renders the complexity of the algorithm approximately linear in the number of parti-
cles (Douc et al., 2011). However, the rejection sampler can get stuck for more improbable
realizations of the backward trajectories. We therefore use a hybrid scheme where the re-
jection sampler is run a certain number of iterations, and if needed the final realizations are
drawn by evaluating the smoothing weights explicitly. The stopping rule for the rejection
sampler is adaptive and depends on an estimate of the average acceptance probability, as
suggested by Taghavi et al. (2013). The algorithm used is outlined in Algorithm 2. The
expression for the acceptance probability is derived by Douc et al. (2011) in the original
article. Our notation approximately follows that of Lindsten and Schön (2013), Cat(·) for
instance, refers to the categorical distribution. Rejection sampling is treated exhaustively
by Robert and Casella (2013).

3.2 Metropolis Hastings Improved Particle Smoother - MH-IPS

We now move over to two algorithms that combine the inference approaches of SMC and
MCMC. The first one, the MH-IPS, samples from the trajectory using Gibbs sampling by
sampling the state at each time-step t separately, while conditioning on the rest of the
trajectory. For a Markovian model like (1), the smoothed states xt should thus be sampled
from

p(xt|x1:t−1, xt+1:T , y1:T) ∝ f(xt+1|xt)g(yt|xt)f(xt|xt−1).

This is done by MH sampling. A sample x′t is drawn from a proposal distribution
q(xt|xt−1, xt+1, y1:T) and accepted with probability,

1 ∧ p(xt+1|x′t)
p(xt+1|xt)

p(yt|x′t)
p(yt|xt)

p(x′t|xt−1)
p(xt|xt−1)

q(xt|xt+1, yt, xt−1)

q(x′t|xt+1, yt, xt−1)
, (6)

where ∧ is the min-operator. We use the proposal density

q(xt|xt−1, xt+1, y1:T) = p(xt|xt−1), (7)

which simplifies the acceptance probability (6) and gives Algorithm 3. Dubarry and Douc
(2011) outlines MH-IPS in greater generality, and with more theoretical details. Robert and
Casella (2013) provides more details on MH and Gibbs sampling.

3.3 Particle Gibbs Ancestral Sampling - PGAS

We saw that MH-IPS updates each state in the trajectory univariately, which can lead to
poor mixing (Lindsten and Schön, 2013). In contrast, PG samples whole trajectories at
each update. The trajectories are sampled from a set of degenerate SMC approximations of
the smoothed trajectory. Invariance of the sampler is achieved by doing the SMC sampling

5

Nordh and Antonsson

Algorithm 2 FFBSi with rejection sampling and early stopping, for (1). For details of the
stop criterion see Taghavi et al. (2013)

Input: Forward filter particle system {wit, xit}Ni=1, t ∈ {1, . . . , T}.
Output: M realizations from the JSD.

1: Sample indices {bT (j)}Mj=1 from Cat
(
{wi

T }Ni=1

)
2: for j = 1 to M do

3: x̃jT = x
bT (j)
T

4: end for
5: for t = T − 1 to 1 do
6: L← {1, . . . ,M}
7: ρt = max

i
argmax

xt+1

p(xt+1|xit)

8: while length(L)¬0 or stop criterion not fulfilled do
9: n← length(L)

10: δ ← ∅
11: Sample {I(k)}nk=1 from Cat

(
{wi

t}Ni=1

)
12: Sample {U(k)}nk=1 from U ([0, 1])
13: for k = 1 to n do
14: if U(k) ≤ p(x̃L(k)

t+1 |x
I(k)
t)/ρt then

15: bt (L(k))← I(k)
16: δ ← δ ∪ {L(k)}
17: end if
18: end for
19: L← L \ δ
20: end while
21: for j = 1 to length(L) do
22: Compute w̃i,j

t|T ∝ w
i
tp(x̃

j
t+1|xit), i ∈ {1, . . . , N}.

23: wi,j
t|T = w̃i,j

t|T /(
∑

i w̃
i,j
t|T), i ∈ {1, . . . , N}.

24: Sample bt(L(j)) from Cat
(
{wi,j

t|T }
N
i=1

)
25: end for
26: for j = 1 to M do

27: Set x̃jt = x
bt(j)
t and x̃jt:T = {x̃jt , x̃

j
t+1:T }.

28: end for
29: end for

conditioned on a fixed trajectory. Due to the degeneracy of the trajectories from the SMC
pass, the PG sampler can also suffer from bad mixing (Lindsten et al., 2014). In PGAS
this is alleviated by splitting the reference trajectory at each time point t, by assigning a
new history to the future trajectory. This is done by sampling a new ancestor index, ait,
with probability given by the smoothing weights (2.2). This keeps the invariance of the PG
sampler and improves mixing. The algorithm we use, with the same choices for proposal
density as in Algorithm 1, is listed in Algorithm 4. Further details and theory is given
by Lindsten et al. (2014). A related sampler is the Particle Gibbs Backward Simulator
(PGBS) developed by Lindsten and Schön (2012, 2013).

6

A Quantitative Evaluation of Monte Carlo Smoothers

Algorithm 3 MHIPS with MH proposal (7) for model (1), performing R iterations of the
Gibbs sampler

Input: Degenerate smoothing trajectories {wi
T , x

i
1:T }Ni=1.

Output: Improved smoothing trajectories {x̃i1:T }Mi=1.

1: Initialize {x̃j1:T }Mj=1 by sampling from the ancestral paths of the forward filter, drawing each

trajectory with probability wi
T .

2: for r = 1 to R do
3: for j = 1 to M do
4: Modifed acceptance probability for last time-step
5: Sample x′

j
T ∼ p(xT |x̃T−1)

6: With probability 1 ∧ p(yT |x′
T)

p(yT |x̃T) , set x̃jT = x′
j
T

7: for t = T − 1 to 2 do
8: Sample x′

j
t ∼ p(xt|x̃t−1)

9: With probability 1 ∧ p(x̃t+1|x′
t)

p(x̃t+1|x̃t)
p(yt|x′

t)
p(yt|x̃t)

, set x̃jt = x′
j
t

10: end for
11: Modifed proposal distribution for first time-step
12: Sample x′

j
1 ∼ p(x1)

13: With probability 1 ∧ p(x̃2|x′
1)

p(x̃2|x̃1)
p(y1|x′

1)
p(y1|x̃1)

, set x̃j1 = x′
j
1

14: end for
15: end for

Algorithm 4 PGAS kernel for (1)

Input: Measurements and conditional trajectory {yt, x′t}Tt=1

Output: Smoothed trajectories {x̃i1:T }Mi=1 and intermediate quantities such as the same particle
systems given by the particle filter.

1: for i = 1 to N − 1 do
2: Sample x̃i1 from p(x1).

3: Compute w̃
(i)
1 = p(y1|x̃i1)

4: Set x̃N1 = x′1.
5: end for
6: Set wi

1 = w̃i
1/(
∑N

j=1 w̃
j
1), ∀i ∈ [1, N].

7: for t = 1 to T − 1 do
8: for i = 1 to N − 1 do
9: Sample ancestor indices, ait+1, with P(ait+1 = j) = wj

t , j ∈ [1, N].

10: Sample x̃it+1 from p(xt+1|x̃
ai
t+1

t)
11: end for
12: Set x̃Nt+1 = x′t+1.

13: Sample aNt+1 with P
(
aNt+1 = i

)
=

wi
tp(x

′
t+1 | x̃

i
t)∑N

l=1 wl
tp(x

′
t+1 | x̃l

t)

14: for i = 1 to N do
15: Set x̃i1:t+1 = {x̃a

i
t

1:t, x̃
i
t+1}

16: Compute wi
t+1 = p(yt+1|x̃it+1)

17: end for
18: end for

4. Models

We chose four different models to evaluate the smoothing algorithms. We use a standard
one-dimensional nonlinear model that is commonly seen used in the particle filtering and

7

Nordh and Antonsson

smoothing literature for benchmarking algorithms. A model often used in two-dimensional
tracking applications is also included to test how the algorithms fare in a higher dimensional
scenario. Especially interesting in that regard is the FFBSi-RS algorithm, since rejection
sampling notoriously gets trickier for higher dimensions.

It is not uncommon for models used in engineering to have degenerate transition kernels.
This is for example true for orientation filter models, used for finding the orientation of a
physical body using inertial measurement sensors, and other types of dynamical first princi-
ples models (Gustafsson, 2010). Such models impose a further difficulty for the smoothing
algorithms, and are very common in practice. As an example of such a model we therefore
include a double integrator. It is included both in its degenerate formulation and as a
non-Markovian model, that is the result of marginalizing over the deterministic state. The
following subsections state the models in some more detail.

4.1 Standard Benchmark Model

The model

xt+1 = 0.5xt + 25
xt

1 + x2t
+ 8 cos 1.2t+ wt, (8a)

yt = 0.05x2t + et, x1 ∼ N (0, 5), (8b)

wt ∼ N (0, 10), et ∼ N (0, 1), (8c)

where N (m,P) is the Gaussian distribution with mean m and covariance P , is commonly
used for evaluating filter and smoother performance. It has been used by for example
Lindsten and Schön (2013); Arulampalam et al. (2002); Godsill et al. (2004) as a benchmark
model. For such a model the filtering and smoothing distributions are multi-modal, which
makes algorithms that assume a fixed distribution on the posterior, such as the extended
Kalman filter (Särkkä, 2013), perform very poorly.

4.2 Double Integrator

An example of a state space model with a degenerate transition kernel is the double inte-
grator

xt+1 =

(
1 1
0 1

)
xt +

(
0
1

)
wt, (9a)

yt =
(

1 0
)
xt + et, (9b)

wt ∼ N (0, Q), et ∼ N (0, R). (9c)

Due to the noise only acting on the input there is a deterministic relation between the two
states making the model degenerate and not suitable for the standard particle smoothing
methods. This coupling means that p(xit+1|x

j
t) = 0, ∀j 6= ait, where ait is the index of the

ancestor for particle xit+1.

The model in (9) can be rewritten as a first order system with a non-Markovian structure.
For notational brevity introduce the notation xt = (pt vt)

T . The model can then be

8

A Quantitative Evaluation of Monte Carlo Smoothers

rewritten as

vt+1 = vt + wt, (10a)

yt = p1 +

t−1∑
i=1

vi + et, (10b)

wt ∼ N (0, Q), et ∼ N (0, R), (10c)

and the smoothing problem can be solved using a non-Markovian particle smoother (Lind-
sten and Schön, 2013). For this particular model it is possible to reduce the computational
effort by propagating additional information in the forward and backward steps of the al-
gorithms. Writing the model (10) as

vt+1 = vt + wt, (11a)

st+1 = st + vt, (11b)

yt = st + et, (11c)

s0 = p0, (11d)

wt ∼ N (0, Q), et ∼ N (0, R), (11e)

it is clear that during the filtering step, each particle also stores the sum of all its previous
states. At a quick glance this looks like simply reintroducing the p-state from the original
model, but the key distinction is that this new variable is a function of the past trajectory,
and not included as a state in the model.

The smoothing weights for the model (11) are computed using the density

T∏
k=t+1

p(yk|vk)p(vk|v1:k−1, y1:k−1) (12)

∝
v1:t

p(yt+1:T |v1:T)p(vt+1|vt), (13)

as noted by (Lindsten and Schön, 2013). Evaluating this directly leads to a computational
effort for each time-step that grows with the length of the full dataset. This is clearly
undesirable, but using the same approach as Lindsten and Schön (2013), and noticing that
(13) only needs to be evaluated up to proportionality (with regard to v1:t) it is possible
to propagate information backwards during the smoothing in the same way as the st vari-
ables propagate the sum during filtering. The first factor of (13) can be evaluated up to
proportionality as follows,

p(yt+1:T |st, vt:T) =

T∏
k=t+1

p(yk|st, vt:T) (14a)

∝
st,vt

T∏
k=t+1

e(st+vt)
2−2(yk−

∑k−1
j=t+1 vj)(st+vt) (14b)

= e(T−t)(st+vt)
2−2

∑T
k=t+1(yk−

∑k−1
j=t+1 vj)(st+vt). (14c)

9

Nordh and Antonsson

Through the introduction of two new variables Nt, γt that are propagated backwards during
the smoothing this allows (14) to be evaluated as

log p(yt+1:T |st, vt, vt+1:T) + constant =

1

2R
(Nt+1(st + vt)

2 − 2γt+1(st + vt)), (15a)

Nt = Nt+1 + 1, NT = 1, (15b)

γt = γt+1 + yt −Nt+1vt, γT = yT . (15c)

Using (15) it is now possible to evaluate the required smoothing density in constant
time. A more detailed derivation of these expressions for this particular model is given
by Nordh (2015, Submitted).

4.3 Tracking Model

To test how the algorithms fare in a higher dimensional setting we have included a four
dimensional model commonly used for tracking. The model was also used to test a new
FFBSi smoother, similar to MHIPS, in Bunch and Godsill (2013). Define the state vector
of positions and velocities in two dimensions, xt =

(
xt yt ẋt ẏt

)
, let h = 0.1 be the

sampling time, I2 the identity matrix in R2×2, 02×2 the null matrix in R2×2, and 0n the null
vector in Rn respectively. The model is then given by,

xt+1 =

(
I2 hI2

02×2 I2

)
xt + wt, (16a)

yt =

(
atan2(yt, xt)√

x2t + y2t

)
+ et, (16b)

wt ∼ N

(
04,

(
h3

3 I2
h2

3 I2
h2

3 I2 hI2

))
, (16c)

et ∼ N
(

02,

((
π
720

)2
0

0 0.1

))
, (16d)

where atan2(·, ·) is the four-quadrant inverse tangent.

5. Method

To compare the smoothing performance of the algorithms we use the Root Mean Square
Error (RMSE) metric which is a standard choice in the literature. It is however flawed in
that it only compares the estimated mean value to the true value, whereas the goal of a
particle smoother is to provide a good approximation of the JSD. The fact that the average
of the posterior density most of the time will not coincide with the true state means that
there is a problem specific lower bound for the RMSE. This is related to the Cramér-Rao
Lower Bound (CRLB)(Tichavsky et al., 1998) which provides a bound on the achievable
performance of any estimator for a given problem. In theory all the methods examined
in this paper should reach the same RMSE since they all converge to the true posterior

10

A Quantitative Evaluation of Monte Carlo Smoothers

distribution as the quality of the approximations are increased. To reduce the variance of
the measured RMSE metric we compute the average over a large number of realizations
from each model. To ensure a fair comparison for the different algorithms they are all given
the exact same set of realizations. Denote, as before, the number of realizations as N and
the length of each realization as T , the true value as x and the estimated mean value as x̄.
The average RMSE is then calculated as

1

N

N∑
i=1

√√√√ 1

T

T∑
t=1

(x̄t − xt)2.

The standard error of the average RMSE is also computed to determine if the observed
differences between the methods are statistically significant.

Our goal is not only to investigate which methods can provide the lowest RMSE for a
given problem, but also to analyze the computation effort required to do so. To avoid any
issues arising from the efficiency of our implementation, the execution time is not used as
the metric of computation effort. The methods are all based on a few common operations.
We therefore use the number of times these operations are performed by the algorithms as a
complexity measure. The high-level primitives are listed in Table 1. In the presented graphs
all the operations are equally weighted to give a quick overview, in practice the relative cost
of the operations are both problem and implementation specific. The level of parallelization
that can be exploited, both in the hardware and software, and which simplifying assumptions
that can be made about the model will greatly affect the cost of each operation. Therefore
we chose to not include the actual execution times for the algorithms as that would be more
a benchmark of our implementation than of the methods themselves. This is especially true
in our case since we used a flexible generic framework to test the methods. This facilitates
implementation to a great degree, but causes an overhead in terms of execution time, since
the framework does not exploit model specific characteristics to increase speed, such as
knowledge about which matrices are time-invariant, sparsity structures and so on. As a
drastic example consider an embedded system where for performance reasons it is decided
to sample from distributions by simply iterating over a pre-calculated array with numbers.
The relative cost of the operations in that scenario will differ drastically compared to an
implementation running on a desktop system and where accuracy and correctness might be
more important than execution time. The interested reader can download the raw results
together with the source code from the homepage of Nordh and Antonsson (2013) and make
their own analysis for their particular target platform.

6. Results

The mean of the RMSE together with a band of 2 standard errors on both sides is plotted
as a function of computation effort, encoded in numer of high-level primitive operations,
for all the methods and a few different parameter choices are presented in Figure 1 for the
standard nonlinear model, Figure 2 for the tracking example, Figure 3 for the degenerate
double integrator and in Figure 4 for the marginalized double integrator.

For the marginalized double integrator model we use the normal FFBSi-smoother instead
of rejection sampling. This is because we can only evaluate the required probability densities

11

Nordh and Antonsson

Table 1: List of common high-levels operations for all the algorithms used. The number
of times each operation is performed is compared for the different algorithms and
used as the computational cost

Sample from p(xt+1|xt)
Used in e.g the particle filter when propagat-
ing the estimates forward

Evaluate p(yt|xt)
Used in e.g the particle filter when updating
the particle weights

Evaluate p(xt+1|xt)
Used in most of the smoothers to update the
weights of particles given information about
the future trajectories

Compute argmax
xt+1

p(xt+1|xt) Used for rejections sampling in combination
with FFBSi smoothers

Sample from p(x1) Draw particles from the initial distribution

up to proportionality and we can therefore not compute the required normalization factor.
Additionally, in theory the rejection sampling would work very poorly since it is actually
sampling the full ancestral path in each step, x1:t, which is a very high-dimensional problem
and therefore not suitable for rejection sampling.

12

A Quantitative Evaluation of Monte Carlo Smoothers

24

1e
+

08
1e

+
09

1e
+

10
O

pe
ra

tio
ns

RMSE

F
F

B
S

i−
R

S
 M

10

F
F

B
S

i−
R

S
 M

25

F
F

B
S

i−
R

S
 M

50

M
H

−
IP

S
 N

10
 M

10

M
H

−
IP

S
 N

50
 M

10

P
G

A
S

 N
10

P
G

A
S

 N
50

P
G

A
S

 N
10

0

R
M

S
E

 fo
r

th
e

S
ta

nd
ar

d
N

on
 L

in
ea

r
M

od
el

F
ig

u
re

1:
R

M
S

E
as

a
fu

n
ct

io
n

of
th

e
co

m
p

u
ta

ti
on

eff
or

t
fo

r
al

l
m

et
h

o
d

s
ap

p
li

ed
to

th
e

st
an

d
ar

d
n

on
li

n
ea

r
m

o
d

el
(8

).
T

h
e

m
ea

n
of

th
e

R
M

S
E

is
p

lo
tt

ed
to

ge
th

er
w

it
h

a
b

an
d

of
tw

o
st

an
d

ar
d

er
ro

rs
on

b
ot

h
si

d
es

.
F

or
th

e
F

F
B

S
i-

R
S

p
lo

ts
,

th
e

n
u

m
b

er
of

b
ac

k
w

ar
d

tr
a

je
ct

or
ie

s
ar

e
h
el

d
fi

x
ed

at
10

,
25

an
d

50
,

w
h

il
e

th
e

n
u

m
b

er
of

p
ar

ti
cl

es
u

se
d

in
th

e
fo

rw
a
rd

fi
lt

er
is

in
cr

ea
se

d
.

F
or

th
e

tw
o

M
H

-I
P

S
ca

se
s

th
e

n
u

m
b

er
of

p
ar

ti
cl

es
in

th
e

fo
rw

ar
d

fi
lt

er
is

ei
th

er
10

or
5
0
.

In
b

o
th

ca
se

s
th

er
e

ar
e

10
b

ac
k
w

ar
d

tr
a
je

ct
or

ie
s.

T
h

e
co

m
p

u
ta

ti
on

al
co

m
p

le
x
it

y
is

va
ri

ed
b
y

ch
an

gi
n

g
th

e
n
u

m
b

er
o
f

p
er

fo
rm

ed
M

H
-I

P
S

p
as

se
s.

F
or

th
e

P
G

A
S

p
lo

ts
,

th
e

n
u

m
b

er
of

p
ar

ti
cl

es
u

se
d

in
th

e
fi

lt
er

is
ei

th
er

10
,

50
or

10
0,

a
n

d
th

e
co

m
p

u
ta

ti
o
n

a
l

co
m

p
le

x
it

y
is

va
ri

ed
b
y

ch
an

gi
n

g
th

e
n
u

m
b

er
of

it
er

at
io

n
s

th
at

ar
e

p
er

fo
rm

ed
.

13

Nordh and Antonsson

1241020

1e
+

07
1e

+
08

1e
+

09
O

pe
ra

tio
ns

RMSE

F
F

B
S

i−
R

S
 M

10

F
F

B
S

i−
R

S
 M

25

F
F

B
S

i−
R

S
 M

50

M
H

−
IP

S
 N

10
 M

10

M
H

−
IP

S
 N

50
 M

10

P
G

A
S

 N
10

P
G

A
S

 N
50

P
G

A
S

 N
10

0

R
M

S
E

 fo
r

th
e

Tr
ac

ki
ng

 M
od

el

F
ig

u
re

2:
R

M
S

E
as

a
fu

n
ct

io
n

of
th

e
co

m
p

u
ta

ti
on

eff
or

t
fo

r
al

l
m

et
h

o
d

s
ap

p
li

ed
to

th
e

tr
ac

k
in

g
m

o
d

el
(1

6
).

T
h

e
n

o
ta

ti
o
n

is
th

e
sa

m
e

as
in

F
ig

u
re

1.
A

s
ca

n
b

e
se

en
,

th
e

M
H

-I
P

S
p

er
fo

rm
s

p
o
or

ly
fo

r
th

is
m

o
d

el
,

y
ie

ld
in

g
a
lm

o
st

n
o

v
is

ib
le

im
p

ro
ve

m
en

ts
as

th
e

n
u

m
b

er
of

it
er

at
io

n
s,
R

,
is

in
cr

ea
se

d
.

In
th

is
p

ar
ti

cu
la

r
ca

se
,

P
G

A
S

se
em

s
to

b
e

th
e

cl
ea

r
w

in
n

er
.

14

A Quantitative Evaluation of Monte Carlo Smoothers

124

1e
+

07
1e

+
08

1e
+

09
1e

+
10

O
pe

ra
tio

ns

RMSE

F
F

B
S

i−
R

S
 M

10

F
F

B
S

i−
R

S
 M

25

F
F

B
S

i−
R

S
 M

50

M
H

−
IP

S
 N

10
 M

10

M
H

−
IP

S
 N

50
 M

10

P
G

A
S

 N
10

P
G

A
S

 N
50

P
G

A
S

 N
10

0

R
M

S
E

 fo
r

th
e

D
ou

bl
e

In
te

gr
at

or

F
ig

u
re

3:
R

M
S

E
as

a
fu

n
ct

io
n

of
th

e
co

m
p

u
ta

ti
on

eff
or

t
fo

r
al

l
m

et
h

o
d

s
ap

p
li

ed
to

th
e

d
eg

en
er

at
e

d
ou

b
le

in
te

g
ra

to
r

m
o
d

el
(9

).
T

h
e

n
ot

at
io

n
is

th
e

sa
m

e
as

in
F

ig
u

re
1.

B
ot

h
P

G
A

S
an

d
M

H
-I

P
S

p
er

fo
rm

p
o
or

ly
fo

r
th

is
m

o
d

el
,

w
h

ic
h

is
n

o
t

u
n

ex
p

ec
te

d
si

n
ce

th
ey

b
ot

h
re

ly
on

th
e

b
ac

k
w

ar
d

k
er

n
el
p
(x
t|x

t+
1
),

w
h

ic
h

d
u

e
to

th
e

d
eg

en
er

ac
y

o
f

th
e

m
o
d

el
w

il
l

o
n

ly
b

e
n

on
-z

er
o

w
h

en
fo

ll
ow

in
g

th
e

or
ig

in
al

an
ce

st
ra

l
p

at
h

.

15

Nordh and Antonsson

124

1e
+

07
1e

+
08

1e
+

09
1e

+
10

O
pe

ra
tio

ns

RMSE

F
F

B
S

i M
10

F
F

B
S

i M
25

F
F

B
S

i M
50

M
H

−
IP

S
 N

10
 M

10

M
H

−
IP

S
 N

50
 M

10

P
G

A
S

 N
10

P
G

A
S

 N
50

P
G

A
S

 N
10

0

R
M

S
E

 fo
r

M
ar

gi
na

liz
ed

 D
ou

bl
e

In
te

gr
at

or

F
ig

u
re

4:
R

M
S

E
as

a
fu

n
ct

io
n

of
th

e
co

m
p
u

ta
ti

on
eff

or
t

fo
r

al
l

m
et

h
o
d

s
ap

p
li

ed
to

th
e

m
ar

gi
n

al
iz

ed
d

ou
b

le
in

te
g
ra

to
r

m
o
d

el
(1

0)
.

N
ot

e
th

at
fo

r
th

is
m

o
d

el
th

e
F

F
B

S
i

sm
o
ot

h
er

is
u

se
d

w
it

h
ou

t
re

je
ct

io
n

sa
m

p
li

n
g.

O
th

er
th

a
n

th
a
t,

th
e

n
o
ta

ti
o
n

is
th

e
sa

m
e

as
in

F
ig

u
re

1.
F

or
th

is
m

o
d

el
th

e
M

H
-I

P
S

sm
o
ot

h
er

is
ve

ry
co

m
p

et
it

iv
e,

d
el

iv
er

in
g

m
u

ch
lo

w
er

R
M

S
E

in
th

e
re

gi
on

of
lo

w
co

m
p

u
ta

ti
on

eff
or

t.

16

A Quantitative Evaluation of Monte Carlo Smoothers

7. Discussion

By studying the figures in Section 6 we see that there is no method that consistently
outperforms the others, however some general trends can be observed. For the FFBSi
smoothers, using a larger number of backward trajectories only gives an improvement when
also increasing the number of forward particles. Thus, unless a large amount of computation
effort can be spent, it is typically better to use a large number of forward particles and fewer
backward trajectories.

The MH-IPS algorithm shows the most varying results. For the degenerate case it shows
no improvement in the RMSE when increasing the number of iterations performed. This is
expected since due to the degeneracy it will not be possible to find any new particles that
give nonzero probability for p(xt+1|xt) and p(xt|xt−1). For both the tracking example and
the standard nonlinear model we see that the average RMSE only slowly decreases with the
number of iterations performed, making MH-IPS a less attractive method for these models.
However, for the marginalized double integrator we see that for low effort of computation
MH-IPS clearly outperforms the other methods, and it also remains competitive for larger
computation efforts. For the results presented in this paper the proposal was chosen as
q(xt|xt−1, yt, xt+1) = p(xt|xt−1). This a common choice since it is typically already used
in the particle filter, however using a proposal taking more information in account might
improve the performance of MH-IPS. Finding such a proposal density is a model specific
problem and in many cases it might not be easily obtainable.

We can see that PGAS in general performs very well, but for the degenerate model it
is outperformed by the FFBSi smoother for all but the lowest computation efforts. Worth
noting is that in this case the ancestral sampling part of the PGAS algorithm will not be
effective and the extra computation effort required for the AS step is wasted. The end
result will therefor be the same as for a regular PG smoother, which is thus preferable in
this case.

8. Conclusion

In this paper we have clearly demonstrated that there is no universal best choice of method
for performing particle smoothing. Assuming that the goal is to have the lowest possible
RMSE for a given number of computations, all the available methods have to be compared
for the particular problem. To facilitate easy comparison and experimentation it is useful
to use a software that separates the model specific implementation parts from the generic
parts of algorithms. One such framework is pyParticleEst(Nordh, 2015) which is what we
used for the work presented in this paper.

Acknowledgments

We would like to thank Prof. Thomas Schön, Upsala University, for the suggestions and
ideas that led to this work. The authors are members of the LCCC Linnaeus Center and
the eLLIIT Excellence Center at Lund University.

17

Nordh and Antonsson

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte
carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269–342, 2010.

M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50(2):
174–188, feb 2002. ISSN 1053-587X.

Pete Bunch and Simon Godsill. Improved particle approximations to the joint smoothing
distribution using markov chain monte carlo. Signal Processing, IEEE Transactions on,
61(4):956–963, 2013.

Randal Douc, Aurélien Garivier, Eric Moulines, Jimmy Olsson, et al. Sequential monte
carlo smoothing for general state space hidden markov models. The Annals of Applied
Probability, 21(6):2109–2145, 2011.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. In Handbook of Nonlinear Filtering. Oxford, UK: Oxford University
Press, 2011.

Cyrille Dubarry and Randal Douc. Particle approximation improvement of the joint smooth-
ing distribution with on-the-fly variance estimation. arXiv preprint arXiv:1107.5524,
2011.

Simon J Godsill, Arnaud Doucet, and Mike West. Monte carlo smoothing for nonlinear
time series. Journal of the american statistical association, 99(465), 2004.

Fredrik Gustafsson. Statistical sensor fusion. 2010.

Fredrik Lindsten and TB Schön. On the use of backward simulation in the particle gibbs
sampler. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on, pages 3845–3848. IEEE, 2012.

Fredrik Lindsten and Thomas B. Schön. Backward simulation methods for monte carlo sta-
tistical inference. Foundations and Trends R© in Machine Learning, 6(1):1–143, 2013. ISSN
1935-8237. doi: 10.1561/2200000045. URL http://dx.doi.org/10.1561/2200000045.

Fredrik Lindsten, Michael I Jordan, and Thomas B Schön. Particle gibbs with ancestor
sampling. The Journal of Machine Learning Research, 15(1):2145–2184, 2014.

Jerker Nordh. pyParticleEst: A Python framework for particle based estimation methods.
Journal of Statistical Software, 2015. In Review.

Jerker Nordh. Metropolis-Hastings Improved Particle Smoother and marginalized models.
In European Conference on Signal Processing 2015, Nice, France, August 2015, Submit-
ted.

Jerker Nordh and Jacob Antonsson. Raw results and source code for all the experiments in
this paper, 2013. URL: http://www.control.lth.se/Staff/JerkerNordh/pscomp.html.

18

A Quantitative Evaluation of Monte Carlo Smoothers

Jimmy Olsson and Tobias Ryden. Rao-blackwellization of particle markov chain monte carlo
methods using forward filtering backward sampling. Signal Processing, IEEE Transac-
tions on, 59(10):4606–4619, 2011.

Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

S. Särkkä. Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Text-
books. Cambridge University Press, 2013. ISBN 9781107030657.

Ehsan Taghavi, Fredrik Lindsten, Lennart Svensson, and TB Schön. Adaptive stopping
for fast particle smoothing. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 6293–6297. Ieee, 2013.

P. Tichavsky, C.H. Muravchik, and Arye Nehorai. Posterior cramer-rao bounds for discrete-
time nonlinear filtering. Signal Processing, IEEE Transactions on, 46(5):1386–1396, May
1998. ISSN 1053-587X. doi: 10.1109/78.668800.

Adrian Wills, Thomas B Schön, Lennart Ljung, and Brett Ninness. Identification of
hammerstein–wiener models. Automatica, 49(1):70–81, 2013.

19

