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Abstract: Scaling limits are analyzed for continuous opinion dynamics
systems, also known as gossip models. In such models, agents update their
vector-valued opinions to a convex combination (possibly agent- and opinion-
dependent) of their current value and that of another agent. It is shown
that, in the limit of large agent population size, the empirical opinion den-
sity concentrates, at an exponential probability rate, around the solution
of a measure-valued ordinary differential equation describing the system’s
mean-field dynamics. Properties of the associated initial value problem are
studied. The asymptotic behavior of the solution is analyzed for bounded-
confidence opinion dynamics, and in the presence of an heterogenous influ-
ential environment.

1. Introduction

In this paper we undertake a rigorous mathematical analysis of a family of
stochastic dynamical systems proposed as opinion dynamics models in the recent
literature: see [10] and references therein. Such models are also known as ‘gossip’
models because of the nature of the propagation of information, and they have
appeared in other areas, for instance, as aggregation and estimation algorithms
in sensor and robotic networks: see e.g. [8, 22].

The simplest gossip model can be described as follows. Each agent a of a finite
population A possesses an initial belief/opinion modeled as a vector Xa

0 ∈ R
d.

Agents are activated according to independent Poisson processes in continuous
time. If agent a is activated at time t, her opinion jumps from its current value
Xa

t− to a new value Xa
t = Xa

t− +ω(Xb
t− −Xa

t−) where b is another agent sampled
from A, and ω ∈ [0, 1] is a parameter modeling how much agent a trusts the
opinion of agent b. In general, the conditional distribution of b may depend
on the activated agent a (the support of such distribution representing the
out-neighborhood of a in an underlying ‘social network’ structure), while the
parameter ω may depend on the interacting agents, a and b, as well as on their
current opinions, Xa

t− and Xb
t− .

Fundamental theoretical issues concern the behavior of such models for large
t and n = |A|. Rather then on the single opinions’ behavior, one is interested
in the emerging collective behavior of the population. Typical questions include
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whether a consensus is eventually achieved or rather disagreement persists, and,
more in general, whether an asymptotic distribution of opinions exists, how it
looks like, and how long it takes the system to approach it.

The simplest case is when the Poisson processes are all of rate 1, the condi-
tional distribution of the observed agent is the uniform one over A whichever
agent is activated, and the parameter ω is fixed and the same for all agents,
independently of their current opinions. In this case, the model is linear and
can be studied in detail: it corresponds to the asymmetric gossip model in [14].
The basic fact is that (if ω ∈]0, 1[), almost surely, all Xa

t converge, as t → +∞
(and for any fixed n), to a consensus random value ξ which has expected value
E(ξ) = n−1

∑

aX
a
0 . Convergence is exponentially fast [15]:

E

[

n−1
∑

a

|Xa
t − ξ|2

]

≤ 2n−1
∑

a

|Xa
0 |2 exp(−Ct)

where C = −n ln(1− 2n−1ωω̄− 2n−2ω2) with ω̄ = 1−ω. The variance of ξ can
be estimated as

Var[ξ] ≤ ω

ω + ω̄n
n−1

∑

a

|Xa
0 |2 .

Moreover, using the techniques in [14] we can easily prove a concentration result
of type

P (|Xt − E(Xt)| ≥ ε) ≤ exp
(

−Kε2n/t
)

.

Essentially, this shows that, as n → +∞, and t = o(n), each agent’s opin-
ion Xa

t concentrates around a deterministic dynamics converging to E(ξ) as
exp(−2ωω̄t). It is the type of results which we would like to extend to the more
general models.

A particularly interesting setting is the homogeneous-population, state-dependent
model, i.e. when the parameter ω is independent of the identity of the interacting
agents, but does depend on their current opinions. The case

ω = ω01[0,R](|Xa
t− −Xb

t− |) , (1)

where R > 0, and ω0 ∈]0, 1[, is known as the Deffuant-Weisbuch model [18,
13, 20] of bounded confidence opinion dynamics: Agents with opinions too far
apart do not trust each other and do not interact. Another case is the so called
Gaussian decay model

ω = ω0 exp
(

−|Xa
t− −Xb

t− |2/σ2
)

. (2)

These models are non-linear and, to the best of the authors’ knowledge, the
only theoretical result [20] is that, if ω ∈ {0} ∪ [ω0, 1] for some ω0 > 0, each
Xa

t− converges, as t → +∞ to a limit random value ξa. Numerical simulations
show the asymptotic emergence of opinion clusters whose number and structure
depends on the initial condition but seems to be stable for large n. However,
there is no theoretical result regarding concentration and scaling limits for any
state-dependent model.
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Finally, for the case when the parameter ω depends on the agents, as well
as on their opinions, no theoretical result is available in the literature. Such
models have been considered in [16] where, though, only numerical simulations
have been presented. Such heterogeneous population models are going to play
a very important role in opinion dynamics because they are the natural model
to represent more realistic populations with agents having different attitude to
change opinion, and interacting only with agents on their social neighborhood.

In this paper, we study general state-dependent gossip models for large n.
We shall consider both the case of a homogeneous population, and of a het-
erogeneous one consisting of two classes of agents: A class of ‘standard’ agents,
which keep on updating their opinions as a result of interactions with the whole
population, and a class of ‘stubborn’ agents whose opinions are never updated.
The latter case can be modeled as a homogeneous population model with an
exogenous input describing the influence of the stubborn agents’ opinions on the
standard agents’ ones, and interpreted as a, typically heterogenous, ‘influential
environment’. We believe that many more general heterogeneous models can be
studied with our approach. This is however left for future research.

In our analysis, we shall adopt an Eulerian viewpoint: Instead of studying the
evolution of the single agents’ opinion, we shall neglect the agents’ identities,
and study the dynamics of the corresponding empirical opinion densities. We
shall argue that the deterministic mean-field dynamics obtained in the limit of
large n is governed by an ordinary differential equation (ODE) on the space of
probability measures over the opinion set, presented in Sect. 2.2. As proved in
Sect. 3, the initial value problem associated to the mean-field dynamics always
admits a unique global solution. Moreover, at any finite time, its solution is
absolutely continuous with respect to Lebesgue’s measure, provided that so
does the initial condition, and that some mild technical assumptions on the
interaction kernel are satisfied.

The asymptotic behavior in time of the mean-field dynamics is analyzed
in Sect. 4 for the state-independent heterogeneous case, and for the generally
state-dependent homogeneous case. In both cases, we prove weak convergence to
an equilibrium distribution, which typically does not consist of a single Dirac’s
delta. For the state-independent heterogeneous model, we show that the equilib-
rium opinion distribution is independent of the initial condition, and is uniquely
characterized by its moments, which can be computed by recursively solving a
lower-triangular infinite linear system. On the other hand, we prove that the
equilibrium opinion distribution in the bounded-confidence model is a convex
combination of Dirac’s deltas. Such deltas represent opinion clusters, and their
number and position depend on the initial condition. These results provide fun-
damental insight into two basic mechanisms which have been proposed by social
scientists in order to explain persistent disagreement in the society [3], namely
heterogeneity of the social environment, and homophily leading to global frag-
mentation.

Finally, in Sect. 5, we prove that the finite-population stochastic system con-
centrates around the deterministic mean-field dynamics, as the population size
grows, at an exponential probability rate. We apply here a martingale argu-
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ment (see e.g. [25] for the finite-dimensional case) and obtain a result in the
Kantorovich-Wasserstein metric [2, 24]. The technical assumption in our results
is that the, possibly stochastic, dependence of the weight ω on the opinions is
Lipschitz-continuous. Hence, the case (1) is not covered by our theory. This is
not a relevant drawback since one can consider suitable Lipschitz approxima-
tions of (1); on the other hand, we believe that this is just a technical question
and that the result should remain valid for a larger class of functions.

We conclude this section with a brief overview of some related work. A spe-
cial instance of the measure-valued ODE analyzed in the present paper has
already been proposed in [4] for probability densities (in this case it becomes
an integro-differential equation), but with no proof of either well-posedness or
concentration of the stochastic finite system. In [5, 9, 6], deterministic, bounded-
confidence, opinion dynamics models with possibly a continuum of agents have
been studied both in discrete and continuous time. In particular, the continuous
time dynamics studied in [9, 6] is governed by a partial differential equation in
the space of probability measures, whose solution behaves similarly to the scal-
ing limit of the stochastic model considered here. Finally, it is worth mentioning
the work [17], where mean-field limits have been analyzed for the Cucker-Smale
flocking dynamics [11, 12].

2. Problem setting and main results

In this section, we formally state the model and present our main results.
Before proceeding, let us establish some notation to be followed through-

out the paper. For x, y ∈ R
d, for some d ∈ N, |x − y| and x · y will denote

their Euclidean distance, and scalar product, respectively. The indicator func-
tion of a set A will be denoted by 1A. Given an open subset X ⊆ R

d, we
denote by B(X ) its Borel σ-algebra, and by M(X ) the space of finite signed
Borel measures on X , while M+(X ) ⊆ M(X ) denotes the closed convex cone
of Borel non-negative measures and P(X ) ⊆ M+(X ) the convex set of proba-
bility measures. The space of real-valued continuous bounded (resp. compact-
supported, vanishing at infinity) functions on X , equipped with the supremum
norm ||ϕ||∞ := sup {|ϕ(x)| : x ∈ X}, will be denoted by Cb(X ) (resp. Cc(X ),
C0(X )). The Dirac delta measure centered in x ∈ X will be denoted by δx. For
µ ∈ M(X ), and ϕ ∈ Cb(X ), we shall write 〈µ, ϕ〉 for the integral

∫

ϕ(x)dµ(x),
with the convention that, whenever not explicitly indicated, the domain of in-
tegration is assumed to be the entire space X . The total variation of µ ∈ M(X )
will be denoted by ||µ||. The symbol λ will denote Lebesgue’s measure on X ,
µ << λ will stand for absolute continuity, and dµ/dλ for the Radon-Nikodym
derivative, of µ with respect to λ. Finally, we shall denote by P1(X ) := {µ ∈
P(X) :

∫

|x|dµ(x) < +∞} the metric space of probability measures with fi-
nite first moment, equipped with the order-1 Kantorovich-Wasserstein distance.
The latter is defined by [2, 24] W1(µ, ν) := inf

{∫∫

|x− y|dξ(x, y)
}

, where the
infimization runs over all couplings of µ and ν, i.e. joint probability measures
ξ ∈ P(X × X ) having marginals given by µ, and ν, respectively.
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2.1. Stochastic models of continuous opinion dynamics

The present paper is concerned with continuous opinion dynamics systems.
Agents belong to a finite population A of cardinality |A| = n. At time t ∈ R

+

each agent a ∈ A maintains an opinion Xa
t ∈ X , where X ⊆ R

d is an open set.
The vector of the opinions will be denoted by Xt := {Xa

t } ⊆ XA.
We shall assume the initial opinions X0 to be a collection of independent

and identically distributed random variables, the law of each Xa
0 given by some

µ0 ∈ P(Rd). The trajectories of opinion profile vector {Xt : t ∈ R
+} are right-

continuous and evolve according to the following jump Markov process: Agents
have clocks which tick at the times of independent rate-1 Poisson processes.
If her clock ticks at time t, agent a updates her opinion Xa

t− to a new value
Xa

t which depends on the observation of the current opinion of some other
agent and of her own one. In particular, she observes the opinion of some b
sampled uniformly from A, and then updates her opinion to a random value
Xa

t , which has conditional probability law κ( · |Xa
t− , X

b
t−). Here κ( · | · , · ) is a

stochastic kernel, i.e., for all x, y ∈ X , κ( · |x, y) is a probability measure on
X , and (x, y) 7→ κ(B|x, y) is a measurable map from X × X to [0, 1], for all
measurable setsB ⊆ X . We shall refer to κ as the interaction kernel of the model.
We shall assume that the above stochastic process is defined on some filtrated
probability space (Ω, {Ft}t∈R+ ,P), and denote by 0 = T0 ≤ T1 ≤ . . ., the times
at which some opinion update occurs. Observe that {Tk+1 − Tk : k ∈ Z

+} is a
family of independent rate-n Poisson random variables.

Interaction kernels of interest in opinion dynamics are typically ‘locally aggre-
gating’. Specifically, in most of the models considered in the literature, X ⊆ R

d

is an convex open set containing the support of the initial condition, and the
interaction kernel has the following form:

〈κ( · |x, y), ϕ〉=α
∫

ϕ (ωx+ ωy) dθi(ω|x, y) + α

∫ ∫

ϕ(υx+ υz)dθe(υ|x, z)dψ(z)

(3)
where α = 1 − α ∈ [0, 1], θi( · | · , · ) and θe( · | · , · ) are stochastic kernels from
X × X to [0, 1], ω = 1 − ω, υ = 1 − υ, and ψ ∈ P(X ). This models a situation
in which, with probability α, the activated agent updates her opinion towards
a convex combination of her current opinion x and the opinion y of an observed
agent. The weight ω in such a convex combination measures the confidence that
the activated agent has on the observed opinion of another agent, and is assumed
to depend, through the stochastic kernel θi( · | · , · ), on both the activated and
the observed agent’s opinions, x and y. On the other hand, with probability α,
the activated agent observes an external signal z, sampled from a probability
distribution ψ, playing the role of an exogenous source of influence, or influential
environment, and she updates her opinion toward a convex combination of her
current opinion x and the observed signal z. The dependence of the weight υ of
such convex combination is captured by the stochastic kernel θe( · | · , · ).

While for most of the results of our paper we shall not need the interaction
kernel κ to have the specific form (3), we shall focus on kernels of this form in
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Sect. 4 when proving properties of the solution of the corresponding measure-
valued ODE. Observe that, if µ0 and ψ are compact-supported, then the system
dynamics becomes naturally restricted to the convex hull of the supports of µ0

and ψ.

Remark 1. The models considered in the cited literature usually assume the
interaction to be symmetric: when agent a wakes up and connects to agent b,
both agents update their opinions. This symmetric model may be more suitable
in certain applicative contexts, the asymmetric one in some others. However,
while for finite population sizes some of the properties of the two models differ
(for example, in the symmetric model the average of the opinions is preserved,
while this is not necessarily the case for the asymmetric model [14]), all the
results and proofs of this paper hold, with minor changes, for the symmetric
model too.

2.2. The Eulerian approach and main results

As the main interest is in the global behavior of the opinion dynamics system,
rather than on that of the single agents’ opinions, it proves convenient to under-
take an Eulerian approach, studying the evolution of the empirical densities of
the agents’ opinions. Formally, this is accomplished by considering the random
flow of probability measures

µn
t :=

1

n

∑

a∈A
δXa

t
∈ P(X ) , t ∈ R

+ .

This is a P(X )-valued process whose trajectories are piecewise-constant and
right-continuous. In particular, one has

µn
t = Mk , ∀t ∈ [Tk, Tk+1[ , k ∈ Z

+ ,

where {Mk : k ∈ Z
+} is a P(X )-valued Markov chain.

Furthermore, consider the operator F : M+(X ) → M+(X ), defined by

〈F (µ), ϕ〉 :=

∫ ∫ ∫

ϕ (z) dκ(z|x, y)dµ(x)dµ(y) , (4)

for all ϕ ∈ C0(X ). It is immediate to verify that

E [〈Mk, ϕ〉|Mk] =
(

1 − n−1
)

〈Mk, ϕ〉 + n−1〈F (Mk), ϕ〉 ,

for all ϕ ∈ C0(X ), and k ∈ Z+. One may rewrite this in the form

〈Mk+1, ϕ〉 − 〈Mk, ϕ〉 = n−1〈F (Mk) −Mk, ϕ〉 + n−1〈Λk+1, ϕ〉 , (5)

where the random signed measure Λk+1 satisfies

E [Λk+1|FTk
] = 0 , ||Λk+1|| ≤ n||Mk+1 −Mk|| + ||F (Mk) −Mk|| ≤ 4 . (6)
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Equation (6) implies that {〈Λk, ϕ〉 : k ∈ N} is a sequence of bounded martin-
gale differences, which can be thought as ‘noise’. This suggests to think of the
stochastic process {Mk : k ∈ Z

+} as of a noisy discretization, or Euler approx-
imation in the numerical analysis language, of the probability-measure-valued
ODE

d

dt
µt = F (µt) − µt . (7)

with stepsize 1/n. We shall refer to a solution of (7) as the mean-field dynamics
of the system.

More precisely, we shall define a solution of (7) to be a family {µt : t ∈
[0,+∞)} ⊆ P(X ) such that, for every function ϕ ∈ C0(X ), the real-valued map
t 7→ 〈µt, ϕ〉 is differentiable on R

+, and satisfies

d

dt
〈µt, ϕ〉 = 〈F (µt), ϕ〉 − 〈µt, ϕ〉 , (8)

for every t > 0. The main result of this paper, stated below, guarantees that (7)
admits a unique solution {µt}, and that the stochastic process {µn

t } concentrates
around {µt} exponentially fast in n.

Theorem 1. Let µ ∈ P(X ) be arbitrary. Then:

(a) There exists a unique solution {µt : t ∈ R
+} of (7) with initial condition

µ0 = µ;
(b) If X ⊆ R

d is bounded, and the stochastic kernel κ is globally Lispchitz
continuous as a map from X × X to P1(X ), then, for every τ ∈ (0,+∞),
for sufficiently small ε > 0 and sufficiently large n ∈ N, it holds

P (sup {W1(µ
n
t , µt) : t ∈ [0, τ ]} ≥ ε) ≤ exp(−Kε3n) ,

where K is a positive constant depending on X , κ, and τ only.

Points (a) of Theorem 1 will be proved in Sect. 3.1, while point (b) will be
proved in Sect. 5.

3. Well-posedness of the measure-valued ODE

In this section, we shall first prove point (a) of Theorem 1, i.e. that the initial
value problem associated to the ODE (7) admits a unique solution. Then, under
further technical assumptions, we shall show that, if the initial measure µ0

admits a density, so does the solution µt at any finite time t.

3.1. Weak solutions

To start with, we extend the ODE to the space of signed measures M+(X ).
In order to do this we need to extend the operator F and introduce another
operator G in the following way. For µ ∈M(X ) put

F (µ) := F (µ+) , G(µ) := µ+(X )µ , (9)
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where µ = µ+ − µ− denotes the Hahn-Jordan decomposition of µ ∈ M(X ). It
is not hard to check that both F and G are locally Lipschitz continuous with
respect to the total variation norm, i.e., for every bounded set Θ ⊆ M(X ), there
exist nonnegative constants KF ,KG such that

||F (µ1)−F (µ2)|| ≤ KF ||µ1−µ2|| , ||G(µ1)−G(µ2)|| ≤ KG||µ1−µ2|| , (10)

for all µ1, µ2 ∈ Θ. Moreover,

F (µ)(X ) = G(µ)(X ) = µ(X )2 , ∀µ ∈ M+(X ) . (11)

In the following we want to study the well-posedness of initial value problems
associated to the measure-valued ODE

d

dt
µt = F (µt) −G(µt) , (12)

where (12) means that, for every ϕ ∈ C0(X ), the real-valued map t 7→ 〈µt, ϕ〉 is
differentiable on R

+, and satisfies d
dt 〈µt, ϕ〉 = 〈F (µt), ϕ〉 − 〈G(µt), ϕ〉 , for every

t > 0.

Proposition 1. Suppose that F,G : M(X ) → M+(X ) satisfy properties (10),
and (11). Then, for every µ ∈ M+(X ), there exists a unique solution {µt}t∈R+ ⊆
M+(X ) to (12) such that µ0 = µ. Moreover, µt(X ) = µ(X ) for every t ≥ 0.

Proof For τ ∈ (0,+∞), let C([0, τ ],M(X )) be the space of continuous curves
in M(X ) equipped with the sup norm ||{µt}||τ := sup {||µt|| : t ∈ [0, τ ]}. Given
a curve {µs} ∈ C([0, τ ],M(X )), and a bounded measurable function ϕ ∈ C0(X ),
define

〈Φ({µs})t, ϕ〉 := 〈µ, ϕ〉+
∫ t

0

〈F (µs), ϕ〉ds−
∫ t

0

〈G(µs), ϕ〉ds , ∀t ∈ [0, τ ] . (13)

Observe that (12) with the initial condition µ0 = µ is equivalent to

〈µt, ϕ〉 = 〈Φ ({µs})t , ϕ〉 , ∀ϕ ∈ C0(X ), t ≥ 0 . (14)

Notice that, for every t ∈ [0, τ ], Φ({µs})t can be seen as the difference of two
bounded linear positive functionals on C0(X ), so that Φ({µs})t ∈ M(X ). More-
over, the map t 7→ Φ({µs})t is continuous over [0, τ ], since

||Φ({µs})t+ε − Φ({µs})t|| =

∫ t+ε

t

||G(µs)||ds+

∫ t+ε

t

||F (µs)||ds

≤ ε [||{G(µs)}||τ + ||{F (µs)}||τ ] .

(15)

Therefore, the operator Φ takes values in C([0, τ ],M(X )). Now, let us consider
Θ := {ν ∈ M(X ) : ||ν|| ≤ 2||µ||}, let KF ,KG be the Lipschitz constants relative
to Θ of F , and G, respectively. For every ν ∈ Θ, (11) and (10) imply that

||F (ν)|| ≤ ||F (ν) − F (µ)|| + ||F (µ)|| ≤ 4KF ||µ|| (16)
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Similarly,
||G(ν)|| ≤ 4KG||µ|| (17)

Define now the set S := {{µt} ∈ C([0, τ ],M(X )) : µ0 = µ, µt ∈ Θ, ∀t ∈ [0, τ ]}.
For all {µt} ∈ S, using (16) and (17), and arguing like in (15), we obtain

||Φ({µt})||τ ≤ (1 + 4τK)||µ|| (18)

where K := KF +KG. Moreover, if both {µt} and {νt} belong to S, then,

||Φ({µt}) − Φ({νt})||τ = sup
0≤t≤τ

∫ t

0

(||F (µs) − F (νs)|| + ||G(νs) −G(µs)||) ds

≤ τK||{µt} − {νt}||τ .
(19)

We now assume to have chosen τ ∈]0, 1
4K ]. Then, by (18), Φ(S) ⊆ S and, by

(19), Φ is a contraction of S. Hence, by Banach’s fixed point theorem there exists
a unique fixed point of Φ in S. As observed, such a fixed point corresponds to
a solution {µt} of the ODE (12) for t ∈ [0, τ ], with the initial condition µ0 = µ.
We now show that indeed µt ∈ M+(X ) for t ∈ [0, τ ]. By contradiction, assume
that there exists B ∈ B(X ) such that µt(B) < 0 for some t ∈ [0, τ ], and let
t∗ := sup{s ∈ [0, t] : µs(B) ≥ 0}. By continuity, µt∗(B) = 0 while µs(B) < 0
for all s ∈]t∗, t]. This implies that

F (µs)(B) −G(µs)(B) ≥ −µ+
s (X )µs(B) ≥ 0 , ∀s ∈]t∗, t] .

But then

µt(B) =

∫ t

t∗
(F (µs)(B) −G(µs)(B)) ds ≥ 0

which is a contradiction. Hence, µt ∈ M+(X ) for t ∈ [0, τ ]. Notice moreover
that, because of property (11), µt(X ) = µ(X ) for all t ∈ [0, τ ]. Finally, a simple
induction argument allows one to extend the existence and uniqueness of the
solution to the whole interval [0,+∞).

Notice that, when considering an initial condition µ0 ∈ P(X ), the solution of
(12) satisfies µt ∈ P(X ) for all t, thus proving point (a) of Theorem 1.

3.2. Probability density solutions

We shall now investigate on the existence of density solutions when the initial
condition µ0 is absolutely continuous with respect to Lebesgue’s measure.

Given the interaction kernel κ( · | · , · ) and a non-negative measure µ ∈ M+(X ),
we put

κ1(µ)(B|y) :=

∫

κ(B|x, y)dµ(x) , κ2(µ)(B|x) :=

∫

κ(B|x, y)dµ(y) , (20)

for all B ∈ B(X ), x, y ∈ X . The following result characterizes regularity prop-
erties of the solution of the initial value problem associated to the ODE (12).
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Proposition 2. Assume that µ0 << λ, and that

µ << λ =⇒ κ1(µ)( · |y), κ2(µ)( · |x) << λ, ∀x ∈ X , ∀y ∈ X . (21)

Then, µt << λ, for all t ∈ [0,+∞). Moreover, if there exists C ∈ (0,+∞) such
that, for all µ << λ,

∣

∣

∣

∣

∣

∣

dκ2(µ)( · |x)
dλ

∣

∣

∣

∣

∣

∣

∞
≤ C

∣

∣

∣

∣

∣

∣

dµ

dλ

∣

∣

∣

∣

∣

∣

∞
, ∀x ∈ X , (22)

then, the density ft = dµt/dλ satisfies the estimation:

||ft||∞ ≤ ||f0||∞eCt , ∀t ∈ [0,+∞) . (23)

Proof For every t ∈ [0,+∞), consider Lebesgue’s decomposition µt = µa
t +

µs
t , where µa

t << λ, and µs
t and λ are singular. It follows from (21) that,

κ1(µ
a
t )( · |x) << λ for all x ∈ X . Then, for any B ∈ B(X ) such that λ(B) = 0,

one has
∫ ∫

κ(B|x, y)dµa
t (x)dµt(y) =

∫

dκ2(µ
a
t )(B|x)dµt(x) = 0 .

Similarly, one can show that

∫ ∫

κ(B|x, y)dµs
t (x)dµ

a
t (y) = 0. Hence,

F (µt)(B) =

∫ ∫

κ(B|x, y)dµt(x)dµt(y)

=

∫ ∫

κ(B|x, y)dµa
t (x)dµt(y) +

∫ ∫

κ(B|x, y)dµs
t (x)dµ

a
t (y)

+

∫ ∫

κ(B|x, y)dµs
t (x)dµ

s
t (y)

=

∫ ∫

κ(B|x, y)dµs
t (x)dµ

s
t (y)

= F (µs
t )(B) ,

for all B ∈ B(X ) such that λ(B) = 0. This readily implies that µs
t satisfies

d

dt
µs

t = F (µs
t ) − µs

t .

Since µs
0 = 0 by assumption, it follows that µs

t = 0 for all t ≥ 0.
Assume now that (22) holds true. For any ϕ ∈ Cc(X ), Holder’s inequality,

and (22) imply that

〈F (µt), ϕ〉 =

∫ ∫ ∫

ϕ(z)dκ(z|x, y)dµt(x)dµt(y)

=

∫ ∫

ϕ(z)
dκ2(µt)(z|x)

dλ
dλ(z) dµt(x)

≤
∫

∣

∣

∣

∣

∣

∣

dκ2(µt)(z|x)
dλ

∣

∣

∣

∣

∣

∣

∞
||ϕ||1dµt(x)

≤ C||ft||∞||ϕ||1 .
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It follows that, for all non-negative-valued ϕ ∈ Cc(X ),

∫

ϕ(x)ft(x)dλ(x) =

∫

ϕ(x)f0(x)dλ(x) +

∫ t

0

(〈F (µs), ϕ〉 − 〈µs, ϕ〉) ds

≤ ||f0||∞||ϕ||1 +

∫ t

0

〈F (µs), ϕ〉ds

≤ ||ϕ||1
(

||f0||∞ + C

∫ t

0

||fs||∞ ds

)

.

Then, by the isometry of L∞(X ) with the dual of L1(X ), the fact that ft is
non-negative valued, and the density of Cc(X ) in L1(X ), one gets that

||ft||∞ = sup

{
∫

ϕ(x)ft(x)dx : ϕ ∈ L1(X ), ||ϕ||1 ≤ 1

}

= sup

{
∫

ϕ(x)ft(x)dx : ϕ ∈ Cc(X ), ϕ ≥ 0, ||ϕ||1 ≤ 1

}

≤ ||f0(x)||∞ + C

∫ t

0

||fs||∞ ds .

By Gronwall’s lemma, this readily implies (23).

The technical condition on the stochastic kernel κ is actually verified in many
important cases. Suppose that κ is the form (3) with θi( · |x, y) = δω(|x−y|) for
some non-increasing function ω : R

+ → [0, ω0], ω0 ∈ [0, 1[, which is piecewise
Lipschitz-continuous. In this case, which includes the bounded confidence dy-
namics (1) as well as the Gaussian interaction model (2) as special instances,
for all y ∈ X , there is a finite partition X =

⋃

i Xi such that the function
x 7→ ω(|x − y|)x + ω(|x − y|)y is locally invertible, with absolutely continuous
inverse gi(·, y). Similarly, assume that Then, if µ is absolutely continuous with
density f , one has for all nonnegative-valued ϕ ∈ L1(X ), θe( · |x, y) = δυ(|x−y|)
for some non-increasing function υ : R

+ → [0, υ0], υ0 ∈ [0, 1[, which is piecewise
Lipschitz-continuous, and for y ∈ X ,let X =

⋃

j Yj a finite partition such that
the function x 7→ υ(|x− y|)x+ υ(|x− y|)y is locally invertible, with absolutely
continuous inverse hi(·, y).

〈ν2( · |y), ϕ〉 = α
∑

i

∫ ∫

Xi

ϕ (ω(|x− y|)x+ ω(|x− y|)y) f(x)dλ(x)dµ(y)

+α
∑

j

∫ ∫

Yj

ϕ(υ(|x− y|)x+ υ(|x− y|)w)f(x)dλ(x)dψ(w)

= α
∑

i

∫ ∫

Xi

ϕ (z) f(gi(z, y))|Dzgi(z, y)|dλ(z)dµ(y)

+α
∑

j

∫ ∫

Yj

ϕ (z) f(hj(z, y))|Dzhj(z, y)|dλ(z)dψ(w)

≤ C||f ||∞||ϕ||1 ,

where C := α
∑

i ||Dzgi( · , y)||∞+α
∑

j ||Dzhj( · , y)||∞. Similarly, 〈ν1( · |y), ϕ〉 ≤
C||f ||∞||ϕ||1. As a consequence, νi( · |y) << λ, for all y ∈ X , and i = 1, 2, and
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(22) holds. Then, Proposition 2 applies, e.g., to the interaction kernels described
in (1) and (2).

4. Behavior of the mean-field dynamics

This section is devoted to a deeper analysis of the ODE (12) for the gossip
model with heterogenous influential environment, and the bounded-confidence
opinion dynamics. In particular, we shall investigate the asymptotic behavior of
µt in the limit as t tends to infinity.

4.1. Gossip model with heterogenous influential environment

We start by analyzing the case when the stochastic kernel κ( · | · , · ) has the
form (3), with constant weights: θi( · |x, y) = δω( · ), θe( · |x, y) = δυ( · ), for some
fixed ω, υ ∈ [0, 1]. Throughout this subsection, we shall assume an exponential
bound on the moments of both µ0 and ν, i.e.

sup
k∈N

(
∫

|x|kdµ0(x)

)1/k

< +∞ , sup
k∈N

(
∫

|x|kdψ(x)

)1/k

< +∞ . (24)

Clearly, (24) is authomatically satisfied when X is bounded. Let us fix some
z ∈ R

d, and consider the z-weighted moments of µt and ψ, respectively:

m
(k)
t :=

∫

(x · z)kdµt(x) , n
(k)
t :=

∫

(x · y)kdψ(y) , k ∈ Z
+ .

Straightforward computation shows that the first z-weighted moment satisfies
the autonomous differential equation

d

dt
m

(1)
t = αυ

(

n(1) −m
(1)
t

)

, (25)

whereas the higher moments satisfy the differential equations

d

dt
m

(k)
t = −γkm

(k)
t + fk

(

m
(1)
t , . . . ,m

(k−1)
t

)

+ αυkn(k) , (26)

where
γk := 1 − α

(

ωk + ωk
)

− αυk ,

fk

(

m
(1)
t , . . . ,m

(k−1)
t

)

:=

k−1
∑

j=1

(

k

j

)

(

αωjωk−jm
(j)
t m

(k−j)
t + αυjυk−jm

(j)
t n(k−j)

)

.

Example 1. In the special case when α = 1, namely when there is no influen-
tial environment, we obtain from (25) that d

dt

∫

xdµt(x) = 0, so that the first
moment is constant. On the other hand, the variance

vt :=

∫

∣

∣x−
∫

ydµ0(y)
∣

∣

2
dµt(x)
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0 t=2 t=5 t=10 t=+

0

10

∞ dψ /dx

Fig 1. Behaviour in time of the ODE solution in d = 1, with initial condition µ0 uniform over
(0, 10), heterogenous environment dψ(x) = exp(−(1−(x−3)2)−1)1(2,4)(x)dx, and parameters
α = 0.5, ω = 0.5, and υ = 0.5. The Radon-Nikodym derivates of the asymptotic measure µ∞,
and of the influential environment ψ (dashed) are plotted as a reference.

satisfies d
dtvt = −2ωωvt. Hence

vt = v0e
−ωωt ,

i.e. µt converges to a delta centered in the average initial opinion exponentially
fast in t.

We now focus on the limit as t → +∞ for the general case. An inductive
argument proves the following result.

Lemma 1. Assume α < 1. Then, for every z ∈ R
d, the z-weighted moments of

µt satisfy

lim
t→∞

m
(k)
t = m(k)

∞ , k ∈ Z
+ , (27)

where m
(k)
∞ can be recursively evaluated by

m(1)
∞ := n(1) , m(k+1)

∞ = γ−1
k+1

[

fk+1

(

m(1)
∞ , . . . ,m(k)

∞

)

+ αυkn(k+1)
]

. (28)

Proof For k = 1, the solution of the ODE (25) is easily found to be

m
(1)
t = e−αυtm

(1)
0 +

(

1 − e−αυt
)

n(1) , (29)

so that (27) clearly holds. Moreover, assume that (27) holds for all k ∈ {1, . . . , j−
1}, and define χ

(j)
t := fj

(

m
(1)
t , . . . ,m

(j−1)
t

)

for t ∈ [0,+∞]. Then, the continu-

ity of fj implies that lim
t→∞

χ
(j)
t = χ

(j)
∞ . Solving the ODE (26) gives

m
(j)
t =

∫ t

0

e−γj(t−s)
(

χ
(j)
t + αυjn(j)

)

ds+ e−γjtm
(j)
0 . (30)
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Clearly, the second addend of the right-hand side of (30) converges to zero for

t→ ∞. On the other hand, the convergence of χ
(j)
t implies that

lim
t→∞

∫ t

0

e−γj(t−s)
(

χ
(j)
t + αυjn(j)

)

ds =
(

χ(j)
∞ + αυjn(j)

)

lim
t→∞

∫ t

0

e−γj(t−s)ds

= γ−1
j

(

χ(j)
∞ + αυjn(j)

)

.

The forgoing, together with (30), implies the claim.

We are now in a position to prove the following result for the convergence of
µt.

Proposition 3. Assume that (24) holds. Then,

lim
t→∞

µt = µ∞ ,

weakly, where µ∞ ∈ P(X ) is uniquely characterized by its moments m
(k)
∞ .

Proof It follows from (24) that there exists some finite M ∈ R
+ such that

|m(k)
0 | ≤ |z|kMk , |n(k)| ≤ |z|kMk , (31)

for all z ∈ R
d, and k ∈ N. Now, an inductive argument shows that

|m(k)
t | ≤ |z|kMk , ∀t ∈ [0,+∞] , z ∈ R

d , (32)

for all k ∈ N. In fact, (29) and (31) immediately imply that (32) holds for k = 1.
Moreover, if (32) holds for all k ∈ {1, . . . , j − 1}, then (30), and (32) give

|m(j)
t | ≤

∫ t

0

e−γj(t−s)
(
∣

∣

∣
fj

(

m
(1)
t , . . . ,m

(j−1)
t

)
∣

∣

∣
+ αυj |n(j)|

)

ds+ e−γjt|m(j)
0 |

≤
∫ t

0

e−γj(t−s)M j|z|jγjds+ e−γjtM j|z|j

= M j|z|j .

Let us consider the characteristic functions φt(z) :=
∫

exp(iz ·x)dµt(x), and,

for k ∈ Z
+, define at(k) := ikm

(k)
t /k!, b(k) := Mk|z|k/k!, and observe that

∑

k∈Z+ b(k) = exp(M |z|). One has that

φt(z) =

∫

∑

k∈Z+

(iz · x)k

k!
dµt(x) =

∑

k∈Z+

ik

k!

∫

(x · z)kdµt(x) =
∑

k∈Z+

at(k) ,

where the exchange between the series and the integral is justified by Lebesgue’s
dominated convergence theorem, since

∣

∣

∑

0≤k≤n

ik

k!
(x · z)k

∣

∣ ≤
∑

0≤k≤n

b(k) ≤ exp(Mz) .
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Moreover, observe that, since |at(k)| ≤ b(k), another application of Lebesgue’s
dominated convergence theorem gives

lim
t→∞

φt(z) = lim
t→∞

∑

k∈Z+

at(k) =
∑

k∈Z+

a∞(k) =: φ∞(z) .

Hence, φt(z) converges pointwise to φ∞(z), which in turn can be easily verified
to be continuous at 0. Then, the claim follows from Lévy’s continuity theorem
[7, Th. 2.5.1].

Observe that, for all α ∈ (0, 1), the limit measure µ∞ is independent of the
initial condition µ0, and depends only on the influential environment ψ, and on

the parameters α, ω, and υ. Notice that the first moment satisfiesm
(1)
∞ = n(1). In

contrast, if ψ 6= δx0 , it easily seen thatm
(k)
∞ 6= n(k) for k ≥ 2, so that in particular

µ∞ 6= ψ. On the other hand, it follows from (28) that, if ψ 6= δx0 , then the
variance of µ∞ is positive, so that µ∞ 6= δx0 . This result may be interpreted as
showing that the presence of an heterogeneous influential environment prevents
the population from achieving an asymptotic opinion agreement. In fact, as
shown in the following Proposition, the asymptotic opinion distribution µ∞ is
absolutely continuous whenever so is the influential environment ψ.

Proposition 4. Assume ψ << λ. Then, µ∞ << λ for all α ∈ [0, 1).

Proof For µ, ν ∈ P(X ), γ ∈ [0, 1], define γ := 1 − γ, and

Lγ(µ, ν) ∈ P(X ), 〈Lγ(µ, ν), ϕ〉 =

∫ ∫

ϕ(γx+γy)dµ(x)dν(y) , ∀ϕ ∈ Cb(X ) .

Since Lγ is a rescaled convolution operator, and since ψ << λ, one has that
Lυ(µ, ψ) << λ. Similarly, Lω(µ∞, µ∞) = αL(µs

∞, µ
s
∞), where µs

∞ is the sin-
gular part of µ∞. Combining this with the fact that the asymptotic measure
satisfies µ∞ = F (µ∞) = αLω(µ, µ) + αLυ(µ, ψ), one gets that µs

∞(X ) =

α (Lω(µs
∞, µ

s
∞)) (X ) = α (µs(X ))

2
. Therefore, µs

∞(X ) (1 − αµs
∞(X )) = 0. But,

since µs
∞(X ) ≤ 1 and α < 1, this necessarily implies that µs

∞(X ) = 0.

Fig. 4.1 reports numerical simulations of the mean-field dynamics, when
started from a uniform distribution over an interval, and influenced by an ab-
solutely continuous environment. Coherently with Proposition 2, the solution
remains absolutely continuous during its evolution, and converges to a limit
measure which is absolutely continuous, as predicted by Propositions 3, and 4,
respectively. Such a limit density may be interpreted as resulting from a tension
between the aggregating forces represented by the first addend in the right-hand
side of (3), and the environment’s influence captured by the second addend in
the right-hand side of (3).

4.2. Bounded confidence opinion dynamics

We analyze now the case when κ( · | · , · ) is in the form (3) with α = 1, and weight
distribution θ( · |x, y) := θi( · |x, y) supported on [0, ω0] for some ω0 ∈ [0, 1[, and
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t=0 t=1 t=2 t=3 t=4 t=

0

10

x

f
t
(x)+∞

Fig 2. Behaviour in time of the ODE solution in d = 1, with initial condition µ0 uniform
over (0, 10), and θ(·|x, y) = δ1/21[0,1](|x− y|) + δ01(1,+∞)(|x− y|).

satisfying the symmetry assumption

θ( · |x, y) = θ( · |y, x) , (33)

for all x, y ∈ X . The following result states weak convergence of µt.

Proposition 5. Assume that
∫

|x|2dµ0(x) <∞. Then, there exists µ∞ ∈ P(X )
such that

lim
t→∞

µt = µ∞ ,

weakly.

Proof We start by proving that the second moment m
(2)
t :=

∫

|x|2dµt(x) is a
Lyapunov function for the system. Observe that, for all x, y ∈ R

d, ω ∈ [0, 1],
ω̄ = 1 − ω, one has

|x+ ω(y − x)|2 + |y + ω(x− y)|2 =
(

ω2 + ω2
) (

|x|2 + |y2|
)

+ 4ωωx · y ,

so that

2ωω|x− y|2 = 2ωω
(

|x|2 + |y|2 − 2x · y
)

=
(

1 − ω2 − ω2
) (

|x|2 + |y|2
)

− 4ωωx · y
= |x|2 + |y2| − |x+ ω(y − x)|2 − |y + ω(x− y)|2 .
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From the foregoing, and the symmetry of θ( · |x, y), it follows that

d

dt
m

(2)
t =

d

dt

∫

|x|2dF (µt)(x) −m
(2)
t

=

∫∫∫

(

|x+ ω(y − x)|2 − |x|2
)

dθ(ω|x, y)dµt(x)dµt(y)

=
1

2

∫∫∫

(

|x+ ω(y − x)|2 + |y + ω(x− y)|2 − |x|2 − |y|2
)

dθ(ω|x, y)dµt(x)dµt(y)

= −
∫∫∫

ω (1 − ω) |x− y|2dθ(ω|x, y)dµt(x)dµt(y)

≤ −(1 − ω0)

∫∫∫

ω|x− y|2dθ(ω|x, y)dµt(x)dµt(y) .

(34)

Hence, in particular, d
dtm

(2)
t ≤ 0, so that m

(2)
t is nonincreasing, and therefore

convergent. Define m
(2)
∞ := lim

t→∞
m

(2)
t and observe that (34) implies that

lim
t→∞

∫ t

0

∫∫∫

ω|x− y|2dθ(ω|x, y)dµs(x)dµs(y)ds ≤ lim
t→∞

− 1

1 − ω0

∫ t

0

d

ds
m(2)

s ds

= lim
t→∞

m
(2)
0 −m

(2)
t

1 − ω0

=
m

(2)
0 −m

(2)
∞

1 − ω0
.

(35)
Now, for any smooth and compact-supported test function ϕ ∈ C∞

c (Rd), we can
write

ϕ(x + ω(y − x)) − ϕ(x) = ω(y − x) · ∇ϕ(x) + r(x, y) (36)

with |r(x, y)| ≤ ω2|y − x|2Φ where Φ := ||D2ϕ||. Moreover, again from the
symmetry of θ( · |x, y), one has

∣

∣

∣

∣

∫ ∫ ∫

ω(y − x) · ∇ϕ(x)dθ(ω|x, y)dµt(x)dµt(y)

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∫ ∫ ∫

ω(y − x) · (∇ϕ(x) −∇ϕ(y)) dθ(ω|x, y)dµt(x)dµt(y)

∣

∣

∣

∣

≤ 1

2

∫ ∫ ∫

ω|y − x| |∇ϕ(x) −∇ϕ(y)| dθ(ω|x, y)dµt(x)dµt(y)

≤ Φ

2

∫ ∫ ∫

ω|x− y|2dθ(ω|x, y)dµt(x)dµt(y) .

(37)
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From (36) and (37) it follows that

|〈F (µt) − µt, ϕ〉| =

∣

∣

∣

∣

∫ ∫ ∫

(ϕ (x+ ω(y − x)) − ϕ(x)) dθ(ω|x, y)dµt(x)dµt(y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∫ ∫

ω(y − x) · ∇ϕ(x)dθ(ω|x, y)dµt(x)dµt(y)

∣

∣

∣

∣

+Φ

∫ ∫ ∫

ω2|x− y|2dθ(ω|x, y)dµt(x)dµt(y)

≤ 3Φ

2

∫ ∫ ∫

ω|x− y|2dθ(ω|x, y)dµt(x)dµt(y) ,

so that

lim
t→∞

∫ t

0

|〈F (µs) − µs, ϕ〉| ds ≤ 3Φ

2
lim

t→∞

∫ t

0

∫ ∫ ∫

ω|x− y|2dθ(ω|x, y)dµs(x)dµs(y)ds

≤ 3Φ

2(1 − ω0)
(m

(2)
0 −m(2)

∞ ) .

Therefore, in particular, the limit

lim
t→∞

〈µt, ϕ〉 = lim
t→∞

∫ t

0

〈F (µs) − µs, ϕ〉ds

exists and it is finite. From the arbitrariness of ϕ ∈ C∞
c (X ), it follows that

µt converges in the sense of distributions. Finally, µt converges in P(X ), by
tightness.

If we make the further assumption that the weight ω ∼ θ( · |x, y) is strictly
positive in a neighborhood of the diagonal {(x, x) : x ∈ X}, we have the follow-
ing characterization of the equilibrium points.

Proposition 6. Let R > 0 be such that,

δ(R) := inf{ω : supp(θ( · |x, y)) ⊆ [ω, 1] ∀x, y ∈ X , |x− y| < R} > 0

Then µ∞ is a convex combination of Dirac’s deltas centered in points separated
by a distance not smaller then R.

Proof Assume by contradiction that x∗, y∗ ∈ supp(µ∞) and |x∗− y∗| < R. We
can find suitable neighborhoods A and B of x∗ and y∗, respectively, such that
|x − y| < R for all x ∈ A and y ∈ B. Hence, supp(θ( · |x, y)) ⊆ [δ(R), 1] for all
x ∈ A, and y ∈ B. Then,
∫ ∫ ∫

|x− y|2ωdθ(ω|x, y)dµ∞(x)dµ∞(y) ≥ δ

∫

A

∫

B

|x− y|2dµ∞(x)dµ∞(y) > 0 .

This clearly contradicts (35).

It is worth stating the following simple, though important, consequence of
Proposition 6, which, in particular, applies to the Gaussian interaction model
(2).
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Corollary 1. Suppose that ∪ω0>0 {(x, y) : supp(θ(·|x, y) ⊆ [ω0, 1])} = X × X .
Then, µ∞ = δx0 where x0 =

∫

xdµ0(x).

Fig. 4.2 reports numerical simulations of the mean-field ODE associated to
the bounded-confidence model of Deffuant-Weisbuch, in dimension d = 1, start-
ing from an initial condition uniform over the interval (0, 10). Observe that, as
predicted by Proposition 2, the solution remains absolutely continuous, with
bounded density, at any finite time t. It is possible to appreciate the effect of
local aggregation forces, which first lead to the formation of two peaks around
the opinion points x = 1, 9, then of other two smaller peaks around the points
x = 3, 7, and finally of a smaller peak in x = 5. As t grows large, the opinion
density converges to a convex combination of Dirac’s deltas, as predicted by
Proposition 5. Notice that such deltas seem to be centered in opinion points
separated by a distance of about 2, whereas an inter-cluster distance of at least
1 is predicted by Proposition 6. These results may be interpreted as explaining
how locally aggregating interactions modeling homophily can generate global
fragmentation.

5. Concentration around the solution of the ODE

In this section, we finally show that, as the population size n grows, the stochas-
tic process {µn

t } concentrates around the solution {µt} of the ODE (7), at an
exponential probability rate. Throughout this section, we shall assume that
X ⊆ R

d is bounded, with ∆ denoting its diameter, and that the stochastic
kernel κ( · | · , · ) is globally Lipschitz in the Kantorovich-Wasserstein metric,
i.e. that

W1 (κ( · |x, y), κ( · |x′, y′)) ≤ LF

2
|(x, y) − (x′, y′)| , ∀x, x′, y, y′ ∈ X (38)

holds for some finite positive constant LF . Our first step consists in showing
that the operator F inherits the Lipschitz property from the stochastic kernel
κ( · | · , · ). The proof of the next result relies on the duality formula [2, (7.1.2)]

W1(µ, ν) = sup {〈µ, ϕ〉 − 〈ν, ϕ〉 : ϕ ∈ Lip1(X )} , (39)

where Lip1(X ) denotes the set of 1-Lipschitz functions on X .

Lemma 2. If (38) holds, then

W1 (µ, ν) ≤ LFW1(F (µ), F (ν)) , ∀µ, ν ∈ P1(X ) .

Proof First, observe that, for arbitrary ϕ ∈ Lip1(X ), and x, y, x′, y′ ∈ X ,
∫

ϕ(z)dκ(z|x, y) −
∫

ϕ(z)dκ(z|x′, y′) ≤ W1 (κ( · |x, y), κ( · |x′, y′))

≤ LF

2
|(x, y) − (x′, y′)|

≤ LF

2
(|x− x′| + |y − y′|) ,
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by (39), and (38). For µ, ν ∈ P(X ), let ξ ∈ P1(X ×X ) be their optimal coupling,
i.e. the one such that

∫ ∫

|x− y|dξ(x, y) = W1(µ, ν). Then,

〈F (µ), ϕ〉 − 〈F (ν), ϕ〉 =

∫∫∫∫∫

ϕ(z) [dκ(z|x, y)dµ(x)dµ(y) − dκ(z|x′, y′)dν(x′)dν(y′)]

=

∫∫∫∫∫

ϕ(z) [dκ(z|x, y) − dκ(z|x′, y′)] dξ(x, y)dξ(x′, y′)

≤ LF

2

∫∫∫∫

(|x− x′| + |y − y′|) dξ(x, y)dξ(x′, y′)

= LFW1(µ, ν) .

Therefore, the claim follows by applying the duality formula (39) once more.

Observe that there are three sources of randomness in the system: the empir-
ical measure of the initial opinions µn

0 , the update times {Tk}, and the agents’
interaction. The first two can be easily dealt with by appealing to the following
classical large deviations results.

Lemma 3. For all µ0 ∈ P(X ), ε > 0, it holds

lim
n
n−1 log P (W1(µ

n
0 , µ0) ≥ ε) ≤ −ε2/2 .

Proof Sanov’s theorem [23, Th. 2.14], and the Csiszar-Kullback-Pinsker in-
equality [24, pag. 580] imply that

lim
n
n−1 log P (W1 (M0, µ0) ≥ ε) = inf {H(ν||µ0) : ν ∈ P(X ), W1(ν, µ0) ≥ ε}

≥ inf
{

1
2 ||ν − µ0||2 : ν ∈ P(X ), W1(ν, µ0) ≥ ε

}

≥ ε2/(2∆2) ,

where H (ν||µ) denoted the relative entropy, and the last inequality follows from
the estimate W1(ν, µ) ≤ ∆||ν − µ|| [24, Th. 6.15].

Lemma 4. For t ∈ R
+, let ς(t) := sup{k ∈ Z

+ : Tk ≤ t}. For all τ ∈ R
+,

a ≥ 1 it holds

lim sup
n

n−1 log P
(

sup{t− Tς(t) : 0 ≤ t ≤ τ} ≥ ε
)

≤ −ε2/τ ,

lim sup
n

n−1 log P(ς(τ) ≥ ατn) ≤ −(a− 1)2τ .

Proof The first statement follows, e.g., from [23, Th. 5.1]. The second one, e.g.,
from [23, Ex. 1.13].

We are now left with the third source of randomness, originated by the se-
lection of the interacting agents. Observe that, in the right-hand side of the
duality formula (39), one may restrict the supremization to the test functions ϕ
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belonging to Lip∆
1 := {ϕ ∈ Lip1(Y) : |ϕ(x)| ≤ ∆/2}, where Y is an hypercube

of edge-length ∆ containing X , and µ, ν are naturally identified as elements of
P(Y). The following result shows that the set Lip∆

1 can be approximated in the
infinity norm by not-too-large a set of functions.

Lemma 5. Let X ⊆ R
d be compact and convex. Then, for all ε ∈]0,∆/2], there

exists a finite set Hε ⊆ Lip∆
1 such that |Hε| ≤ 2

√
d+1
6

∆
ε 3(∆

ε
(
√

d+1))d

, and

min {||h− ϕ|| : h ∈ Hε} ≤ ε , ∀ϕ ∈ Lip∆
1 .

Proof With no loss of generality we shall restrict to the case X ⊆ Y = [0,∆]d.
We introduce a discretization operator Φ : Lip∆

1 → Lip∆
1 as follows. Let η :=

ε/(
√
d+1/2) and define J := {0, 1, . . . , ⌊∆/η⌋}. For any ϕ ∈ Lip∆

1 , and j ∈ J d,
let k(j) = i ∈ J iff ϕ(jη) ∈ [−1/2 + ηi,−1/2 + η(i+ 1)[. Observe that, since ϕ
is 1-Lipschitz, one has

∑

1≤l≤d

|jl − j′l | ≤ 1 =⇒ |k(j) − k(j′)| ≤ 1 . (40)

Then, define Φ(ϕ) = h, by putting, for all x ∈
∏

1≤l≤d [jlη, (jl + 1)η],

h(x) =
∏

1≤l≤d

(

(k(j + δl) − k(j)) (xl − jlη) + ηk(j) − 1
2 + η

2

)

.

Thanks to (40), one has that Φ(ϕ) ∈ Lip∆
1 for all ϕ ∈ Lip∆

1 . Moreover, for all
j ∈ J d, one has |Φ(ϕ)(jη)−ϕ(jη)| ≤ η

2 . Observe that, for all x ∈ [0,∆]d, there

exists j(x) ∈ J d such that |x− ηj| ≤
√
dη/2. Therefore,

|Φ(ϕ)(x) − ϕ(x)| ≤ |Φ(ϕ)(jη) − ϕ(jη)| + |Φ(ϕ)(jη) − Φ(ϕ)(x)| + |ϕ(jη) − ϕ(x)|
≤ η/2 + 2|jη − x|
≤ η(

√
d+ 1/2) ,

so that the second part of the claim follows by substituting the value of η.
It remains to estimate the cardinality of Hε := Φ(Lip∆

1 ). To see that, first
observe that k(0) can take at most ∆/η values. On the other hand, it follows
from (40) that, given k(j), k(j + δl) can assume at most three different values,
for all 1 ≤ l ≤ d. This implies that

|Hε| ≤
∆

η
3(∆/η+1)d−1 =

∆

ε

2
√
d+ 1

6
3((

√
d+1/2)∆/ε+1)d

≤ ∆

ε

2
√
d+ 1

6
3((

√
d+1)∆/ε)d

,

the last inequality following since 1 ≤ ∆/(2ε).

We can now estimate the error incurred when when using an Euler approx-
imation of some future value of the empirical density process, centered on its
current value.
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Lemma 6. For k ∈ Z
+, n ∈ N, and σ ∈ [0, 1],

P
(

W1

(

σMk + σF (Mk),Mk+⌊σn⌋
)

≥ K∆σ2
)

≤ ρ ,

where σ = 1 − σ, K = KF + 1, with KF being the Lipschitz constant of F on
P(X ) in the variational distance, and

ρ :=
4
√
d+ 2

Kσ2
exp

(

(

12

Kσ2
(
√
d+ 1)

)d

log 3 − K2σ3

27
n

)

. (41)

Proof First, observe that the following control of the increments holds:

||Mk+1 −Mk|| ≤ 2/n . (42)

Define w := ⌊σn⌋, and ε := K∆σ2. Also, for ϕ ∈ Lip∆
1 , define

Z
(ϕ)
j := 〈Mk+j −Mk, ϕ〉 −

1

n

∑

0≤i<j

〈F (Mk+i) −Mk+i, ϕ〉 ,

for j = 0, . . . , w, and

V (ϕ) := 〈Mk+w − (1 − w

n
)Mk − w

n
F (Mk), ϕ〉 − Z(ϕ)

w .

It follows from (42) that ||Mk+j −Mk|| ≤ 2j/n. Hence,
∣

∣

∣
V (ϕ)

∣

∣

∣
= n−1

∣

∣

∑

0≤j<w

〈F (Mk+j) − F (Mk), ϕ〉 −
∑

0≤j<w

〈Mk+j −Mk, ϕ〉
∣

∣

≤ n−1
∑

0≤j<w

(||F (Mk+j) − F (Mk)|| + ||Mk+j −Mk||) ||ϕ||

≤ n−1
∑

0≤j<w

K
2j

n
||ϕ||

≤ ε/2 ,
(43)

the last inequality following from the fact that ||ϕ|| ≤ ∆/2. Observe that, for

all ϕ ∈ Lip1(X ), Z
(ϕ)
0 = 0, while {Z(ϕ)

j : 0 ≤ j ≤ w} is a martingale. Moreover,
(42) provides the following control on the increments:

|Z(ϕ)
j+1 − Z

(ϕ)
j | ≤ |〈Mk+j+1 −Mk+j , ϕ〉| + n−1 |〈F (Mk+j) −Mk+j , ϕ〉|

≤ ||Mk+j+1 −Mk+j ||||ϕ|| + n−1||F (Mk+j) −Mk+j ||||ϕ||
≤ 4n−1||ϕ|| .

(44)
Let H := Hε/12 ⊆ Lip1(X ) be as in Lemma 5. By first applying the union

bound, and then the Hoeffding-Azuma inequality [1, Th. 7.2.1], the probability

of the event E :=
⋃

h∈H

{

|Z(h)
w | ≥ ε/4

}

can be estimated as follows:

P (E) ≤ |H|P
(

|Z(h)
w | ≥ ε/4

)

≤ 2|H| exp

(

− ε2n2

27w∆2

)

. (45)
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Now, Lemma 5 and (44) imply that,

Z(ϕ−h)
w ≤ 3

w

n
||ϕ− h|| ≤ 3σ

ε

12
≤ ε

4
,

for some h ∈ Hε/12. Hence, if E does not occur, then

|Z(ϕ)
w | ≤ min

{

|Z(h)
w | + |Z(ϕ−h)

w | : h ∈ H
}

≤ ε

2
, (46)

for every ϕ ∈ Lip∆
1 . By combining (43), (45), and (46), one gets

P (W1 (Mk+w, σMk + σF (Mk)) ≥ ε) = P

(

sup{Z(ϕ)
w + V (ϕ)} ≥ ε

)

≤ P

(

sup{Z(ϕ)
w } ≥ 3

4ε
)

≤ 2|H| exp
(

− ε2n2

27w∆2

)

,

and the claim follows upon substituting the expressions for w and ε, and apply-
ing Lemma 5.

We are now ready to prove point (b) of Theorem 1. Let L := LF − 1, and
K = KF + 1, where LF and KF are the global Lipschitz constants of F on
P(X ) in the Kantorovich-Wasserstein distance, and in the variational distance,
respectively. Let us fix some ε > 0, τ > 0, and introduce the quantities

σ :=
Lε

2∆L+ 3K∆e2Lτ
, w = ⌊σ/n⌋ .

With no loss of generality let us assume that σ ∈]0, 1], and put σ = 1 − σ.
Further, let ρ be as in (41), and define

α0 = e−2Lτε/2, αi+1 = (1 + σL)αi +
3

2
K∆σ2 , i ∈ Z

+ . (47)

Solving the iterative equation above, one obtains the estimate

αi = (1 + σL)
i

(

α0 +
3K∆σ

2L

)

− 3K∆σ

2L
≤ eσLi

(

α0 +
3K∆σ

2L

)

. (48)

For i ∈ Z
+, consider the random variable Γn

i := W1 (Miw, µσi), and the events
Ai := {Γn

j ≥ αi}, Bi :=
⋃

0≤j≤i Aj . We shall prove by induction that

P (Bi) ≤ (i+ 1)ρ , (49)

for all i ∈ Z+. First, it follows from Lemma 3 that (49) holds with i = 0, for
sufficiently small ε, and sufficiently large n. Then, for any nonnegative integer
i, consider the intermediate measures

λ := σMwi + σF (Mwi) , ν := σµσi + σF (µσi) .
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From the duality formula (39), and Lemma 2, one has

W1 (λ, ν) ≤ (σ + σLF )Γn
i = (1 + σL)Γn

i . (50)

Furthermore, since {µt} is a solution of the ODE (12), it follows from (15), and
the estimate W1(µ, ν) ≤ ∆/2||µ− ν||,

||µt − µσi|| ≤ 2 (t− s) , W1(µt, µs) ≤ ∆(t− s) , (51)

for all t ≥ s. From the duality formula (39), the fact that {µt} solves the ODE
(12), and (51), one gets the estimate

W1

(

ν, µσ(i+1)

)

= sup
{

〈µσ(i+1), ϕ〉 − 〈ν, ϕ〉 : ϕ ∈ Lip∆
1

}

≤
∫ σ(i+1)

σi

sup
{

〈F (µt) − µt − F (µσi) + µσi, ϕ〉 : ϕ ∈ Lip∆
1

}

dt

≤ ∆

2
K

∫ σ(i+1)

σi

||µt − µσi||dt

≤ ∆K

∫ σ(i+1)

σi

(t− σi) dt

= ∆Kσ2/2 .
(52)

From the triangle inequality, (50), and (52), one finds that

Γn
i+1 ≤ W1(Mw(i+1), λ) +W1(λ, ν) +W1

(

ν, µσ(i+1)

)

≤ W1(Mw(i+1), λ) +K∆σ2/2 + (1 + σL) Γn
i .

(53)

Therefore, (53), the inductive hypothesis (49), (47), and Lemma 6, imply that

P(Bi+1) = P (Bc
i ∩Ai+1) + P(Bi)

≤ P
(

Bc
i ∩
{

W1(Mw(i+1), λ) > αi+1 −K∆σ2/2 − (1 + σL)αi

})

+ (i+ 1)ρ

≤ P(W1(Mw(i+1), λ) > K∆σ2) + (i+ 1)ρ

≤ (i+ 2)ρ .

Hence, (49) holds for all i ∈ Z
+.

Observe that, if iw − w/2 ≤ k ≤ iw + w/2, then

W1(Mk, µk/n) ≤W1(Mwi, µσi) +W1(Mwi,Mk) +W1(µk/n, µσi) ≤ Γn
i + ∆σ .

(54)
Now, recall the definition of ς(t) given in Lemma 4, and consider the events
C := {ς(τ) ≤ 3

2nτ}, and D :=
{

sup{|t− Tς(t) : t ∈ [0, τ ]} ≤ ε/(4∆)
}

. Observe
that C implies that, for all t ≤ τ ,

ι(t) :=

⌊

ς(t)

⌊σn⌋ +
1

2

⌋

≤ 3τn/2

σn− 1
+

1

2
≤ 2τ

σ
. (55)
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It follows from (54), (51), (48), and (55), that, if the event Bc
⌊2τσ⌋∩D∩C occurs,

then, for all t ∈ [0, τ ], the following estimate holds

W1 (µn
t , µt) = W1

(

Mς(t), µt

)

≤ W1

(

Mς(t), µTς(t)

)

+W1

(

µTς(t)
, µt

)

≤ Γn
ι(t) + ∆σ + ∆|t− Tς(t)|

≤ αι(t) + ∆σ + ε/4

≤ eσLι(t) + ∆σ + ε/4

≤ e2Lτ
(

α0 + 3K∆σ
2L

)

+ ∆σ + ε/4

= ε ,

where the last equality follows by substituting the expressions for σ and α0.
For sufficiently small ε, and large n, Lemma 4 implies that P(C ∩D) ≥ 1 − ρ.
Therefore, using (49), one gets that

P (sup{W1 (µn
t , µt) : t ∈ [0, τ ]} > ε) ≤ P(Bι(τ)) + P(Cc ∪Dc) ≤ (2τ/σ + 2)ρ ,

from which point (b) of Theorem 1 follows.
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