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Disagreement among individuals in a society, even on central questions that have been
debated for centuries, is the rule; agreement is the rare exception. How can disagreement
of this sort persist for so long? Existing models of communication and learning, based on
Bayesian or non-Bayesian updating mechanisms, typically lead to consensus provided that
communication takes place over a strongly connected network (see, e.g., [?, ?, ?, ?, ?, ?] and
references therein) These models are thus unable to explain persistent disagreements.

In this paper, we use a stochastic model of communication combined with the assumption
that there are some “stubborn” agents in the economy who never change their opinions. We
show that the presence of these stubborn agents leads to persistent disagreements among
the rest of the society—because different individuals are within the “sphere of influence” of
distinct stubborn agents and are influenced to varying degrees. Under general conditions,
there is no convergence to a consensus. Instead, the expected cross-sectional distribution
of beliefs in the society converges (in distribution), and generally, the opinion of a single
individual, and in fact that of the whole society, potentially fluctuates forever. This model
provides a new approach to understanding persistent disagreements, and in the process,
introduces new tools for the analysis of opinion formation and consensus models.

Briefly, we consider a society envisaged as a social network of n agents, communicat-
ing and exchanging information. Each agent starts with an opinion xi(0) ∈ R and is then
“recognized” according to a rate-1 independent Poisson process in continuous time. Fol-
lowing this event, she meets one of the individuals in her social neighborhood according to
a stochastic matrix P . We shall identify agents with the vertices of a (possibly directed)
graph G = (V , E), representing an underlying social network, where (i, j) ∈ E iff Pij > 0. We
distinguish between two types of individuals, stubborn and regular. Stubborn agents, which
are typically few in number and whose set is denoted by S ⊆ V , do not change their opinion
after a meeting, while regular agents, whose set is denoted by A := V \ S make up the
great majority of the social networks, update their beliefs to some weighted average of their
pre-meeting belief and the belief of the agent they met. Specifically, we shall assume that, if
agent a ∈ A is recognized at time t ≥ 0, then her belief jumps from its current value xa(t

−)
to xa(t) = (1 − η)xa(t

−) + ηxb(t
−), while all other individuals’ opinions remain constant.

The parameter η ∈ (0, 1) is a measure of the trust that each regular individual puts on other
individuals’ beliefs, which, for the sake of simplicity, will be assumed constant over A and
in time. This information exchange generates a Markov process x(t) over RV , and we study
its long-run behavior, under the mild connectivity assumption that there exists a path in G
from every a ∈ A to every v ∈ V .

It can be shown that, unless xs(0) = xs′(0) for all s, s′ ∈ S, x(t) does not converge with
probability one. Nevertheless, the following weak convergence result holds.



Theorem 1. There exists an random variable x(∞), such that limt→+∞ x(t) = x(∞) in
distribution. Moreover, h := E[x(∞)] ∈ RV is the unique solution of the following Laplace
equation ((P − I)h)a = 0 for all a ∈ A, with boundary conditions hs = xs(0) for all s ∈ S.

Theorem 1 suggests to study the expected asymptotic opinion vector h. In fact, h admits
the following standard representation [?][Ch. 2, Lemma 27]:

hv =
∑

s∈S Pv (τS = τs)xs(0) , ∀v ∈ V , (1)

where Pv( · ) denotes the probability measure associated to a continuous-time random walk
V (t), with initial state V (0) = v, transition rates P , while τW := inf{t ≥ 0 : V (t) ∈ W}
denotes the hitting time of an arbitrary subset W ⊆ V . Formula (1) allows one to compute
h exactly for certain social network topologies, including trees and Cayley graphs.

Example 2. Let G be an undirected tree, Pij = 1/ deg(i) for all (i, j) ∈ E, and let S =
{s0, s1}, with xs0(0) = 0, and xs1(0) = 1. Then, the expected asymptotic opinion vector
h can be computed as follows: For all vertices v lying on the path between s0 and s1, one
has hv = d(v, s0)/ (d(v, s0) + d(v, s1)), where d( · , · ) denotes distance on G. On the other
hand, for all vertices v such that the path from v to s1 (respectively, to s0) passes through s0

(through s1), one has hv = 0 (hv = 1).

In some cases when the expected asymptotic opinion vector h cannot be explicitly com-
puted in a simple way, it is possible to provide bounds on its dispersion.

Theorem 3. Assume that the stochastic matrix P is reversible with invariant measure π.
Then, for all ε > 0, it holds

π (a : |E[Xa(∞)]−
∑

v πvE[Xv(∞)]| ≥ αε) ≤ 2

ε
log(2e2/ε)

τ1
Eπ[τS ]

.

where α :=
∑

s∈S |Xs(0)|, τ1 is the variation threshold time [?, Ch. 4, p. 1] of V (t), and
Eπ[ · ] denotes the expectation for the Markov chain V (t) with initial distribution π.

Theorem 3 has the following intuitive meaning. If the Markov chain V (t) mixes in a time
faster than the expected hitting time of the stubborn agents set S, then it will eventually hit
any of them with approximately equal probability, and thus the expected asymptotic opinions
do not vary much over the network. As a corollary to Theorem 3, using known estimations
of τ1 and E[τS ] for Abelian Cayley graphs [?, Ch.s 5 and 7], one finds for instance that, if G
is a d-dimensional torus with d ≥ 2, |V| = n, and |S| constant in n, then, for all ε > 0, the
fraction of v ∈ V such that |hv − n−1

∑
w hw| > ε vanishes as n grows.
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