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Throughput Optimality and Overload Behavior
of Dynamical Flow Networks Under

Monotone Distributed Routing
Giacomo Como, Member, IEEE, Enrico Lovisari, and Ketan Savla

Abstract—This paper investigates the throughput behavior of
single-commodity dynamical flow networks governed by mono-
tone distributed routing policies. The networks are modeled as
systems of ordinary differential equations based on mass conver-
sation laws on directed graphs with limited flow capacities on the
links and constant external inflows at certain origin nodes. Under
monotonicity assumptions on the routing policies, it is proven
that, if the external inflow at the origin nodes does not violate
any cut capacity constraints, then there exists a globally asymp-
totically stable equilibrium, and the network achieves maximal
throughput. On the contrary, should such a constraint be violated,
the network overload behavior is characterized. In particular, it
is established that there exists a cut with respect to which the
flow densities on every link grow linearly over time (respectively,
reach their respective limits simultaneously) in the case where the
buffer capacities are infinite (respectively, finite).

Index Terms—Distributed routing, dynamical flow networks,
monotone dynamical systems, resilience, throughput, transporta-
tion networks.

I. INTRODUCTION

RAPID technological advancements are facilitating real-
time control of infrastructure networks, such as trans-

portation, in order to achieve their efficient utilization. While
static network flows, for example, see [1], have traditionally
dominated the modeling framework for infrastructure networks,
the true potential of the emerging technologies can only be
realized by developing control design within a dynamical
framework.

In this paper, we study single-commodity dynamical flow
networks, modeled as systems of ordinary differential equa-
tions (ODEs) derived from mass conservation laws on directed
graphs having constant external inflow at each of possibly mul-
tiple origins. The state of the system is the density of particles
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on the links of the network, limited by possibly finite buffer
capacities. The flow of particles from a link to downstream
links, limited by the maximum flow capacity, is regulated by
deterministic rules, or routing policies, which depend on the
state of the network. Particles leave the network when they hit
any of the possible multiple destination nodes. We focus on
routing policies that are distributed: the routing at each link
only depends on local information consisting of the density
of itself and the links downstream to it. More specifically, we
propose a novel class of monotone distributed routing policies
that are characterized by general monotonicity assumptions on
the sensitivity of their action with respect to local information.

Our objective is to prove maximum throughput and to char-
acterize the overload behavior in networks operating under
monotone distributed routing policies. Our main result is in the
form of a dichotomy. If the external inflow at the origin nodes
does not violate any cut capacity constraints, then there exists
a globally asymptotically stable equilibrium, and the network
achieves maximal throughput. When the external inflow at the
origin nodes violates some cut capacity constraint, then the
network exhibits the following feature: under infinite buffer
capacities, there exists a constraint-violating cut, independent
of the initial condition, such that the particle densities on the
origin side of the cut grow linearly in time with the least
possible slope; under finite buffer capacities, there exists a
constraint-violating cut, in general, dependent on the initial
condition, such that all of the links constituting the cut hit their
buffer capacities simultaneously. The network thus operates in
the most efficient way, from a throughput perspective, even if
the routing policies rely only on local information.

These results rely on the ability of the routing policy to
implicitly back-propagate congestion effects, allowing flow to
be routed toward less congested parts of the network in a
timely fashion. While algorithms for distributed computation
of maximum network flow are well known (e.g., see [2]),
the novelty of our contribution consists in proving throughput
optimality for flow dynamics naturally arising in physical net-
works. The proofs are based on an l1-contraction principle for
monotone conservation laws (Lemma 1), and on a complete
characterization of all possible combinations of limiting (as
densities approach the buffer capacities) states of all the links
around every node (Lemma 3). The former, in particular, is
analogous to properties of some hyperbolic partial differential
equations: for example, cf. Kružkov’s Theorem [3, Prop. 2.3.6]
for entropy solutions of scalar conservation laws.
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The distributed routing architecture of this paper and the
ensuing result on throughput optimality are reminiscent of the
back-pressure routing algorithm for multihop networks [4]. In
[4], dynamics are imposed on the nodes of the network, instead
of the links as here. However, one can transform our setup to
fit within the one in [4] by employing a dual graph where the
roles of nodes and links are exchanged in a suitable manner.
The back-pressure routing setup allows for arbitrary constraints
on simultaneous activation of links in the network. For specific
constraints under which at most one, among all outgoing links,
at every node can be activated, then the back-pressure routing,
with the max operation replaced with softmax, can be argued
to satisfy the properties of monotone distributed routing of
this paper. Such an argument also extends to generalizations of
back-pressure policies, such as the MaxWeight-f policies, for
strictly increasing f .

The dynamical formulation of this paper is also reminiscent
of dynamic traffic flow over networks, for example, see [5]
and [6]. In particular, our framework can be used to analyze
dynamical traffic models that are related to the well-known cell
transmission model (CTM) [5], [7]. The CTM can be explained
for a line network as follows: a line is partitioned in cells e =
1, . . . , N , in each of which the traffic state is described by traffic
density. The system is driven by mass conservation and the flow
from a cell to the following cell is given by the minimum of two
quantities: demand of cell e, describing the amount of vehicles
that desire entering the cell e+ 1, and supply of cell e+ 1,
describing the maximum amount of vehicles that are allowed
in it. Such a dynamical setup can be shown to satisfy the mono-
tonicity properties of this paper and, hence, one can derive tight
conditions on the existence and stability of equilibria in such
settings [8]. As such, this result is a continuous time counterpart
of [9]. The CTM setup is extended to the general network case
by specifying fixed turning ratios and by imposing first-in-first-
out (FIFO) constraints at diverging junctions [5]. In this case,
the resulting setup does not necessarily satisfy the monotonicity
properties of this paper. However, other models based on non-
FIFO rules at the diverging junctions satisfy the monotonicity
properties, and the techniques of this paper can then be applied
for analysis and synthesis of such models [10].

It is imperative to highlight the difference between this paper
and our previous work [11], [12], where we studied dynamical
flow networks in which the action of the routing policy at a
node is restricted to splitting the (given) inflow from incoming
links at that node among the links outgoing from that node, as
a function of the density on outgoing links. Specifically, such a
routing architecture did not allow backward propagation of the
congestion effect. We proposed and studied a class of locally
responsive policies under such an architecture for the infinite
buffer capacity case and for directed acyclic network topolo-
gies. In this paper, we extend and modify such a framework,
not only by allowing finite buffer capacities and cyclic network
topologies, but more important, by allowing the routing policies
to completely control the flow transfer between links. Under
this framework, we are able to provide explicit conditions for
global asymptotic stability of equilibria and, unlike [11] and
[12], we give a detailed characterization of the overload behav-
ior of the network.

Fig. 1. On the left, the network G analyzed in Section II, with node set V =
{a, b, c, d}, link set E = {1, 2, 3, 4, 5}, and capacities C1 = 2, C2 = C3 =
C4 = 1, C5 = 3. On the right, an equilibrium flow f∗.

This paper is organized as follows: Section II provides a mo-
tivating example for the study of monotone distributed policies.
In Section III, we propose a general model for dynamical flow
in networks. In Section IV, we state our main results, which are
proven in Section V. Finally, Section VI states conclusions and
possible directions for future research.

We conclude by introducing some notational conventions.
For finite sets A and B, RA (RA

+) is the space of real-valued
(non-negative-real-valued) vectors whose entries are indexed
by elements of A and RA×B the space of matrices whose
real entries are indexed by pairs in A× B. M ′ ∈ RB×A is the
transpose of M ∈ RA×B. Inequalities such as x ≤ y or x < y
for vectors x, y ∈ RA are meant to hold component-wise.

We identify a network with a weighted directed multigraph
G = (V, E , C), where V and E stand for the finite sets of nodes
and links, respectively, and C ∈ (0,+∞]E are link capacities.
For link e ∈ E , σe and τe denote its tail and head nodes,
respectively, so e = (σe, τe). While we assume there are no
self-loops, that is, τe �= σe for e ∈ E , we allow for parallel links.

II. MOTIVATING EXAMPLE

Consider the network G = (V, E , C) in Fig. 1, with inflow
λ = 2 from node a and equilibrium flow f ∗. Our goal is to study
throughput and resilience of dynamical flows on G. As it turns
out, these properties do not depend merely on G and f ∗, but also
on the specific flow dynamics. We focus on first-order dynamics
of the form

ρ̇ = A (F ′(ρ)− F (ρ))1 (1)

where ρ = ρ(t) ∈ R5
+ is the vector of densities on the different

links; F (ρ) ∈ R6×6 is the matrix of link-to-link flows with
Fij(ρ) denoting the flow from link i to link j and with the last
row and column of F (ρ) corresponding to inflows from and,
respectively, outflows to the external world; A = [I5×5 05×1] is
the projection matrix on the first five components; and 1 ∈ R6

is the all-one vector. Assume that all of the links have infinite
buffer capacities, that is, the range of ρe(t) is [0,+∞) for all
e ∈ E . To reflect the structure of G and invariance of the non-
negative orthant R5

+ for solutions of (1), assume that

F (ρ) = M(ρ)R(ρ)

where M(ρ) = diag(C1ϕ(ρ1), . . . , C5ϕ(ρ5), λ), with ϕ(ρ)
Lipschitz continuous and strictly increasing from ϕ(0) = 0
to limρ→∞ ϕ(ρ) = 1, and R(ρ) ∈ R6×6 is a row-substochastic
routing matrix with Rij(ρ) ≡ 0 whenever τi �= σj (with the
convention σ6 = d, τ6 = a). The term Ciϕ(ρi) represents the
density-dependent maximal outflow from a link i, while Rij(ρ)
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stands for the fraction of such a maximal outflow routed to the
downstream link j, for example, the dynamics on link 1 read
ρ̇1 = λR61(ρ)− C1ϕ(ρ1)(R13(ρ) +R14(ρ)). Let

μ(C,R) := lim inf
t→+∞

1

t

t∫
0

(F36 (ρ(s)) + F56 (ρ(s))) ds

denote the throughput of flow dynamics (1), that is, the long-
term average inflow at the destination node d. A perturbation of
(1) is a dynamical system with the same network topology and
routing matrix, but a potentially different vector of link capaci-
ties C̃. In the following text, we shall be interested in measuring
how much can such perturbations reduce the throughput of the
system. Assume that the unperturbed dynamics (1) admits an
equilibrium ρ∗ ∈ R5 with

AM(ρ∗)R(ρ∗)1 = AR′(ρ∗)M(ρ∗)1 = f ∗

so that, in particular, μ(C,R) = λ = 2, and define the re-
silience function ν(·) by letting, for δ ≥ 0

ν(δ) := inf
0≤C̃≤C

{ ∑
1≤i≤5

(Ci − C̃i) : μ(C̃, R) < λ− δ

}
.

The resilience function has a natural interpretation as the
effort required by an adversary, who is choosing C̃ ≤ C, to
cause a throughput loss δ, given that the routing policy is
R(ρ). Note that if CG = 3 stands for the min-cut capacity of
G, then necessarily ν(δ) ≤ CG − λ+ δ = 1 + δ for 0 ≤ δ ≤ λ.
Indeed, reducing the capacities of the links of a minimal cut in
such a way that the perturbed min-cut capacity C̃G does not
exceed λ, then the throughput drops from λ to, at most, C̃G .

We now characterize the resilience function of three different
routing matrices. Let us start with a fixed routing matrix

R(1)(ρ) ≡

⎡
⎢⎢⎢⎢⎢⎣

0 0 1/2 1/2 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

2/3 1/3 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

Let the network be at equilibrium f ∗ before the perturbation.
Under fixed routing R(1), a capacity reduction on link 3 does
not change its inflow f ∗

3 = 2/3. If f ∗
3 ≥ C̃3, the density ρ3(t)

cannot but grow unbounded and a throughput loss of f ∗
3 −

C̃3 occurs. Thus, the resilience function satisfies ν(1)(δ) ≤
C3 − f ∗

3 + δ = 1/3 + δ for 0 ≤ δ < 2/3. In addition. reducing
capacity on link 4 shows that ν(1)(δ) ≤ C3 + C4 − f ∗

3 − f ∗
4 +

δ = 2/3 + δ for 2/3 ≤ δ < 4/3, and similarly up to δ = 2. In
fact, these bounds can be shown to be tight and the resilience
function to be the one plotted in gray in Fig. 3.

Now, let R(2)(ρ) be a locally responsive routing matrix [11],
[12] with all entries coinciding with those of R(1)(ρ) except for

R
(2)
13 (ρ) = 1−R

(2)
14 (ρ) =

e−ρ3

e−ρ4 + e−ρ3
,

R
(2)
61 (ρ) = 1−R

(2)
62 (ρ) =

2e−ρ1

2e−ρ1 + e−ρ2
. (2)

Fig. 2. Trajectories of the solutions of (1) under routing matrix R(2) (dashed
lines) and R(3) (solid lines), with initial condition ρ(0) = 0. At time t1, the
capacity on link 3 drops to C̃3 = 1/6, and at time t2, it drops to C̃3 = 0.
Under R(2) and after t1, C̃3 + C4 = 7/6 is smaller than the total outflow
from link 1, so the densities on links 3 and 4 grow unbounded. The min-cut
capacity C2 + C̃3 + C4 = 13/6 remains instead strictly higher than λ = 2,
so the monotone distributed policy steers the network to a new equilibrium.
After t2, the min-cut capacity drops to 2, the constraint is thus violated, and the
densities of links 1, 2, 3, and 4 grow unbounded.

In this case, reducing the capacity of link 3 only does not
cause any throughput loss if C̃3 > 1/3. In fact, even if link 3
cannot handle its initial inflow f ∗

3 , the system is able to adapt by
rerouting the flow out of node b and exploit the unused capacity
on link 4, so that a new equilibrium is reached provided that
f ∗
1 = f ∗

3 + f ∗
4 < C̃3 + C̃4.

However, this is no longer the case if C̃3 ≤ 1/3, as then f ∗
1 ≥

C̃3 + C̃4 and ρ3(t) and ρ4(t) necessarily grow unbounded in t,
with a throughput loss of f ∗

1 − C̃3 − C̃4. This shows that the re-
silience function satisfies ν(2)(δ) ≤ 2/3 + δ, for 0 ≤ δ < 4/3.
In fact, the results in [12] on diffusivity of locally responsive
routing, that is, a subadditive property for aggregate outflow
increases in subnetworks as a function of capacity reductions,
can be used to show that this bound is tight, and that ν(2)(δ) has
the graph plotted in Fig. 3.

Finally, consider a routing matrix R(3)(ρ) coinciding with
R(2)(ρ) in all but its (1, 3)th and (1, 4)th entries, given by

R
(3)
13 (ρ) = R

(2)
13 (ρ)h(ρ), R

(3)
14 (ρ) = R

(2)
14 (ρ)h(ρ),

where

h(ρ) =
e−ρ4 + e−ρ3

e−ρ1 + e−ρ4 + e−ρ3
∈ [0, 1] (3)

can be interpreted as a flow control term. Fig. 2 shows the tra-
jectories of the link densities when a perturbation is applied at
time t1 such that C̃3 = 1/6. Observe that, although f ∗

1 = 4/3 >
7/6 = C̃3 + C̃4, the link densities remain bounded in time and
approach a new equilibrium. In fact, the mechanism allowing
the network to absorb the perturbation can be understood rather
intuitively: link 3 is not capable of sustaining its initial inflow
f ∗
3 , and links 3 and 4 are not collectively able to sustain f ∗

1 ; thus,
both ρ3(t) and ρ4(t) increase, thereby decreasing h(ρ). This,
in turn, forces the outflow from link 1 to decrease and, hence,
ρ1(t) to grow, namely, a density increase is back-propagated
toward the origin, a mechanism that was completely absent
in [12]. Then, the dynamic routing at node a redirects more
flow toward link 2. Such an increase is still small enough that
densities on none of the links grow unbounded. In this way,
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Fig. 3. Resilience as a function of the throughput loss δ for the three routing
matrices presented in Section II: the solid gray, dashed black, and solid black
lines illustrate ν(1)(δ), ν(2)(δ), and ν(3)(δ), respectively.

Fig. 4. Sequences of link failures under finite buffer capacities using routing
matrices analogous to those in Section II. Only link 3 is perturbed, with C3 −
C̃3 equal to ν(1)(0) = 1/3, ν(2)(0) = 2/3, and ν(3)(0) = 1, respectively.

the network is able to absorb the perturbation and reach a
new equilibrium. Indeed, the main results of this paper imply
that in this case, the resilience function ν(3)(δ) = 1 + δ is the
maximum possible. Specifically, Theorem 1 shows that, as long
as the inflows do not violate any cut capacity constraints in
the network, flow dynamics with the same properties as (1)
with routing R(3)(ρ) always admit a globally asymptotically
stable equilibrium, while Proposition 2 implies that if the min-
cut capacity is smaller than the inflow in the network, either
from the beginning or as the result of a perturbation, then the
throughput is equal to the min-cut capacity itself, and is thus
the maximum possible.

Finally, it is possible to consider an analogous setting with fi-
nite buffer capacities Be, where a link e is irreversibly removed
from the network the first time that ρe(t) = Be, that is, when
link e fails. While referring to Section III and [13] for a precise
formulation of this setting with routing analogous to R(3)(ρ)
and R(2)(ρ), respectively, we anticipate here that results par-
alleling the previously discussed infinite buffer capacity case
can be established for the resilience function. Fig. 4 reports
the sequence of link failures for the three routing matrices
when a perturbation affecting only link 3 is applied such that
C3 − C̃3 = ν(r)(0), for r = 1, 2, 3. For the fixed routing matrix
R(1), a perturbation in link 3 such that C̃3 = 2/3 makes link 3
fail first, thus forcing node b to route all of its outflow to link 4
and making it fail, which, in turn, causes the failure of upstream
link 1, thus forcing node a to route all of its outflow to link 2 and
making it fail. For the routing matrix R(2)(ρ), a perturbation
in link 3 such that C̃3 = 1/3 first forces links 3 and 4 to fail
simultaneously, then links 1 and 2 fail simultaneously since
their inflow λ = 2 is not smaller than C2. In contrast, for the

Fig. 5. On the left, the dark gray and light gray areas encompass links in E−
e

and in E = {e} ∪ E+
e , respectively. On the right, the gray area encompasses

the nodes of a cut U . The links in ∂−
U and ∂+

U are shown in dashed gray and

black arrows, respectively; the links in E+
U \ ∂+

U are shown in solid arrows.

routing matrix R(3)(ρ), a perturbation in link 3 such that C̃3 =
0 makes links 1, 2, 3, and 4 fail simultaneously. This is because
the routing matrix R(3)(ρ) exploits the available capacity by
redistributing the flow in the best way to avoid link failures
as long as possible. Observe that the failed links are those on
the origin side of the bottleneck cut consisting of links 2, 3,
and 4, whose capacity upon perturbation is equal to the inflow
λ = 2. As we shall see in Proposition 1, this is a special case of
a general result holding true for flow dynamics with the same
properties as those of (1) with routing matrix R(3)(ρ).

III. DYNAMICAL FLOW NETWORKS WITH

MONOTONE DISTRIBUTED ROUTING

For a network G = (V, E , C), we introduce the following
notation, illustrated in Fig. 5. Let E+

v := {e ∈ E : σe = v} and
E−
v := {e ∈ E : τe = v} be the sets of outgoing and, respec-

tively, incoming links of a node v. For a link e, let E+
e := E+

τe
and E−

e := E−
σe

be, respectively, the sets of its downstream and
upstream links, and let

Ee := E+
e ∪ {e}. (4)

For a subset U ⊆ V , define

E+
U := ∪u∈U E+

u , E−
U := ∪u∈UE−

u ,

∂+
U := {e : σe ∈ U , τe �∈ U},
∂−
U := {e : σe ∈ V \ U , τe ∈ U}.

Let D := {v ∈ V : E+
v = ∅} be the set of destination nodes.

Consider a vector of inflows λ ∈ R
V\D
+ whose vth entry λv

stands for the external inflow in node v, and let O := {v ∈ V :
λv > 0} be the set of origin nodes. Let a cut be a nonempty
subset of nondestination nodes U ⊆ V \ D and denote its ca-
pacity by CU :=

∑
e∈∂+

U
Ce and its aggregate external inflow

by λU :=
∑

v∈U λv.
It proves convenient to introduce the augmented network

Ga = (Va, Ea, Ca) (see Fig. 6) with node and link sets Va =
V ∪ {w}, Ea = E ∪ E−

O ∪ E+
D , respectively, where

E−
O :={ev :=(w, v) : v∈O} , E+

D :=
{
ed :=(d,w) : d∈D

}
and Cev =Ced =+∞ for all v∈O and d∈D. The extra node w
may be thought of as representing an external world, playing the
double role of source of the flow entering the network at the ori-
gins, and sink of the flow exiting from the destinations, respec-
tively. From now on, we adopt the notation Eev =E+

ev
:=E+

v ,
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Fig. 6. Network G and the augmented network Ga. The links in E−
O and E+

D ,
added in Ga, are shown in the dotted line. The set of origins and the set of
destinations are shown in dark gray and light gray, respectively.

for all v ∈ O, and let E−
e and E−

v include links in E−
O , and

E+
e and E+

v include links in E+
D , thus using these symbols

consistently with the augmented graph Ga. Throughout, we
shall make the following assumption.

Assumption 1: The set of destinations D is nonempty, and
the augmented network Ga is strongly connected.

Assumption 1 is equivalent to the properties that, in G, for
every v ∈ V \ D, there exists a directed path from v to some
destination node d ∈ D and, for every u ∈ V \ O, there exists
a directed path from some origin node o ∈ O to u. Note that
Assumption 1 implies that there is no subset A ⊆ V that is not
reachable from any origin in G.

Remark 1: Cut capacities determine potential bottlenecks
for network flows. In particular, the max-flow min-cut theorem
[14], [15] states that

max
λ

max
U

{λU − CU} = 0 (5)

where the internal maximization runs over all cuts U and the
external maximization runs over all external vectors of inflows
λ ∈ R

V\D
+ for which there exists some flow vector f ∈ R

E∪E−
O

+

such that feo = λo for o ∈ O,
∑

e∈E+
v
fe −

∑
e∈E−

v
fe = 0 for

v ∈ V \ D and fe ≤ Ce for e ∈ E . In the special case of a single
origin O = {o}, (5) reduces to maxλo = minU CU , that is, the
maximum admissible inflow is equal to the min-cut capacity.
Observe that this result is a purely static one since it only
concerns potential equilibrium flows.

We now move on to introducing flow dynamics over G. We
consider autonomous dynamical systems of the form

ρ̇ = AinF ′(ρ)1−AoutF (ρ)1 (6)

where ρ(t) ∈ RE
+ is a vector state whose eth entry ρe(t)

represents the time-varying density on link e; F (ρ) ∈
R

(E∪E−
O )×(E∪E+

D)
+ is the matrix of link-to-link flows with Fij(ρ)

denoting the flow from link i to link j; Ain ∈ RE×(E∪E+
D) and

Aout ∈ RE×(E∪E−
O ) are appropriate projection matrices from

E ∪ E+
D and E ∪ E−

O , respectively, onto E ; and 1 is the all-
one vector (of the correct dimension). In order to match the
topology and capacity constraints modeled by G, the inflow λ
and invariance of the non-negative orthant RE

+, it is assumed
that Fij(ρ) ≡ 0 if τi �= σj ; (F (ρ)1)eo ≡ λo for all o ∈ O; and
Fij(ρ) = 0 for all j whenever ρi = 0. We shall refer to (6) as a
dynamical flow network.

To every link e ∈ E , we associate a possibly finite buffer
capacity Be ∈ (0,+∞] and loosely use the phrase a set of
links getting congested to refer to the fact that the densities on
those links approach their respective buffer capacities. We will
focus on dynamics in R :=

∏
e∈E [0, Be) and require F (ρ) to be

Lipschitz continuous on R, so that standard analytical results
imply: for every ρ◦ ∈ R, the existence and uniqueness of a
solution {ρ(t) : 0 ≤ t < κ(ρ◦)} of (6) starting from ρ(0) = ρ◦

which is well defined up to

κ(ρ◦) := sup {t ≥ 0 : ρ(t) ∈ R, ρ(0) = ρ◦}

that is, as long as ρ(t) stays within R. Note that because of
invariance of the non-negative orthant, κ(ρ◦) coincides with the
first time the solution of (6) starting from ρ(0) = ρ◦ hits the
buffer capacity on some link.

We focus on flow dynamics that are distributed in the fol-
lowing sense: the flow from e ∈ E ∪ E−

O to a downstream link
j ∈ E+

e ⊆ E ∪ E+
D depends only on the local density vector

ρe := {ρk : k ∈ Ee}

where we recall that Ee = E+
e ∪ {e} by (4). We will emphasize

such functional dependence on local densities by writing the
flow from e ∈ E ∪ E−

O to j ∈ E+
e ⊆ E ∪ E+

D as

Fej(ρ) = fe→j(ρ
e) (7)

and referring to the family of flow functions f = {fe→j(ρ
e)}

as a distributed routing policy. We will also use the notation

f in
e (ρ) :=

∑
j∈E−

e

fj→e(ρ
j), fout

e (ρe) :=
∑
j∈E+

e

fe→j(ρ
e)

for the total inflow and outflow, respectively, of a link e ∈ E , so
that (6) reads

ρ̇e = f in
e (ρ)− fout

e (ρ), e ∈ E . (8)

Note that since
∑

e∈E−
v
fout
e (ρ) =

∑
e∈E+

v
f in
e (ρ) for v ∈ V , no

mass accumulation at the nodes is allowed.
Next, we formalize some fundamental properties of a class

of a distributed routing policy. Since some of these characterize
the behavior in the limit as some links get congested, we need
to introduce the following notation: For e ∈ (E ∪ E−

O ) \ E−
D , put

ρe := {Bj : j ∈ Ee}, and let

R•
e :=

{∏
j∈Ee [0, Bj ] \ {ρe}, if e ∈

(
E ∪ E−

O
)
\ E−

D
[0, Be), if e ∈ E−

D
(9)

denote the set of possible densities on e and links downstream to
e when not all of these links are congested (see Fig. 7). Finally,
let the set of feasible outflows on the links downstream to e
under capacity constraint be defined as

Fe :=

{{
x ∈ R

E+
e

+ :
∑

j∈E+
e
xj ≤ Ce

}
, if e ∈ E ∪ E−

O \ E−
D

[0, Ce], if e ∈ E−
D .

Definition 1: Let G = (V, E , C) be a network satisfying
Assumption 1 with the vector of inflows λ ∈ R

V\D
+ and buffer

capacities {Be ∈ (0,+∞] : e ∈ E}. A distributed routing pol-
icy f is a family of Lipschitz-continuous maps

fe : R•
e → Fe, e ∈ E ∪ E−

O (10)
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Fig. 7. Set R•
e when e ∈ E has a unique downstream link j ∈ E . It corre-

sponds to the gray area with the solid line boundary, except the point ρ̄e =
{Be, Bj} (represented as •).

such that fe(ρe) = {fe→j(ρ
e)}j∈E+

e
satisfy, at the origins

fout
ev

(ρev ) ≡ λv, ∀ v ∈ O (11)

and, for all e ∈ E and ρe ∈ R•
e

ρe =0 =⇒ fout
e (ρe) = 0, (12)

ρe =Be =⇒ fout
e (ρe) = Ce (13)

and, for all e ∈ (E ∪ E−
O ) \ E−

D , k ∈ E+
e , ρe ∈ R•

e

ρk = Bk =⇒ fe→k(ρ
e) = 0. (14)

Observe that the domain of fe is R•
e; thus, for e �∈ E−

D , it
is not defined at the point ρe = {Bj : j ∈ Ee}, where (13) and
(14) cannot hold simultaneously. On the other hand, fe is well
defined when at least one of the links around e is not congested.
Also, note that (12) and (14) imply that fout

e (ρe) = 0 if ρe = 0,
that is, there is no outflow from a link e which is empty, or if
ρj = Bj for any j ∈ E+

e , that is, if the densities on all links
outgoing from τe are at their buffer capacities.

We shall be interested in a special class of distributed routing
policies, per the following definition.

Definition 2: A distributed routing policy f is monotone if,
for all e ∈ E ∪ E−

O , ρe ∈ R•
e, the functions {fe} satisfy

∂fe→j

∂ρk
(ρe) ≥ 0, ∀ j ∈ E+

e , k ∈ Ee \ {j}, (15)

∂

∂ρk
fout
e (ρe) ≤ 0, ∀ k ∈ E+

e (16)

for almost every ρe ∈ R•
e. A monotone distributed policy is

strongly monotone if, for all e ∈ E ∪ E−
O , and almost every

ρe ∈ R•
e, the inequalities in (15) and (16) are strict.

Under monotone distributed routing policies, (1) defines a
cooperative dynamical system (see [16]), since

∂f in
e

∂ρk
(ρ) ≥ 0,

∂fout
e

∂ρk
(ρ) ≤ 0 ∀ e, k ∈ E , e �= k. (17)

Then, Kamke’s theorem [16, Theor. 1.2] implies that (1) is a
monotone system [16], i.e.,

ρ(0) ≤ ρ̃(0) ⇒ ρ(t) ≤ ρ̃(t), ∀ t ∈ [0, κ (ρ̃(0))) (18)

and, thus, clearly κ(ρ◦) ≤ κ(0) for all ρ◦ ∈ R.
Remark 2: As shown in Lemma 2, (1) belongs to the class

of compartmental systems, a class of monotone systems ex-
tensively used in the study of flow networks [17]. It is also
interesting to point out that in the PDE literature, monotonicity
is a property known to hold for entropy solutions of scalar

conservation laws, such as the Lighthill–Whitham–Richards
traffic flow model [3, Prop. 2.3.6].

The monotonicity properties of the proposed policies de-
scribe the behavior of the particles in the network and the effect
of flow control. In particular, (15) describes the fact that while
particles might have preferred paths, they tend to deviate to
avoid congested links, that is, the higher ρk, the less the flow
toward k. Instead, (16) requires that when density is increasing
downstream of a link, the total flow from the link should not
increase. We notice that this allows these policies to implicitly
back-propagate, toward the origins, the information that some
branches of the network are getting congested.

We conclude this section with an example of monotone
distributed routing.

Example 1: For every link e ∈ E , let ϕe : [0, Be) →
[0,+∞) be Lipschitz continuous, strictly increasing, and such
that ϕe(0) = 0 and limρe↑Be

ϕe(Be) = +∞. For example, for
βe > 0, ϕe(ρe) = βeρe/(Be − ρe) if Be < +∞, or ϕe(ρe) =
βeρe if Be = +∞. Define

fe→j(ρ
e) =

⎧⎨
⎩

Ce(1− γe)γj/Z if e ∈ E \ E−
D ,

Ce(1− γe) if e ∈ E−
d , d ∈ D, j = ed,

λvγj/Z if e = ev, v ∈ O, j ∈ Eev
where γi := exp(−ϕi(ρi)) and Z :=

∑
k∈Ee γk. Observe that

fe→j(ρ
e) is defined for ρe ∈ Re where Re :=

∏
j∈Ee [0, Bj)

if e �∈ E−
D and Re = [0, Be) for e ∈ E−

D and can be extended
by continuity to R•

e (as defined in (9)), but not to the point
ρe. Then, it can be readily verified that this defines a strongly
monotone distributed routing policy.

IV. MAIN RESULTS

In this section, we present the main contributions of this
paper. The first result is Theorem 1, which states a dichotomy. If
the inflow is less than the capacity of every cut, then there exists
a globally asymptotically stable equilibrium density ρ∗ ∈ R.
Otherwise, the network is divided into two parts by a cut S ,
such that the densities on the links in E+

S approach their buffer
capacities simultaneously.

Theorem 1: Let G = (V, E , C) be a network satisfying As-
sumption 1 with the vector of inflows λ ∈ R

V\D
+ , and f be a

monotone distributed routing policy. For ρ◦ ∈ R, let {ρ(t) :
0 ≤ t < κ(ρ◦)} be the solution of the dynamical flow network
(1) with initial condition ρ(0) = ρ◦. Then:

1) if maxU{λU − CU} < 0, then κ(ρ◦) = +∞ for every ini-
tial density ρ◦ ∈ R; moreover, if f is strongly monotone,
then there exists an equilibrium density ρ∗ ∈ R such that
limt→∞ ρ(t) = ρ∗ for every initial density vector ρ◦ ∈ R;

2) if maxU{λU − CU} > 0, or if maxU{λU − CU} = 0 and
if f is strongly monotone, then, for every initial density
ρ◦ ∈ R, there exists a cut S such that

lim
t→κ(ρ◦)

ρe(t) = Be, ∀ e ∈ E+
S . (19)

Theorem 1, together with maxU{λU−CU}<0, is a necessary
condition for the network to admit an equilibrium, implying
that monotone distributed policies are maximally stabilizing. In
terms of resilience, Theorem 1 reads ν(0) = λV\D − CG , that is,
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throughput loss only occurs if the capacity is reduced in such a
way that the min-cut capacity constraint is violated.

Remark 3: This framework can be easily applied to scenar-
ios where nodes have maximum outflow capacity Cv and/or fi-
nite buffer capacity Bv to store-and-forward particles. In order
to bring this setup within the purview of Theorem 1, one can
replace every node v ∈ V \ D with a pair of nodes v1 and v2,
which inherit incoming and outgoing links, respectively, from
node v, and are connected by a directed link (v1, v2) with flow
and buffer capacities equal to Cv and Bv , respectively. On the
other hand, for a destination node d ∈ D, we assign the buffer
and outflow capacities to the link (d,w). From an implemen-
tation perspective, this construction allows one to interpret the
routing at node v as the combination of routing at v1 and v2
with the buffer of link (v1, v2) serving as the internal state.

Remark 4: Theorem 1 can be extended to time-varying
inflows λ(t). In particular, input–output monotonicity [18]
implies that the solutions of (1) with time-varying inflows
λv(t) and constant inflows λ̃v := supt≥0 λv(t), v ∈ V \ D, re-
spectively, satisfy ρ(t) ≤ ρ̃(t) when starting from initial con-
ditions ρ(0) ≤ ρ̃(0). Then, it follows from Theorem 1 that,
if maxU{λ̃U − CU} < 0, then lim sup ρ(t) ≤ lim ρ̃(t) = ρ̃∗ as
t → ∞ under strongly monotone distributed routing.

For the infinite buffer capacity case, a stronger result holds.
Let λ̂v := lim sup(1/t)

∫ t

0 λv(t) dt. It is then possible to show

that maxU{λ̂U − CU} < 0 implies that every trajectory remains
bounded in time under monotone distributed routing.

A. Overload Behavior With Finite Buffer Capacities

The following proposition gives a more detailed charac-
terization of what happens when the capacity constraints are
violated in the case of finite buffer capacities.

Proposition 1: Let G = (V, E , C) be a network satisfying
Assumption 1 with a vector of inflows λ ∈ R

V\D
+ and finite

buffer capacities Be ∈ (0,+∞), e ∈ E , and f be a monotone
distributed routing policy. Assume that maxU{λU − CU} > 0.
Then, for every ρ◦ ∈ R

κ(ρ◦) ≤ min
U :λU>CU

∑
e∈E+

U
(Be − ρ◦e)

λU − CU
(20)

and there exists a cut S , possibly depending on ρ◦, such that
λS > CS and

ρe(t) < Be, ∀ e ∈ E , 0 ≤ t < κ(ρ◦),

lim
t→κ(ρ◦)

ρe(t) = Be, ∀ e ∈ E+
S (21)

where {ρ(t) : 0 ≤ t < κ(ρ◦)} is the solution of the dynamical
flow network (1) with initial condition ρ(0) = ρ◦.

Proposition 1 states that if the buffer capacities are finite and
some cut constraints are violated, then, for every initial density
ρ◦, all of the links in E+

S , where S is a cut such that λS >
CS , will reach their buffer capacities simultaneously at time
κ(ρ◦). We notice that when there are multiple cuts violating
the capacity constraint, then the cut S may depend on the initial
condition ρ◦. The dependence on the initial density ρ◦ is also
evident in (20). While it may be tempting to identify the cut U ,
minimizing the right-hand side of (20) with the cut S of (21), it

is worth stressing that (20) is merely an upper bound on κ(ρ◦).
In fact, in contrast to the right-hand side of (20), the cut S of
(21) may depend on finer details of the routing policy, rather
than just its inflow and buffer capacities.

B. Overload Behavior With Infinite Buffer Capacities

The following result, similar to Proposition 1, characterizes
the way congestion occurs in case of infinite buffer capacities.

Proposition 2: Let G=(V, E , C) be a network satisfying
Assumption 1 with a vector of inflows λ∈ R

V\D
+ and buffer ca-

pacities Be=+∞, e∈ E . Let f be a strongly monotone distri-
buted routing policy. Assume that maxU{λU−CU}≥0. Let

U∗ :=
⋃

U∈M
U , M := argmax

U
{λU − CU}. (22)

Then, for every ρ◦ ∈ R, the solution ρ(t) of the dynamical flow
network (1) with initial condition ρ(0) = ρ◦ ∈ R is such that
κ(ρ◦) = +∞ and

lim
t→+∞

ρe(t) = +∞, ∀ e ∈ E+
U∗ ,

lim
t→+∞

1

t

∑
e∈E+

U∗

ρe(t) = λU∗ − CU∗ . (23)

Moreover, there exists ρ∗e ∈ [0,+∞), e ∈ E \ (E+
U∗ ∪ ∂−

U∗),
such that

lim
t→+∞

ρe(t) = ρ∗e, ∀ e ∈ E \
(
E+
U∗ ∪ ∂−

U∗
)

(24)

for every initial density ρ◦ ∈ R.
Proposition 2 implies that for infinite buffer capacities on

all of the links, there exists a cut U∗, independent of initial
condition ρ◦, such that asymptotically, all of the links in E+

U∗

get congested. This is to be contrasted with the finite buffer
capacity case, where the cut depends on the initial condition
ρ◦. In addition, by (24), the densities on the links which do not
get congested approach a unique limit point, and by (23), the
total density grows linearly in time. In particular, the growth
rate corresponds to the throughput loss in the network. As
such, a throughput loss equal to δ is obtained by perturbing
the network in such a way that the min-cut capacity of the
perturbed network is C̃G = λV\D − δ. Therefore, in terms of re-
silience, Proposition 2 yields ν(δ) = CG − C̃G = CG − λV\D +
δ, which is the maximum possible. A comparison is due with
[19], which studies an acyclic queuing network with a set of
queues Q employing the max-weight algorithm. It is shown that
if q(t) ∈ RQ

+ is the vector of queue lengths, then q(t)/t → q̂

where q̂ ∈ RQ
+ is the solution to an optimization problem related

to the parameters of the max-weight algorithm.

V. PROOFS

In this section, we provide an l1-contraction principle for
monotone dynamical systems under conservation laws and
prove that it applies to (6). We then characterize the behavior of
dynamical flow networks when the vector of densities admits a
limit point. Finally, we prove the main results.
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A. l1-Contraction Principle for Monotone Conservation Laws

We state and prove an l1-contraction principle for a class of
monotone dynamical systems under conservation laws, which
includes system (1) under monotone distributed routing policy.
As such, it will be instrumental in proving the existence and
stability of equilibria for dynamical flow networks.

Lemma 1: For a nonempty closed hyper-rectangle Ω ⊆ Rn,
let g : Ω → Rn be Lipschitz and such that

∂

∂xj
gi(x) ≥ 0, ∀ i �= j ∈ {1, . . . , n} (25)

∑
1≤i≤n

∂

∂xj
gi(x) ≤ 0, ∀ j ∈ {1, . . . , n} (26)

for almost every x ∈ Ω. Then∑
1≤i≤n

sgn(xi − yi) (gi(x)− gi(y)) ≤ 0, x, y ∈ Ω. (27)

Moreover, if

1) there exists some j ∈ {1, . . . , n} such that the inequality
(26) is strict for almost all x ∈ Ω;

then inequality (27) is strict for all x, y ∈ Ω such that xj �= yj .
If

2) for every proper subset K ⊆ {1, . . . , n}, there exist i ∈
K, and j ∈ {1, . . . , n} \ K such that inequality (25) is
strict for almost all x ∈ Ω.

Then, inequality (27) is strict for all x �= y such that x �< y and
y �< x.

Finally, if 1) and 2) hold true, then inequality (27) is strict for
all x, y ∈ Ω such that x �= y.

Proof: First note that according to Rademacher’s theorem,
for example, see [20], Lipschitz continuity implies differen-
tiability almost everywhere. For A ⊆ {1, . . . , n}, put Ac :=
{1, . . . , n} \ A, and gA(z) :=

∑
a∈A ga(z). Fix some x, y ∈ Ω,

and put I = {i : xi > yi}, J = {i : xi < yi}. Let ξ ∈ Ω be
such that ξi = xi for i ∈ I and ξi = yi for i ∈ Ic. Consider
the segments γI from y to ξ and γJ from x to ξ. For A ⊆
{1, . . . , n}, and B ∈ {I,J }, define the path integral

ΓA
B :=

∫
γB

∇gA(z) · dz.

Then, (26) implies that

gI(x)− gI(y) =ΓI
I − ΓI

J ≤ −ΓIc

I − ΓI
J (28)

gJ (x)− gJ (y) =ΓJ
I − ΓJ

J ≥ ΓJ
I + ΓJ c

J . (29)

Denoting si := sgn(xi − yi), the definition of I and J , and
(28) and (29), yield∑

i

si (gi(x)− gi(y)) = gI(x)− gI(y)− gJ (x) + gJ (y)

≤ − ΓIc

I − ΓI
J − ΓJ

I − ΓJ c

J .

Observe that by (25), A ∩ B = ∅ implies ΓA
B ≥ 0, so that (27)

follows immediately.
Notice that, if there exists some j ∈ {1, . . . , n} such that

inequality (26) is strict for almost every x ∈ Ω, and xj > yj

(xj < yj), then (28) (respectively, (29)) is a strict inequality,
hence so is (27), thus proving the second claim.

Now, assume that x �= y, x �<y, and y �<x. Then, it follows
from the definition of the sets I and J that the sets Ic and J c

are nonempty. We also have Ic∩J c={i∈{1, . . . , n}|xi=yi}.
Since x �=y, this implies that Ic∩J c �={1, . . . , n}. Therefore,
at least one of Ic and J c is a proper subset of {1, . . . , n}.
If, say, Ic is a proper subset, then the condition in 2) in the
statement of the lemma implies that (25) is strict for some i∈I
and j∈Ic. Therefore, ΓIc

I > 0, and the third claim follows.
Finally, the last claim is implied by the previous two: if x < y

or y < x, then trivially xj �= yj for all j ∈ {1, . . . , n} and the
strict inequality in (27) follows from the claim associated with
condition 1); if x �< y and y �< x, the strict inequality in (27)
follows from the claim associated with condition 2). �

Lemma 1 implies the following l1-contraction principle for
dynamic networks with monotone distributed routing policies.

Lemma 2: Let G = (V, E , C) be a network satisfying As-
sumption 1, f is a monotone distributed routing policy, and
ρ̂◦, ρ̃◦ ∈R. Let ρ̂(t) and ρ̃(t) be the solutions to the system (1)
with initial conditions ρ̂(0)= ρ̂◦, and ρ̃(0)= ρ̃◦, respectively.
Define ϕ(t) :=‖ρ̂(t)−ρ̃(t)‖1 for 0≤ t<min{κ(ρ̂◦), κ(ρ̃◦)}.
Then, ϕ̇(t)≤0. Moreover, if the routing policy is strongly
monotone, then ϕ̇(t)=0 if and only if ρ̂(t)= ρ̃(t).

Proof: It is easily verified that the properties of monotone
distributed routing policies (15) and (16) imply (25) and (26)
for the function ge(ρ) := f in

e (ρ)− fout
e (ρ). Therefore, the first

claim in Lemma 1 gives

ϕ̇(t) =
∑
e

sgn (ρ̂e(t)− ρ̃e(t)) (ge (ρ̂(t))− ge (ρ̃(t))) ≤ 0

if the distributed routing policy is monotone.
We now show that conditions 1) and 2) in Lemma 1 follow

from the strong monotonicity property of the distributed routing
policies. To that effect, for any j ∈ E−

D , we have

∂

∂ρj

∑
e∈E

ge(ρ) =
∂

∂ρj

⎛
⎝∑

v∈O
λv −

∑
i∈E−

D

fout
i (ρi)

⎞
⎠

= − ∂

∂ρj
fout
j (ρj) < 0

where the strict inequality follows from the strict version of
(15), characterizing strongly monotone routing policies. This
establishes condition 1) in Lemma 1. In order to connect
condition 2) in Lemma 1, consider any proper subset K � E . It
is easily seen that there exist i ∈ K and j ∈ Kc such that either
a) τj = σi or σj = σi; or b) j ∈ E+

i ∩ E . In case a)

∂gi
∂ρj

(ρ) =
∂f in

i

∂ρj
(ρ) =

∑
e∈E−

i

∂fe→i

∂ρj
(ρe) > 0

where the strict inequality follows from the strict version of
(15) that holds true for a strongly monotone routing policy.
In case b), (∂/∂ρj)gi(ρ) = −(∂/∂ρj)f

out
i (ρi) > 0, where the

strict inequality follows from the strict version of (16) that holds
true for a strongly monotone routing policy. The last claim in
Lemma 2 follows now from the last claim in Lemma 1. �



COMO et al.: THROUGHPUT OPTIMALITY AND OVERLOAD BEHAVIOR OF DYNAMICAL FLOW NETWORKS 65

B. Properties of Limit Density Vectors

For an initial density ρ◦ ∈ R, let us consider the following
subsets of E :

B := {lim ρe(t) = Be} , W := {lim sup ρe(t) < Be} ,
Zo :=

{
lim fout

e (ρe(t)) = 0
}
, Zi :=

{
lim f in

e (ρe(t)) = 0
}
,

C :=
{
lim fout

e (ρe(t)) = Ce

}
, Z := Zi ∪ Zo, (30)

where the limits are meant as t ↑ κ(ρ◦) and the curly brackets
are meant as defining the sets of those links e such that the
enclosed condition is satisfied.

Observe that the definitions in (30) do not assume existence
of a limit density. However, if a limit ρ∗ = limt↑κ(ρ◦) ρ(t)
exists, then E = B ∪W . Also, in general, the existence of
the limit density ρ∗ does not necessarily imply the existence
of the limit outflow limt↑κ(ρ◦) f

out
e (ρe(t)) or the limit inflow

limt↑κ(ρ◦) f
in
e (ρe(t)) for every e ∈ E . Finally, observe that

C ∩ Zo = ∅, and that B ∩ C ∩ Zi = ∅, since limt↑κ(ρ◦) ρ̇e(t) =
−Ce < 0 for all e ∈ C ∩ Zi, which is incompatible with e ∈ B.

The following lemma characterizes the behavior of ρ(t)
starting from some ρ(0) = ρ◦ ∈ R, as t approaches κ(ρ◦).

Lemma 3: Let G=(V, E , C) be a network satisfying As-
sumption 1, and f be a monotone distributed routing policy.
Let ρ◦ ∈R be such that the solution ρ(t) of the dynamical flow
network (1) with initial condition ρ(0)=ρ◦ admits a limit ρ∗=
limt↑κ(ρ◦) ρ(t). Let B,W, C,Z⊆E be defined as in (30). Then:

1) if e ∈ B, then e ∈ C, or e �∈ E−
D and E+

e ⊆ B;
2) if e ∈ B, then e ∈ Zi, or E+

σe
⊆ B;

3) if e ∈ W \ E−
D and E+

e ⊆ B, then e ∈ Zo.
Proof:

1) First consider the case e ∈ E−
D . Then, (13) implies that if

e ∈ B, then e ∈ C. On the other hand, assume that e �∈
E−
D . Then, if e ∈ B and E+

e �⊆ B, necessarily {ρ∗e}e∈Ee ∈
R•

e, so that property (13) implies that e ∈ C.
2) Let e be such that E+

σe
�⊆ B. Then, property (14) implies

that limt↑κ(ρ◦) f
in
e (ρ(t)) = 0.

3) If e ∈ W \ E−
D and E+

e ⊆ B, then property (14) implies
that limt↑κ(ρ◦) f

out
e (ρ(t)) = 0.

�
The following fundamental result states that either B = ∅, or

there exists a cut on the origin side of which the densities hit
the buffer capacities.

Lemma 4: Let G = (V, E , C) be a network satisfying As-
sumption 1, and f be a monotone distributed routing policy
with the vector of inflows λ. Let ρ◦ ∈ R be such that the
solution ρ(t) of the dynamical flow network (1) with initial
condition ρ(0) = ρ◦ admits a limit ρ∗ = limt↑κ(ρ◦) ρ(t). Let
B,W, C,Z ⊆ E be defined as in (30). Then, either E = W , or
there exists a cut S with CS ≤ λS such that

E+
S ⊆ B, ∂+

S ⊆ C, ∂−
S ⊆ Z, E \

(
E+
S ∪ ∂−

S
)
⊆ W. (31)

Proof: The existence of the limit density ρ∗ implies that
E = B ∪W . Assume that E �= W and, hence, B �= ∅. Let S :=
{v ∈ V \ D : E+

v ⊆ B}. To start with, we prove that S �= ∅. To
see this, consider a link e ∈ B. If also e ∈ E−

D , then statement
1 of Lemma 3 implies that e ∈ C and, hence, e �∈ Zi. This

combined with statement 2 of Lemma 3 implies that E+
σe

⊆ B,
and hence σe ∈ S �= ∅. On the other hand, if e ∈ B \ E−

D , then
statement 1 of Lemma 3 implies that E+

e ⊆ B or e ∈ C. In the
former case, τe ∈ S �= ∅. In the latter case, e ∈ C ∩ B implies
again e �∈ Zi, so that statement 2 of Lemma 3 yields E+

σe
⊆

B, hence σe ∈ S �= ∅. Hence, S �= ∅ and since S ∩ D = ∅ by
construction, S is a cut. Also, by construction, E+

S ⊆ B.
We prove now that ∂+

S ⊆ C. In fact, if e ∈ ∂+
S , then E+

e �⊆ B
for otherwise, one would have τe ∈ S so that e �∈ ∂+

S . Hence,
e ∈ ∂+

S implies {ρ∗e}e∈Ee ∈ R•
e which, combined with (13),

implies e ∈ C.
On the other hand, for every e ∈ ∂−

S , one has E+
σe

�⊆ B (since
σe �∈ S) and E+

e ⊆ B (since τe ∈ S). Therefore, statement 2
of Lemma 3 implies that ∂−

S ∩ B ⊆ Zi, while statement 3 of
Lemma 3 implies that ∂−

S ∩W ⊆ Zo.
To show that E \ (E+

S ∪ ∂−
S ) ⊆ W , it is sufficient to prove

that, for every e ∈ B with σe �∈ S , necessarily τe ∈ S , so that
e ∈ ∂−

S . Indeed, it follows from statement 2 of Lemma 3 that
e ∈ B and σe �∈ S (i.e., E+

σe
�⊆ B) imply that e ∈ Zi, so that e �∈

C and statement 1 of Lemma 3 implies that τe ∈ S .
Finally, it follows from E+

S ⊆ B and E \ (E+
S ∪ ∂−

S ) ⊆ W
that B = E+

S ∪ ∂−
S ∩ B. Then, using ∂+

S ⊆ C, ∂−
S ∩ B ⊆ Zi,

and ∂−
S ∩W ⊆ Zo, one obtains∑

e∈B
ρ̇e(t)=λS +

∑
e∈∂−

S ∩W

fout
e (t) +

∑
e∈∂−

S ∩B

f in
e (t)−

∑
e∈∂+

S

fout
e (t)

t↑κ(ρ◦)−→ λS − CS .

Since ρe(t) < Be for t ∈ [0, κ(ρ◦)) and limt↑κ(ρ◦) ρe(t) =
Be for all e ∈ B, the above implies that λS − CS ≥ 0. �

C. Proof of Theorem 1

The results in the previous subsection assume the exis-
tence of a limit density, which, in principle, is not guaran-
teed for every initial condition ρ(0) = ρ◦ ∈ R. However, for
monotone distributed routing policies, the existence of a limit
density is ensured for the initial condition ρ(0) = 0. Indeed,
for every ρ◦ ∈ R and 0 ≤ t < κ(ρ◦), let φt(ρ◦) = ρ(t) be
the solution of (1) with initial condition ρ(0) = ρ◦. Then,
for monotone distributed routing policies, (18) implies that
φt+s(0) = φt(φs(0)) ≥ φt(0), for 0 ≤ s < κ(0)− t, that is,
φt(0) is component-wise nondecreasing and, hence, convergent
to some limit, to be denoted, with slight abuse of notation, by
ρ∗ := limt→κ(0) φ

t(0).
Let B, W , C, Zi, and Zo be defined as in (30) for ρ◦ = 0.

First, consider the case maxU{λU − CU} < 0. Then, Lemma 4
implies that E = W , as otherwise there would exist a cut S such
that CS ≤ λS . Then, ρ∗ is an equilibrium. For an arbitrary initial
condition ρ◦ ∈ R, it cannot be that κ(ρ◦) < ∞, as then the
limit limt↑κ(ρ◦) φ

t(ρ◦) �∈ R would exist, and Lemma 4 would
imply that λS ≥ CS for some cut S . Therefore, κ(ρ◦) = ∞,
for all ρ◦ ∈ R. By Lemma 2, we also have ‖φt(ρ◦)− ρ∗‖1 ≤
‖ρ◦ − ρ∗‖1, for all t ≥ 0, so that, in particular, φt(ρ◦) remains
bounded. If the distributed routing policy is strongly monotone,
then Lemma 2 allows one to use LaSalle’s theorem showing
that limt→∞ φt(ρ◦) = ρ∗ for any initial condition ρ◦ ∈ R.



66 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

Conversely, if ρ∗ ∈ R, then, for every cut U , the mass
balance on E+

U implies that

0 = λU −
∑
e∈∂+

U

fout
e (ρ∗) +

∑
e∈∂−

U

fout
e (ρ∗) ≥ λU − CU .

This proves that if λU > CU for some cut U , then neces-
sarily ρ∗ �∈ R. The same holds if maxU{λU − CU} = 0 and
the routing policy is strongly monotone, for in that case∑

e∈∂+
U
fout
e (ρ∗) < CU if ρ∗ ∈ R. Therefore, W �= E , so that

Lemma 4 implies (19) for ρ◦ = 0. For the arbitrary initial
density ρ◦ ∈ R, consider the following two cases: κ(ρ◦) < +∞
and κ(ρ◦) = +∞. In the former, limt↑κ(ρ◦) ρ(t) exists, hence
(19) is implied by Lemma 4. In the latter, κ(0) ≥ κ(ρ◦) = ∞,
hence (19) for ρ◦ = 0 also implies (19) for arbitrary ρ◦ ∈ R.

D. Proof of Proposition 1

Observe that, for every cut U∑
e∈E+

U

ρ̇e = λU +
∑
e∈∂−

U

fout
e −

∑
e∈∂+

U

fout
e ≥ λU − CU

so that
∑

e∈E+
U
ρe ≥

∑
e∈E+

U
ρ◦e + t(λU − CU ), from which (20)

follows. On the other hand, (21) is an immediate consequence
of claim 2) of Theorem 1 and the definition of κ(ρ◦).

E. Proof of Proposition 2

Let U∗ be defined as in (22), and S be a cut with CS ≤ λS
satisfying (31) for ρ◦ = 0 (whose existence is guaranteed by
Lemma 4). The proof consists of three steps: 1) Lemma 5
characterizes U∗ defined in (22) as the maximal cut such that
λU∗ − CU∗ = maxU{λU − CU} ≥ 0; 2) Lemma 6 shows that
S = U∗, where S is the cut built in Lemma 4 for ρ◦ = 0; and
3) the proof is completed for ρ◦ = 0 and extended to the case
of the generic initial condition.

A complete proof of the results, omitted for space limitations,
is provided in the extended version of this paper [21].

Lemma 5: For a network G = (V, E , C) satisfying Assump-
tion 1, let U∗ and M be as in (22). Then, U∗ ∈ M.

Lemma 6: Let G = (V, E , C) be a network satisfying As-
sumption 1 and λ a vector of inflows such that maxU{λU −
CU} ≥ 0. Let f be a strongly monotone distributed routing
policy. Let U∗ be defined as in (22) and B,W, C,Zo ⊆ E be
defined as in (30) for ρ◦ = 0. If κ(0) = +∞, then E+

U∗ ⊆ B,
∂+
U∗ ⊆ C, ∂−

U∗ ⊆ Zo, and E \ (E+
U∗ ∪ ∂−

U∗) ⊆ W .
Proof: Let ρ(t) be the solution of (1) with initial condi-

tion ρ(0) = 0 and S := {v ∈ V \ D : E+
v ⊆ B}. Then, Lemma

4 gives ∂+
S ⊆ C, ∂−

S ⊆ Zo ∩ Zi, and E \ (E+
S ∪ ∂−

S ) ⊆ W . It
remains to show that S = U∗. To this aim, first one defines Û =
S ∪ U∗. Then, the conservation of mass and some algebraic
manipulations implies that λÛ − CÛ ≥ λU∗ − CU∗ . Since U∗ ∈
M by Lemma 5, this implies that Û ∈ M. Then, necessarily
Û = U∗, so that S ⊆ U∗. Similarly, if A := U∗ \ S �= ∅, then it
is possible to show that lim inft

∑
e∈E+

A\∂−
S
ρ̇e(t) > 0, contra-

dicting E+
A \ ∂−

S ⊆ W . Then, A = ∅, so that S ⊇ U∗. �

We can now conclude the proof of Proposition 2. Infinite
buffers and limited growth rate imply κ(ρ◦) = ∞ for every
ρ◦ ∈ R. For ρ◦ = 0, Lemmas 4 and 6 imply (23) and (24). For
arbitrary ρ◦ ∈ R, the extension of (23) follows from Lemma
2; hence, we only need to prove (24). To this aim, consider a
new network Ĝ = (V̂, Ê , Ĉ) with V̂ := V \ S , Ê := E \ (E+

S ∪
∂−
S ), and Ĉe = Ce for e ∈ Ê , and with inflows λ̂v̂ := λv̂ +∑
e∈E−

v̂
∩∂+

S
Ce for v̂ ∈ V̂ , and buffer capacities B̂e = Be for

e ∈ Ê . Let f̂ be a distributed routing function for Ĝ such that
f̂e→j(ρ̂

e) = fe→j(ρ
e), where ρe ∈ R•

e is such that ρj = ρ̂j
for all j ∈ Ee ∩ Ê , and ρj = Bj for all j ∈ Ee ∩ ∂−

S . Clearly, Ĝ
satisfies Assumption 1. Claim (24) finally follows for arbitrary
ρ◦ ∈ R by applying Theorem 1 to the dynamical flow network
associated with Ĝ and f̂ , and by interpreting it as a monotone-
controlled system [18], with the densities on E+

S ∪ ∂−
S consid-

ered as inputs.

VI. CONCLUSION

We study dynamical flow networks under distributed mono-
tone routing policies and prove throughput optimality of the
proposed policies both when the min-cut capacity constraints
are satisfied and in overload. Some of the technical tools
developed here can be employed for analysis of transportation
networks [8].

Future research includes and is not limited to the design
of application-oriented control policies and optimization with
respect to secondary objectives, such as steady-state delay,
without compromising throughput optimality. We also plan to
extend our framework to the multicommodity case under output
feedback, modeling, for example, urban traffic networks where
observations are the aggregates of flows of all commodities.
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