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Abstract: This paper presents a new black-box algorithm for identification of a nonlinear
autonomous system in stable periodic motion. The particle filtering based algorithm models the
signal as the output of a continuous-time second order ordinary differential equation (ODE).
The model is selected based on previous work which proves that a second order ODE is sufficient
to model a wide class of nonlinear systems with periodic modes of motion, also systems that are
described by higher order ODEs. Such systems are common in systems biology. The proposed
algorithm is applied to data from the well-known Hodgkin-Huxley neuron model. This is a
challenging problem since the Hodgkin-Huxley model is a fourth order model, but has a mode
of oscillation in a second order subspace. The numerical experiments show that the proposed
algorithm does indeed solve the problem.
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1. INTRODUCTION

The identification of nonlinear autonomous systems is a
fairly unexplored field. While a very large amount of work
has been devoted to the analysis of autonomous systems,
given an ordinary differential equation (ODE), the inverse
problem has received much less attention. At the same
time system identification based on particle filtering ideas
is expanding rapidly. However, little attention has so
far been given to identification of nonlinear autonomous
systems. The present paper addresses this by presenting a
new approach for identification of nonlinear autonomous
ODE model based on recently developed particle filtering
methods. Furthermore, the paper presents new results
on neural modeling, by applying the new algorithm to
data generated by the well-known Hodgkin-Huxley model.
These constitutes the two main contributions of the paper.

As stated above, much work has been performed on the
analysis of a given nonlinear autonomous system, see
e.g. Khalil (1996). The classical analysis provided by e.g.
Poincaré provide tools for prediction of the existence
of periodic orbits of a second order ODE. Bifurcation
analysis and similar tools have also been widely applied
to the analysis of chaos, inherent in nonlinear autonomous
ODEs (Khalil, 1996; Li et al., 2007). There are much less
publications on and connections to the inverse problem,
i.e. the identification of an autonomous nonlinear ODE
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from measured data alone. However, algorithms tailored
for identification of second order ODEs from periodic
data appeared in Wigren et al. (2003a), Manchester et al.
(2011) and Wigren (2014). A result on identifiability that
gives conditions for when a second order ODE is sufficient
for modeling of periodic oscillations is also available, see
Wigren and Söderström (2005) and Wigren (2015). That
work proves that in case the phase plane of the data is such
that the orbit does not intersect itself, then a second order
ODE is always sufficient for identification. In other words,
higher order models cannot be uniquely identifiable.

There is a vast literature on stable oscillations in bio-
logical and chemical systems, see e.g. Rapp (1987). An
important example is given by neuron spiking (Doi et al.,
2002; Izhikevich, 2003; Hodgkin and Huxley, 1952). This
spiking is fundamental in that it is the way nerve cells
communicate, for example in the human brain. The field
of reaction kinetics provides further examples of dynamic
systems that are relevant in the field of molecular sys-
tems biology, see e.g. Ashmore (1975). Such kinematic
equations typically result in systems of ordinary differ-
ential equations with right hand sides where fractions
of polynomials in the states appear. The many authors
that have dealt with identification of the Hodgkin-Huxley
model have typically built on complete models, including
an input signal current, see e.g. Doi et al. (2002); Saggar
et al. (2007); Tobenkin et al. (2010); Manchester et al.
(2011); Lankarany et al. (2013). With the exception of
Wigren (2015) there does no seem to have been much work
considering the fact that identification may not be possible
if only periodic data is available.



The particle filter was introduced more that two decades
ago as a solution to the nonlinear state estimation prob-
lem, see e.g. Doucet and Johansen (2011) for an introduc-
tion. However, when it comes to the nonlinear system iden-
tification problem in general, it is only relatively recently
that the particle filter has emerged as a really useful tool,
see Kantas et al. (2014) for a recent survey. The algorithm
presented here is an adaptation of the so-called PSAEM
algorithm introduced by Lindsten (2013). It provides a
solution to the nonlinear maximum likelihood problem by
combining the stochastic approximation expectation max-
imization algorithm of Delyon et al. (1999) with the PGAS
kernel of Lindsten et al. (2014). This improves upon the
earlier work of Wigren et al. (2003b), since it is no longer
necessary to rely on the sub-optimal extended Kalman
filter and restrictive models of the model parameters.

2. FORMULATING THE MODEL AND THE
PROBLEM

The periodic signal is modeled as the output of a second
order differential equation, and can in continuous-time
thus be represented as

xt = (pt vt)
T, (1a)

ẋt =

(
vt

f(pt, vt)

)
. (1b)

The discretized model is obtained by a Euler forward
approximation and by introducing noise acting on the
second state and on the measurement according to

pt+1 = pt + hvt, (2a)

vt+1 = vt + hf(pt, vt) + wt, wt ∼ N (0, Qw), (2b)

yt = pt + et, et ∼ N (0, R). (2c)

The noise is only acting on one of the states, implying
that one of the states can be marginalized resulting in the
following non-Markovian model

pt+1 = pt + h(vt−1 + hf(pt−1, vt−1) + wt−1)

= 2pt − pt−1 + h2f

(
pt−1,

pt − pt−1

h

)
+ hwt−1, (3a)

yt = pt + et, (3b)

where the noise is still Gaussian according to

wt−1 ∼ N (0, Qw), et ∼ N (0, R). (3c)

As suggested by Wigren et al. (2003b), the function f(p, v)
is parametrized according to

f(p, v) =

m∑

i=0

m∑

j=0

aijp
ivj . (3d)

Here, m is a design parameter deciding the degree of
the model used for the approximation and the indices
aij denote unknown parameters to be estimated together
with the process noise covarianceQw. Hence, the unknown
parameters to be estimated are given by

θ = {Qw a00 ... a0m ... am0 ... amm}. (4)

It has been assumed that the measurement noise covari-
ance R is known. The problem under consideration is that
of computing the maximum likelihood (ML) estimate of
the unknown parameters θ by solving

θ̂ML = argmax
θ

log pθ(y1:T ), (5)

where y1:T = {y1, . . . , yT } and pθ(y1:T ) denotes the likeli-
hood function parameterized by θ.

3. PARTICLE FILTERING FOR AUTONOMOUS
SYSTEM IDENTIFICATION

After the marginalization of the v state in model (2) the
problem becomes non-Markovian, for an introduction to
non-Markovian particle methods see e.g., Lindsten et al.
(2014) and Lindsten and Schön (2013). The remainder of
this section will go through the components required for
the algorithm and note specific design choices made to
apply the methods to the particular class of problems that
are of interest in this paper.

3.1 Expectation maximization algorithms

The expectation Maximization (EM) algorithm (Dempster
et al., 1977) is an iterative algorithm to compute ML
estimates of unknown parameters (here θ) in probabilistic
models involving latent variables (here, the state trajec-
tory x1:T ). More specifically, the EM algorithm solves the
ML problem (5) by iteratively computing the so-called
intermediate quantity

Q(θ, θk) =

∫
log pθ(x1:T , y1:T )pθk(x1:T | y1:T )dx1:T (6)

and then maximizing Q(θ, θk) w.r.t. θ. There is now
a good understanding of how to make use of EM-type
algorithms to identify dynamical systems. The linear state
space model allows us to express everything in closed form
(Shumway and Stoffer, 1982; Gibson and Ninness, 2005).
However, when it comes to nonlinear models, like the ones
considered here, approximate methods have to be used,
see e.g. (Lindsten, 2013; Schön et al., 2011; Cappé et al.,
2005).

The sequential Monte Carlo (SMC) methods (Doucet and
Johansen, 2011) or the particle Markov chain Monte Carlo
(PMCMC) methods introduced by Andrieu et al. (2010)
can be exploited to approximate the joint smoothing
density (JSD) arbitrarily well according to

p̂(x1:T | y1:T ) =
N∑

i=1

wi
T δxi

1:T

(x1:T ). (7)

Here, xi
1:T denotes the samples (also referred to as par-

ticles, motivating the name particle filter/smoother), wi
T

denotes the corresponding weights and δx denotes a point-
mass distribution at x. Schön et al. (2011) used the SMC
approximation (7) to approximate the intermediate quan-
tity (6). However, there is room to make even more efficient
use of the particles in performing ML identification, by
making use of the stochastic approximation developments
within EM according to Delyon et al. (1999). In the so-
called stochastic approximation expectation maximization
(SAEM) algorithm, the intermediate quantity (6) is re-
placed by the following stochastic approximation update

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk log pθ(x1:T [k], y1:T ), (8)

where γk denotes the step size, which is a design pa-
rameter that must fulfill

∑
∞

k=1 γk = ∞ and
∑

∞

k=1 γ
2
k <

∞. Furthermore, x1:T [k] denotes a sample from the JSD
pθk(x1:T | y1:T ). The sequence θk generated by the SAEM
algorithm outlined above will under fairly weak assump-
tions converge to a maximizer of pθ(y1:T ) (Delyon et al.,
1999).



For the problem under consideration the recently devel-
oped PMCMC methods (Andrieu et al., 2010; Lindsten
et al., 2014) are useful to approximately generate samples
from the JSD. This was realized by Lindsten (2013), result-
ing in the so-called particle SAEM (PSAEM) algorithm,
which is used in this work.

3.2 The PGAS kernel

The particle Gibbs with ancestor sampling (PGAS) kernel
was introduced by Lindsten et al. (2014). It is a procedure
very similar to the standard particle filter, save for the fact
that conditioning on one so-called reference trajectory x′

1:T
is performed. Hence, x′

1:T have to be retained throughout
the sampling procedure. For a detailed derivation see Lind-
sten et al. (2014), where it is also shown that the PGAS
kernel implicitly defined via Algorithm 1 is uniformly
ergodic. Importantly, it also leaves the target density
p(x1:T | y1:T ) invariant for any finite number of particles
N > 1 implying that the resulting state trajectory x⋆

1:T
can be used as a sample from the JSD. The notation used
in Algorithm 1 is as follows, xt = (x1

t , . . . , x
N
t ) denotes all

the particles at time t and x1:T = (x1, . . . ,xT ) the entire
trajectories. The particles are propagated according to a
proposal distribution rt(xt |xt−1, yt). The resampling step
and the propagation step of the standard particle filter has
been collapsed into jointly sampling the particles {xi

t}
N
i=1

and the ancestor indices {ait}
N
i=1 independently from

Mt(at, xt) =
wat

t∑N
l=1 w

l
t

rt(xt |x
at

1:t−1, y1:t). (9)

Finally, Wt denotes the weight function,

Wt(x1:t, y1:t) =
p(yt |x1:t)p(xt |x1:t−1)

r(xt |x1:t−1, y1:t)
. (10)

Algorithm 1 PGAS kernel

1: Initialization (t = 1): Draw xi
1 ∼ r1(x1|y1) for i = 1, . . . , N−

1 and set xN
1 = x′

1. Compute wi
1 = W1(xi

1) for i = 1, . . . , N .
2: for t = 2 to T do
3: Draw {ait, x

i
t} ∼ Mt(at, xt) for i = 1, . . . , N − 1.

4: Set xN
t = x′

t.

5: Draw aNt with P

(
aNt = i

)
∝

wi

t−1
p(x′

t
| xi

1:t−1
)∑

N

l=1
wl

t−1
p(x′

t
| xl

1:t−1
)

6: Set xi
1:t = {x

ai

t

1:t−1, x
i
t} for i = 1, . . . , N .

7: Compute wi
t = Wt(xi

1:t, y1:t) for i = 1, . . . , N .
8: end for
9: Return x1:T ,w

T
.

3.3 Identifying autonomous systems using PSAEM

The PSAEM algorithm for ML identification of au-
tonomous systems now simply amounts to making use of
the PGAS kernel in Algorithm 1 to generate a particle
system {xi

1:T , w
i
T }

N
i=1 that is then used to approximate the

intermediate quantity according to

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk

N∑

i=1

wi
T log pθ(x

i
1:T , y1:T ).

(11)

Note that similarly to (8) only the reference trajectory
x1:T [k] could have been used, but in making use of the
entire particle system the variance of the resulting state

estimates are reduced (Lindsten, 2013). The result is
provided in Algorithm 2.

Algorithm 2 PSAEM for sys. id. of autonomous systems

1: Initialization: Set θ[0] = (Qw
0 0T) and set x1:T [0] using an

FFBSi particle smoother. Set Q̂0 = 0 and set w[0] to an empty
vector.

2: Draw x′
1:T using FFBSi.

3: for k ≥ 1 do
4: Draw x1:T [k],w

T
by running Algorithm 1 using x′

1:T as
reference.

5: Draw j with P (j = i) = wi
T
.

6: Set x′
1:T = xj

1:T [k]
7: Set w[k] = ((1 − γk)w[k − 1] γkwT )

8: Compute Q̂k(θ) according to (11).

9: Compute θ[k] = argmax Q̂k(θ).
10: if termination criterion is met then
11: return {θ[k]}
12: end if
13: end for

Note that the initial reference trajectory x1:T [0] is obtained
by running a so-called forward filter backward simulator
(FFBSi) particle smoother, see Lindsten and Schön (2013)
for details. To indicate that the trajectories were generated
at iteration k, we use x1:T [k] and analogously for the
weights. The 9th row of Algorithm 2 will for the model (3)
under consideration amount to a weighted least squares
problem, which is solved in Algorithm 3. For the work
presented in this article the run Algorithm 2 for a fixed
number of iterations, which gives the termination criterion.

Algorithm 3 Maximizing Q
1: For each trajectory in x1:T [k] calculate the velocity at each time

v
(i)
t = (p

(i)
t+1 − p

(i)
t )/h

2: For each time step and for each trajectory in x1:T [k], evaluate

f(p
(i)
t , v

(i)
t ).

3: Find a00...amm via the related weighted least squares (WLS)
problem.

4: Find Qw by estimating the covariance of the residuals of the
WLS-problem.

5: Set θ[k] = {Qw a00 ... amm}.

3.4 Choosing the proposal distribution

The proposal density r(xt|x1:t−1, y1:t) constitutes an im-
portant design choice of the particle filter that will signifi-
cantly affect its performance. The commonly used boot-
strap particle filter amounts to making use of the dy-
namics to propose new particles, i.e. r(xt|x1:t−1, y1:t) =
p(xt |x1:t−1). However, we will make use of the measure-
ment model and the information present in the current
measurement to propose new particles, i.e. r(xt|x1:t−1, y1:t) =
p(yt |xt). This is enabled by the marginalization of the
deterministic state in the model, since the dimension of
the state-space then matches that of the measurement.
As a possible further improvement, the proposal could
also include the predicted state using the model. Recently,
Kronander and Schön (2014) showed that the combined
use of both the dynamics and the measurements results in
competitive algorithms. In such a scenario the estimated
uncertainty in the model would initially be large and thus
not affect the proposal distribution significantly, but for
each iteration of the PSAEM algorithm the model will be



more and more accurate in predicting the future states,
and its influence on the proposal distribution would in-
crease accordingly.

4. NUMERICAL ILLUSTRATIONS

The performance of the proposed algorithm is illustrated
using two examples, namely the Van det Pol oscillator
in Section 4.1 and the Hodgkin-Huxley neuron model in
Section 4.2 – 4.3. There is no prior knowledge of the model,
hence it is assumed that all the parameters aij in (3d) are
zero. The initial covariance Qw

0 is set to a large value.
The Python source code for the following examples can be
downloaded from Nordh (2015), the implementation was
carried out using the pyParticleEst software framework
(Nordh, 2013).

4.1 Validation on the Van der Pol oscillator

To demonstrate the validity of the proposed solution it is
first applied to the classic Van der Pol oscillator (Khalil,
1996), which belongs to the model class defined by (3).
The oscillator is described by

ẋt =

(
vt

−pt + 2(1− p2t )vt

)
, (12)

where xt = (pt vt)
T. Performing 50 iterations of Algo-

rithm 2 gives the parameter convergence shown in Fig. 1.
Here N = 15 particles were used for the PGAS sampler,
and the model order was chosen as m = 2. For the SAEM
step, the sequence γ1:K is chosen as

γk =

{
1 if k ≤ 5,

(k − 5)−0.9 if k > 5.
(13)
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Fig. 1. Parameter convergence for the Van der Pol exam-
ple (12). The dashed lines are the coefficients obtained
from the discretization of the model, the other lines
represent the different parameters in the identified
model. Note that while the parameters do not con-
verge to the ’true’ values, they provide a very accurate
model for predicting the signal as shown in Fig. 3.

It can be seen that the parameters converge to values close
to those obtained from the Euler forward discretization.

To analyze the behavior further the phase-plane for the
system is shown in Fig. 2 and the time-domain realization
in Fig. 3. Here it can be seen that the identified model
captures the behavior of the true continuous-time system
significantly better than the model obtained from the
discretization.
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Fig. 2. Phase-plane plot for the Van der Pol example (12).
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Fig. 3. Predicted output using the true initial state and the
estimated parameters. The plot labeled ”discretized”
is obtained by discretization of the true continuous-
time model using Euler forward and using that to
predict the future output. It can been seen that the
discretized model diverges over time from the true
signal, clearly the identified parameter values give
a better estimate than using the values from the
discretization.

4.2 The Hodgkin-Huxley neuron model

The well-known Hodgkin-Huxley model uses a nonlinear
ODE to describe the dynamics of the action potentials in
a neuron. In this paper the model will be used for two
purposes. First, simulated spiking neuron data is used to
characterize the performance of the proposed algorithm
when identifying a nonlinear autonomous system. It should
be noted that the data does not correspond to a system



that is in the model set. The ability to handle nonlinear
under-modeling is therefore also assessed. Secondly, the
new algorithm and the identification results contribute to
an enhanced understanding of spiking neurons by provid-
ing better performance compared to previous algorithms.

The Hodgkin-Huxley model formulation of Siciliano (2012)
is used, where the following ODE is given

dv

dt
=

1

Cm

[
I − gnam

3h(v − Ena)

×gKn4(v − EK)− gl(v − El)
]
, (14a)

dn

dt
= αn(v)(1 − n)− βn(v)n, (14b)

dm

dt
= αm(v)(1 −m)− βm(v)m, (14c)

dh

dt
= αh(v)(1 − h)− βh(v)h. (14d)

Here, v denotes the potential, while n, m and h relate to
each type of gate of the model and their probabilities of
being open, see Siciliano (2012) for details. The applied
current is denoted by I. The six rate variables are de-
scribed by the following nonlinear functions of v

αn(v) =
0.01(v + 50)

1− e−(v+50)/10
, (15a)

βn(v) = 0.125e−(v+60)/80, (15b)

αm(v) =
0.1(v + 35)

1− e−(v+35)/10
, (15c)

βm(v) = 4.0e−0.0556(v+60), (15d)

αh(v) = 0.07e−0.05(v+60), (15e)

βh(v) =
1

1 + e−0.1(v+30)
. (15f)

The corresponding numerical values are given by Cm =
0.01 µF/cm2 , gNa = 1.2 mS/cm2, ENa = 55.17 mV ,
gK = 0.36 mS/cm2, EK = −72.14 mV , gl = 0.003
mS/cm2, and El = −49.42 mV .

4.3 Identifying the spiking mode of the Hodgkin-Huxley
model

Using a simulated dataset of length T = 10 000, a model
of the form (3) with m = 3 is selected. Algorithm 2 was
run for 200 iterations, employing N = 20 particles in the
PGAS kernel. For the SAEM step, the sequence γ1:K is
chosen as

γk =

{
1 if k ≤ 40,

(k − 40)−0.5 if k > 40.
(16)

The predicted phase-plane of the identified model is shown
in Fig. 4 along with the true phase-plane and the measure-
ments.

Fig. 5 shows the same dataset in the time-domain, it
shows the true signal (without added noise) and the output
predicted by the identified model when initialized with the
correct initial state. It can be seen that the model captures
the behaviour of the signal, but introduces a small error
in the frequency of the signal, causing the predicted and
true signal to diverge over time.
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Fig. 4. Phase-plane for the Hodgkin-Huxley dataset. It
can be seen that the predicted model fails to capture
the initial transient, but accurately captures the limit
cycle.
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Fig. 5. Predicted output using the true initial state and the
estimated parameters. The overall behaviour of the
signal is captured, but there is a small frequency error
which leads to the predicted signal slowly diverging
from the true signal.

5. CONCLUSIONS

The new identification method successfully identified mod-
els for both the Van der Pol example and for the more com-
plex Hodgkin-Huxley model. Even though the Hodgkin-
Huxley model in general cannot be reduced to a second
order differential equation it is possible to identify a good
second order model for its limit cycle as shown in Fig. 4.

The use of a Bayesian nonparametric model in place
of (3d) constitutes an interesting continuation of this
work. A first step in this direction would be to employ
the Gaussian process construction by Frigola et al. (2013,
2014).
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