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Abstract

Robustness of distributed routing policies is studied fpnaimical flow networks, with respect to adversarial
disturbances that reduce the link flow capacities. A dynahflow network is modeled as a system of ordinary
differential equations derived from mass conservatiorslawa directed acyclic graph with a single origin-destorati
pair and a constant inflow at the origin. Distributed routpaicies regulate the way the incoming flow at a non-
destination node gets split among its outgoing links as atfan of the local information about the current particle
density, while the outflow of a link is modeled to depend ond¢heent particle density through a flow function. A
dynamical flow network is called fully transferring if the tflow at the destination node is asymptotically equal to the
inflow at the origin node, and partially transferring if thetfiow at the destination node is asymptotically bounded
away from zero. A class of distributed routing policies thag locally responsive is shown to yield the maximum
possible resilience under local information constrairthwespect to the two transferring properties, where ersiie
is measured as the minimum, among all the disturbances thké¢ thhe network loose its transferring property, of
the sum of the link-wise magnitude of disturbances. In paldir, the maximum resilience of a dynamical flow
network starting from an equilibrium condition, in orderremain fully transferring, is shown to equal its minimum
node residual capacity. The latter is defined as the minimamong all the non-destination nodes, of the sum of
the difference between the maximum flow capacity and théalreéquilibrium flow on all the links outgoing from
the node. On the other hand, the maximum resilience of a diadrfiow network starting from an equilibrium
condition, in order to remain partially transferring, isosn to be equal to the network’s min-cut capacity and hence
is independent of the initial equilibrium flow. Finally, argdle convex optimization problem is formulated for the
most resilient initial equilibrium flow, and the use of toltsinduce such an initial equilibrium flow in transportation
networks is discussed.

. INTRODUCTION

Flow networks provide a fruitful modeling framework for maapplications of interest such as transportation,
data, or production networks. They entail a fluid-like dggwn of the macroscopic motion gfarticles which
are routed from their origins to their destinations via intediate nodes: we refer to standard textbooks, such
as [2], for a thorough treatment. Robustness of routingcpadi for flow networks is a central problem which is
gaining increased attention with a growing awareness tegsaird critical infrastructure networks against natural
and man-induced disruptions. Information constraintdtlitme efficiency and resilience of such routing policies,
and the possibility of cascaded failures through the nétvaolds serious challenges to this problem. The difficulty
is further magnified by the presence of dynamical effects [3]

This paper studiedynamical flow networksnodeled as systems of ordinary differential equations/eérfrom
mass conservation laws on directed acyclic graphs with glesiarigin-destination pair and a constant inflow at
the origin. The rate of change of the particle density on dadhof the network equals the difference between
the inflow and theoutflow of that link, while the way the incoming flow at an intermediatode gets split among
its outgoing links depends on the current particle densityttee outgoing links through the routing policy. We
focus ondistributed routing policiesvhereby the proportion of incoming flow routed to the outgplimks of a
node is allowed to depend only dacal information consisting of the current particle densities on the outgoi
links of the same node. We model the outflow of a link to be ddpahon the current particle density on that
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link through aflow function The inspiration for such a modeling paradigm comes from igogb findings from
several application domains, such fasdamental diagram# transportation networks [4], congestion-dependent
throughputand average delayén data networks [5], andlearing functiondgn production networks [6].

Our objective is the design and analysis of distributed ingupolicies for dynamical flow networks that are
maximally robustvith respect taadversarial disturbancethat reduce the link flow capacities. We define two notions
of transfer efficiency in order to capture the extremes ofréstlience of the network towards disturbances: we call
the the dynamical flow networfiilly transferringif the outflow at the destination node asymptotically apphaes the
inflow at the origin node, angartially transferringif the outflow at the destination node is asymptotically baech
away from zero. We consider a setup where, before the datigdy the network is operating at aquilibrium
flow and hence is fully transferring: such an equilibrium flow htiglternatively be thought of as the outcome
of a slower time-scale learning process (e.g., see [7], H8tase of transportation networks, or [9] in case of
communication networks), or the outcome of the routinggiesi. We analyze the robustness of distributed routing
policies, evaluating it in terms of the networkrong and weak resiliencewhich are defined as the minimum
sum of link-wise magnitude of disturbances making the pbad dynamical flow network not fully transferring,
and, respectively, not partially transferring. We provattthe maximum possible resilience with respect to both
notions is yielded by a class @ically responsivalistributed routing policies, characterized by the prop#rat the
portion of its incoming flow that a node routes towards an oung link does not decrease as the particle density
on any other outgoing link increases. Moreover, we show thatstrong resilience of a dynamical flow network
with such locally responsive distributed routing policeguals theminimum node residual capacitf¥he latter is
defined as the minimum, among all the non-destination nafake sum of the difference between the maximum
flow capacity and the initial equilibrium flow on all the linksutgoing from the node. On the other hand, the
weak resilience of the dynamical flow network equalsnitisi-cut capacityand hence is independent of the initial
equilibrium flow. We also formulate a simple convex optintiaa problem to solve for the most strongly resilient
initial equilibrium flow, and discuss the use of tolls to im@usuch an initial equilibrium flow in transportation
networks. Our analysis assumes that every link has infimigacity to hold particles and that the flow is a bounded,
strictly increasing function of the particle density. Wepoet results from numerical simulations illustrating how
violation of these assumptions can result in cascadedisuiks and possibly affect the network’s resilience.

Stability analysis of network flow control policies undermpersistent disturbances, especially in the context of
internet, has attracted a lot of attention, e.g., see [1d]}, [12], [13]. Recent work on robustness analysis of stati
flow networks under adversarial and probabilistic peraististurbances in the spirit of this paper include [14],
[15], [16]. It is also worth comparing the distributed rogi policies studied in this paper with the backpressure
policy [17], which is one of the most well-known robust dilstited routing policy for queueing networks. While
relying on local information in the same way as the distéloutouting policies studied here, backpressure policies
require the nodes to have, possibly unlimited, buffer capaln contrast, in our framework, the nodes have no
buffer capacity. In fact, the distributed routing policemnsidered in this paper are closely related to the wellamo
hot-potatoor deflection routing policies [18] [5, Sect. 5.1], where th@des route incoming packets immediately
to one of the outgoing links. However, to the best of our kremlgle, the robustness properties of dynamical flow
networks, where the outflow from a link is not necessarilyada its inflow have not been studied before.

The contributions of this paper are as follows: (i) we foratala novel dynamical system framework for robustness
analysis of dynamical flow networks under local informat@mstraint on the routing policies; (ii) we characterize
a general class of distributed routing policies that yidid tmaximum strong and weak resilience under local
information constraint; (iii) we provide a simple charactation of the resilience in terms of the topology and
the pre-disturbance equilibrium flow of the network. For a&egi initial equilibrium flow, the class of locally
responsive distributed routing policies can be interpteie approximate Nash equilibria in an appropriate zero-
sum game setting where the objective of the adversary infiiche disturbance is to destabilize the network with a
disturbance of minimum possible magnitude and the objedfthe system planner is to design distributed routing
policies that yield the maximum possible resilience. Thehiécal results of this paper hinge on tools from several
different fields. The upper bounds on the resilience for @giequilibrium flow use graph theory notions from flow
networks (e.g., see [2]). The properties of the routing fimms that give maximum resilience are reminiscent of
cooperative dynamical systems in the sense of [19], [20& dioblem of determining tolls for a desired equilibrium
flow exploits the fact that the associated congestion garagidential game and that the extremum of the potential
function corresponds to the equilibrium [21], [22].



The rest of the paper is organized as follows. In Section d,farmulate the problem by formally defining the
notion of a dynamical flow network and its resilience. In &wctlll, we define the class of locally responsive
distributed routing policies, state the main results onrtevork resilience, and provide discussions on the results
Section IV discusses the problem of selection of the moshgty resilient equilibrium flow of the network and
the use of tolls to induce such a desired equilibrium in fpanstion networks. In Section V, we report illustrative
numerical simulation results. In Sections VI, VII and VMg state proofs of the main results on network resilience.
Finally, we conclude in Section IX with remarks on futuregach directions.

Before proceeding, we define some preliminary notation tads=l throughout the paper. LRtbe the set of real
numbersR; := {x € R: 2 > 0} be the set of nonnegative real numbers. [etind B be finite sets. ThenA|
will denote the cardinality of4, R4 (respectiverRj‘r‘) the space of real-valued (nonnegative-real-valued)ovect
whose components are indexed by elementsdpfand R“*5 the space of matrices whose real entries indexed
by pairs of elements id x B. The transpose of a matrix/ ¢ R“*5, will be denoted byM” ¢ RB*A, while
1 the all-one vector, whose size will be clear from the contéxt cl(X) be the closure of a set C R4, If
BCA, 1p: A — {0,1} will stand for the indicator function of3, with 1z(a) = 1 if a € B, 1g(a) = 0 if
a € A\ B. Forp e [1,00), || - ||, is the p-norm. By default, let| - || := || - ||» denote the Euclidean norm. Let
sgn: R — {—1,0,1} be the sign function, defined bygn(z) is 1 if x > 0, sgn(z) = -1 if z < 1, andsgn(z) =0
if z = 0. Conventionally, we shall assume the identity:|/dz = sgn(z) to be valid for everyr € R, including
z = 0.

[I. DYNAMICAL FLOW NETWORKS AND THEIR RESILIENCE
In this section, we introduce our model of dynamical flow ratee and define the notions of transfer efficiency.

A. Dynamical flow networks
We start with the following definition of a flow network.

Definition 1 (Flow network):A flow network\ = (7, i) is the pair of aopology described by a finite directed
graph7 = (V,&), whereV is the node set and C V x V is the link set, and a family oflow functions
= {ue : Ry — Ry }eee describing the functional dependente= u.(p.) of the flow on the density of particles
on every linke € £.

The flow capacityof a link e € £ is defined by

¢ = sup fie(pe) - 1)
pe=>0

For every nodev € V, we shall denote b¥;" C £, and&,; C &, the set of its outgoing and incoming links,
respectively. Moreover, we shall use the shorthand notallg := Rif for the set of nonnegative-real-valued
vectors whose entries are indexed by elemeni§faf 7, := x .+ [0, f"®) for the set of admissible flow vectors
on outgoing links from node, andS, := {p € Ry, : > e+ pe = 1} for the simplex of probability vectors
over &;". We shall also use the notatidd := R for the set of nonnegative-real-valued vectors whose estire
indexed by the links irf€, andF := x.c¢[0, f"®) for the set of admissible flow vectors for the network. We khal
write f:={fc: e€ &} € F,andp = {p.: e € £} € R, for the vectors of flows and of densities, respectively,
on the different links. The notatiofi” := {f. : e € £} € F,, andp? := {p. : e € £} € R, will stand for
the vectors of flows and densities, respectively, on the @magglinks of a nodev. We shall compactly denote by
f=u(p) and f¥ = u(p”) the functional relationships between density and flow wscto

Throughout this paper, we shall restrict ourselves to ntwopologies satisfying the following:

Assumption 1:The topology7 contains no cycles, has a unique origin (i.e., a node V such thatf; is
empty), and a unique destination (i.e., a nede V such thatf;" is empty). Moreover, there exists a pathZnto
the destination node from every other node/in

Assumption 1 implies that one can find a (not necessarilyue)igopological ordering of the node sgt(see,
e.g., [23]). We shall assume to have fixed one such orderdegtifying )V with the integer se{0, 1,...,n}, where
n = |V| —1, in such a way that

&, C &, Yv=0,...,n. (2)

0<u<wv u



In particular, (2) implies tha0 is the origin node, and the destination node in the network topolo@y An
origin-destination cuf(see, e.g., [2]) off is a partition of) into & andV \ U/ such that) € &/ andn € V\ U. Let
& ={(u,v) € E: uel,veV\U} be the set of all the links pointing from some nodelrto some node in
V \ U. The min-cut capacityof a flow network " is defined as

C(N') == min Zeeq max 3)

where the minimization runs over all the origin-destinatimuts of 7. Throughout this paper, we shall assume a
constant inflow)\y > 0 at the origin node. Let us define the setawfmissible equilibrium flowassociated to an
inflow \g as

F*(Ao) = {f* €EF ), =2 L fi=), fiY0<u< n} :

Then, it follows from the max-flow min-cut theorem (see, g[8]), that 7*(\g) # ) whenever\, < C(N). That
is, the min-cut capacity equals the maximum flow that can frass the origin to the destination while satisfying
capacity constraints on the links, and conservation of naaske intermediate nodes.

Throughout the paper, we shall make the following assumptio the flow functions:

Assumption 2:For every linke € &, the mapu. : Ry — R, is continuously differentiable, strictly increasing,
such thatu.(0) = 0, and fI"** < 4o0.

Thanks to Assumption 2, one can define thedian densityn link e € £ as the unique valug: € R, such
that

pe(pe) = f&/2. (4)

Example 1 (Flow function)For every linke € &, let a. and f*** be positive real constants. Then, a simple
example of flow function satisfying Assumption 2 is given by

max

pe(pe) = fo o (1 — exp(—aepe)) -
It is easily verified that the flow capacity ", while the median density for such a flow functiorpts= a_ ! log 2.

We now introduce the notion of a distributed routing policgsed in this paper.

Definition 2 (Distributed routing policy)A distributed routing policyfor a flow network A is a family of
functionsG := {G" : R, — Sy}o<v<n describing the ratio in which the particle flow incoming inckanon-
destination node gets split among its outgoing link séf", as a function of the observed current particle density
p¥ on the outgoing links themselves.

The salient feature of Definition 2 is that the routing pol&Y(p”) depends only on thkcal informationon the
particle densityp” on the set;" of outgoing links of the non-destination nodeOn the other hand, the structural
form of the routing policyg may depend on some global information on the flow network twiniéght have been
accumulated through a slower time-scale evolutionary dyost A two time-scale process of this sort has been
analyzed in our related work [8] in the context of transpiiota networks.

We are now ready to define a dynamical flow network.

Definition 3 (Dynamical flow network)A dynamical flow networkassociated to a flow netwotk satisfying
Assumption 1, a distributed routing poligy, and an inflow\, > 0, is the dynamical system

Spel) = MG W) — flt),  VOSu<n, Vee&l, ©

where

(6)

fe(t) == pelpe(t)),  Ao(t) := { Ao if v=0

Doece fe(t) if 0 <wv <.

Equation (5) states that the rate of variation of the partildnsity on a linke outgoing from some non-destination
nodew is given by the difference between,(t)GY(p"(t)), i.e., the portion of the incoming particle flow of node
v which is routed to linke, and f.(¢), i.e., the particle flow on linke. Observe that the distributed routing policy



G"(p¥) induces a local feedback which couples the dynamics of thtcfgaflow on the outgoing links of each
non-destination node.
We can now introduce the following notion of transfer effiag of a dynamical flow network.

Definition 4 (Transfer efficiency of a dynamical flow networ&pnsider a dynamical flow netwoyk satisfying
Assumptions 1 and 2. Given some flow vecfoe F, anda € [0, 1], the dynamical flow network (5) is said to be
a-transferringwith respect tof if the solution of (5) with initial conditionp(0) = u~1(p) satisfies

liminf A, (t) > aXg. (7)
t——+o0

Definition 4 states that a dynamical flow networkiigransferring when the outflow is asymptotically not snalle
thana times the inflow. In particular, a fully transferring dynarai flow network is characterized by the property
of having outflow asymptotically equal to its inflow, so thaete is no throughput loss. On the other hand, a
partially transferring dynamical flow network might allowrfsome throughput loss, provided that some fraction
of the flow is still guaranteed to be asymptotically transfdr

Observe that a fully transferring dynamical flow network sio®t necessarily imply that the link-wise flows
necessarily converge to an equilibrium, for it might in pipple have a persistently oscillatory or more complex
behavior. Nevertheless, it will prove useful to introdube notions of equilibrium and limit flow as follows.

Definition 5 (Equilibrium and limit flow of a dynamical flow meairk): An equilibrium flowfor the dynamical
flow network (5) is a vectof* € F*(A\o) such that

NGL(pY) = fr, Veec &, V0O<v<n, (8)

e

wherep? := p; ' (f2), and X = X for v =0 and \j; = >° .- fZ for 0 < v < n. A limit flow for the dynamical
flow network (5) is a vector* € cl(F) such that, for some initial condition(0) € R, the flow f(¢) converges to
f* ast grows large.

Remark 1:Observe that an equilibrium flow* € F*()\g) is always a limit flow, since the solution of the
dynamical flow network (5) with initial conditiop(0) = ~'(f*) stays put for allt > 0, and hence it is trivially
convergent tof*. On the other hand, if a limit flowf* € cl(F) satisfies all the capacity constraints with strict
inequality, i.e., if f* € F, then necessarily* € F*(\) is also an equilibrium flow for (5), i.e., it satisfies
mass conservation equations at all the non-destinatioesadd particular, if a dynamical flow network admits an
equilibrium flow f*, then it is necessarily fully transferring with respectftt, as well as with respect to all the
initial flows f(0) € F which are attracted by*.

In contrast, if f* € cl(F) \ F, i.e., if at least one of the capacity constraints is satisfié@h equality, thenf* is
not an equilibrium flow for (5). In fact, in this case one haatth’ ..+ fo < A} with possibly strict inequality for
some non-destination node< v < n. Hence, the dynamical flow network might still be non fullansferring.
Finally, observe that a limit flowf* € cl(F) (and,a fortiori, an equilibrium flow) may not exist for general flow
networks A/, and distributed routing policie§.

Remark 2: Standard definitions in the literature are typically lindit® static flow networks describing the particle
flow at equilibrium via conservation of mass. In fact, theyally consist (see e.g., [2]) in the specification of a
topology 7, a vector of flow capacitieg™** € R, and an admissible equilibrium flow vectgi € F*()\g) for
Xo < C(N) (or, often, f* € cl(F*(N\g)) for A\g < C(N)).

In contrast, in our model we focus on the off-equilibrium tde dynamics on a flow network/, induced by a
distributed routing policyy. Existence of an equilibrium of the dynamical flow network ¢gpends on the topology
T, the structural form of the flow functions and of the distributed routing policy, as well as on the inflow,.

A necessary condition for that i < C'(N). In contrast, simple, locally verifiable, sufficient conalits onG for

the existence of an equilibrium flow might be hard to find fommdex flow networks. However, in some cases, it is
reasonable to assume the distributed routing pdlicg be the outcome of a slow time-scale evolutionary dynamics
with global feedback which can naturally lead to an equilibr flow f* € F*(\¢). This has been shown, e.g., in
our related work [8] on transportation networks, where theggence of Wardrop equilibria is proven using tools
from singular perturbation theory and evolutionary dynzsni

On the other hand, as shown in Section Ill, there is a clas®dadlly responsive distributed routing policies
(as characterized by Definition 8) such the associated digaduftow network (5) always has a unigue limit flow



f* € cl(F) such that, from any initial conditiop(0) € R, the flow f(¢) associated to (5) converges fo ast
grows large. Provided that sughf € F, i.e., such limit flow satisfies the capacity constrainthvatrict inequality,
this will prove thatf* € F*(\g), and it is a globally attractive equilibrium for the dynasmidlow network (5).

B. Examples
We now present three illustrative applications of the dyicairflow network framework.
(i) Transportation networkdn transportation networks, particles represent driee distributed routing policies

(ii)

(i)

correspond to their local route choice behavior in respaonséhe locally observed link congestions. A
desired route choice behavior from a social optimizatiorsjpective may be achieved by appropriate incentive
mechanisms. However, we do not address the issue of meahdetsign in this paper. Section IV, however,
discusses the use of tolls in influencing the long-term dlodate choice behavior of drivers to get a desired
initial equilibrium state for the network. The robust distited routing policies designed in this paper would
correspond to thédeal node-wise route choice behavior of the drivers. The flow fiemci.(p.) presented

in this paper is related to the notion of fundamental diagmartraffic theory, e.g., see [4]. Note that in our
formulation, we assume that the density of drivers is homeges over a link. One can refer to [4] for
models that incorporate inhomogeneity, although the nmdael their analysis in [4] are developed under
static routing policies. We shall refer to the transpootatietwork setup frequently in the course of the paper.
Data networksIn data networks, the particles represent data packetsateato be routed from sources to
destinations by routers placed at the nodes (see, e.g.h[H]JL Typically the average packet delay from one
router to the other increases with the increase in queudHemy the link between the two routers. Hence,
one has that such average delay is givendpip.), whered.(p.) is an increasing function. If one further
assumes that the delay functidp(p.) is concave and such thdt(p.) = Q(p.)! asp. grows large, then the
relationship between the throughput and the queue lenfths p./d.(p.), can be easily shown to satisfy
Assumption 2. Therefore, in analogy with the general fraoréwp, and f. denote the queue length and the
throughput, respectively, and (p.) represents the throughput functions on the links of datevors.
Production networksIn production networks, the particles represent goods niead to be processed by a
series of production modules represented by nodes. It isvikne.g., see [6], that the rate of doing work
decreases with the amount of work in progress at a produatiodule. This relationship is formalized by
the concept otlearing functionsIn this context, production networks have a clear analogh wur setup
where p. represents the work-in-progresg, represents the rate of doing work, apd(p.) represents the
clearing function.

Remark 3:While there are many examples of congestion-dependenighput functions and clearing functions
that satisfy Assumption 2, typical fundamental diagramgamsportation systems havenashaped profile. While
we do not study the implications of this analytically, we yidee some simulations in Section V to illustrate how
the results of this paper could be extended to this case.

C. Perturbed network and resilience

We shall consider persistent perturbations of the dyndnfima network (5) that reduce the flow functions on
the links, as per the following:

Definition 6 (Admissible perturbation)An admissible perturbatiorof a flow network ' = (7, 1), satisfying
Assumptions 1 and 2, is a flow networX = (7, /1), with the same topolog{’, and a family of perturbed flow
functionsfi := {jie : Ry — Ry }ece, such that, for every € &, [, satisfies Assumption 2, as well as

fre(pe) < pe(pe) Vpe > 0.

We accordingly let/™* := sup{fi.(f.) : p. > 0}. The magnitudeof an admissible perturbation is defined as

0= Oe.  be:=sup{pelpe) — fie(pe) = pe >0} . 9)

"Here, we use the Landau notatigiiz) = Q(g(z)) asxz — +oo to mean that there exists positive constahtsand zo, such that
f(x) > Kg(x) for all x > zo.



The stretching coefficiendf an admissible perturbation is defined as
0 :=max{pt/pt : e € E}, (10)

wherept, andpt are the median densities respectively associated to thertumped and the perturbed flow function
on link e € £, as defined in (4).

Given a dynamical flow network as in Definition 3, and an adiblesperturbation as in Definition 6, we shall
consider theperturbed dynamical flow network

4 = XOEFO) - ). Vo<u<n, Yeedl, a
where ) |
Jel®) = fe(pe®), Ault) ::{ ;035 ity i 0<v<n )

Observe that the perturbed dynamical flow network (11) hasséime structure of the original dynamical flow
network (5), as it describes the rate of variation of theiplartdensity on each link outgoing from some non-
destination node as the difference betweex, (t)GY(5"(t)), i.e., the portion of the incoming perturbed flow of
nodev routed to linke, minus the perturbed flow on link itself. Notice that the only difference with respect
to the original dynamical flow network (5) is in the perturbialw function f.(p.) on each linke € &, which
replaces the original ong..(p.). In particular, the distributed routing poligy is the same for the unperturbed and
the perturbed dynamical flow networks. In this way, we modsitaation in which the routers are not aware of
the fact that the flow network has been perturbed, but reatttisocchange only indirectly, in response to variations
of the local density vectorg”(¢).

We are now ready to define the following notion of resilien¢eaadynamical flow network as in Definition 3
with respect to an initial equilibrium flowf™*.

Definition 7 (Resilience of a dynamical flow networket A/ be a flow network satisfying Assumptions 1 and
2, G be a distributed routing policy, ank, > 0 be a constant inflow at the origin node. Assume that the assati
dynamical flow network (5) admitg* € F*(\o) as an equilibrium flow. For every € (0,1], § > 1, let v, 6(f*,G)
be equal to the infimum magnitude of all the admissible pbations of stretching coefficient less than or equal
to ¢ for which the perturbed dynamical flow network (11) is netransferring with respect tg*. Also, define
Yo.0(f*) = limajoYae(f*). For a € [0,1], the a-resiliencewith respect tof* is defined a& v,(f*,G) =
limg1o 70,0 - The 1-resilience will be referred to as ttstrong resiliencewhile the0-resilience will be referred to
as theweak resilience

In the remainder of the paper, we shall focus on the chataatem of the strong and weak resilience of dynamical
flow networks. Before proceeding, let us elaborate a bit ofinden 7. Notice that, for everyx € (0, 1], the a-
resiliencev,(f*,G) is simply the infimum magnitude of all the admissible peraidns such that the perturbed
dynamical network (11) is not-transferring with respect to the equilibrium floyi*. In fact, one might think
of v, (f*,G) as the minimum effort required by a hypothetical adversarprder to modify the dynamical flow
network from (5) to (11), and make it nattransferring, provided that such an effort is measuregims of the
magnitude of the perturbatioh = > ¢ ||fe(-) — fie(-)||oo. FOr o = 0, trivially the perturbed network flow is
always0-transferring with respect to any initial flow. For this reasthe definition of the weak resilieneg(f*)
involves the double limitlimgy., lim, o va,6: the introduction of the bound on the stretching coefficiehthe
admissible perturbation is a mere technicality whose rs#igewill become clear in Section VIII-B.

Remark 4 (Zero-sum game interpretatiofhe notions of resilience are with respect to adversariduggations.
Therefore, one can provide a zero-sum game interpretasiéoilaws. Let the strategy space of the system planner be
the class of distributed routing policies and the stratgggce of an adversary be the set of admissible perturbations.
Let the utility function of the adversary b&/© — 6, where M is a large quantity, e.g} " .. f&'®, and© takes
the valuel if the network is nota-transferring under given strategies of the system plaandrthe adversary, and

%It is easily seen that the limits involved in this definitiolways exist, asy,¢ is clearly nonincreasing im (the higherca, the more
stringent the requirement ef-transfer) and (the higher, the more admissible perturbations are considered thatpogntially make the
dynamical flow network to be nat-transferring).



zero otherwise. Let the utility function of the system planbej — M ©. As stated in Section lll, a certain class
of locally responsivalistributed routing policies, characterized by Definiti®nis maximally robust with respect

to both notions of weak and strong resilience. This will tieftow that the locally responsive distributed routing
policies correspond to approximate Nash equilibria in #@so-sum game setting.

1. M AIN RESULTS AND DISCUSSION

In this paper, we shall be concerned with the characteomaif maximally robustistributed routing policies.
That is, for a given flow networld/, and inflow Ay € [0,C(N)), we shall study a class of distributed routing
policies G which have the maximum margin both weak and strong res#iamaer local information constraint.

The candidate class of such maximally robust distributedimg policy is characterized by the following.

Definition 8 (Locally responsive distributed routing pefic A locally responsivedistributed routing policy for
a flow network topologyZ = (V, &) with node sety = {0,1,...,n} is a family of continuously differentiable
distributed routing functiong = {G" : R, — S, }»ey such that, for every non-destination notlel v < n:
0
(a) %G;}(pv)zov Vj,eGSj,j#e,p”GR”;
(b) Gg?p”) > 0, for everye € £, p¥ € Ry;
(c)  for every nonempty proper subsgtC &, there exists a continuously differentiable m@p : R.; — S,
whereR 7 :=RY, andSs := {p € R7 : >_jeg Pj = 1} is the simplex of probability vectors ovef,
such that, for every” € R, if p? — +oc for all e € £F \ J andp; — 37 for all j € J, then

GU(p") =0, Ye€EF\T,  Gip) =G (p7), VieJ.

Property (a) in Definition 8 states that, as the particle dgms an outgoing linke € £ increases while the
particle density on all the other outgoing links remainsstant, the fraction of incoming particle flow of node
routed to any linkj € &\ {e} does not decrease, and hence the fraction of incoming leaftbev routed to linke
itself does not increase. In fact, Property (a) in Definitois reminiscent of the definition @ooperative dynamical
systemsn the sense of [19], [20]. Property (b), instead, implieattfor every observed local densipy € R,,
every linke € £ gets a nonzero fraction of the incoming particle flow of ned®©n the other hand, Property (c)
implies that the fraction of incoming particle flow routed dosubset of outgoing links/ C &, vanishes as the
density on links in7 grows unbounded while the density on the remaining outgbirkg remains bounded.

Example 2 (Locally responsive distributed routing policdn example of a locally responsive distributed rout-
ing policy corresponding to an equilibrium flow vectir = u(p") € F*(\o) is given by

G¥(p) = fe xp(=npe — pe)) . Yee&, Y0o<uv<n, (13)
> jeer 1 exp(=n(p; — pj))

wheren > 0 is a constant. Computing partial derivatives one gets

d o Jof;exp(=n(pe — p)) exp(—n(p; — pj))
TGe(P ) =1 . T 2
Pj (Cices 17 exp(=nlpi = p})))
so that Property (a) of Definition 8 holds true. Propertiey ghd (c) are also easily verified. In the context
of transportation networks, the example in (13) is a variaihthe logit function from discrete choice theory

emerging from utilization maximization perspective ofvers, where the utility associated with lirkis the sum
of p, — pe +log f. /n and a double exponential random variable with parameteee, e.g., [24]).

>0  Vej€e&S, e#j, (14)

We are now ready to state our main results. The first one shioais when the distributed routing poligy is
locally responsive, the dynamical flow network (5) alwayméd a unique, globally attractive limit floyi* € cl1(F).

Theorem 1 (Existence of a globally attractive limit flow untbeally responsive routing policies)Let N be a
flow network satisfying Assumptions 1 and 2 > 0 a constant inflow, an@/ a locally responsive distributed
routing policy. Then, there exists a unique limit flof¥ € cl(F) such that, for every initial conditiop(0) € R,
the flow f(t) associated to the dynamical flow network (5) convergeg't@ast grows large.

Proof: See Section VI. [ |



Fig. 1. The network topology used in Example 3.

The following is an immediate consequence of Theorem 1 anddRes 1 and 2.

Corollary 1: Let N be a flow network satisfying Assumptions 1 and\2,> 0 a constant inflow, ang a locally
responsive distributed routing policy. If the limit flof* € F, then it is a globally attractive equilibrium flow for
the dynamical network flow (5).

We start by providing a characterization of the strong iesile of the dynamical flow network. Towards this,
for a flow network\/, and an equilibrium flow vectof” € F*, define theminimum node residual capacigs
N : max _ p*
RN £ = min {32, (1=} as)
Theorem 2 (Strong resilience):et A/ be a flow network satisfying Assumptions 1 and)3, > 0 a constant
inflow, and G a distributed routing policy. Assume that the associatedadyical flow network (5) admits an
equilibrium flow f* € F*(\g). Then, its strong resilience satisfieg f*,G) < R(N, f*). Moreover, ifG is locally
responsive, then; (f*,G) = RN, f).
Proof: See Section VII. [ |

For a given flow network\/, a constant inflow\,, Theorem 2 shows that any locally responsive distributed
routing policy G such that the associated dynamical flow network (5) admiteaulibrium flow f* € F*, has
strong resiliencer(N, f*) larger than or equal to that of any distributed routing polidose associated dynamical
flow network admits the same equilibrium flof¥. It is worth stressing that the minimum node residual céapaci
R(N, f*) depends both on the flow networ¥, and on the equilibrium flowf*. While the proof of upper bound
on v (f",G) for an arbitrary distributed routing policg is relatively straightforward (see Lemma 5 in Section
VII), the fact thaty,(f*,G) = R(N, f*) when the distributed routing policy responds to local \tizs in the
density is nontrivial, as illustrated in the following Expte.

Example 3:Consider the topology illustrated in Figure 1, wiNy = 2, flow functions as in Example 1 with
a1 =a; =az =ay =1 and f* = fnax— g fmax — gmax — (.75, First consider the case wheif (p°) =
1—GY(p°) = 0.75, and G (p') = 1 — G¢,(p*) = 0.5. One can verify that the associated dynamical flow
network has a unique equilibrium flow* with f, = 1.5, f, = 0.5, and f;, = f., = 0.25. Now, consider an
admissible perturbation such that, = 0.7u., andf., = p., for k = 2,3,4. The magnitude of such perturbation
is § = d.,, = 0.6. It is easy to see that in this calien; ... fe, (t) = 1.4 = f;?ax which is less thar.5, which is
the the flow routed to it. Therefor&im;_. f\g(t) = 1.9 < \g, and hence the network is not fully transferring.

Now, consider the same (unperturbed) flow network as befmre with distributed routing policies such that
G2 (p°) =1-GY,(p0) = 2700311 /(27003101 4 0-T19602) and G (p') = 1— G, (p') = 0.5. One can verify that
the associated dynamical flow network again admits the séinas before as an equilibrium flow. Let us consider
the same admissible perturbation as before. One can véafy for the corresponding perturbed dynamical flow
network, lim;_,o fe, (t) = 0.4 < f22% = 1.4 andlim, o fe,(t) = 1.6 < f22* = 2. However, with an asymptotic
arrival rate of1.6 at nodel, we have thafim .. fe,(t) = 0.75 = f2% and lim_.o fe,(t) = 0.75 = fmax,
Therefore lim;_, o 5\2(75) = 1.9 < )y, and hence the network is not fully transferring.

In both the casesR(N, f*) = 1 and a disturbance of magnitudes is enough to ensure that the perturbed
dynamical flow network is not fully transferring. Howevepta that in the second case, unlike the first case, the
routing policy at nodé) responds to variations in the local flow densities by sendioge flow to linkeg, but it is
overly responsive in the sense that it sends more flow downstreamthieacumulative flow capacity of the links
outgoing from nodd. However, by Definition 2, a distributed routing policy istradlowed any information about



10

(a) (b)

Fig. 2. (a) A parallel link topology. (b) A topology to illustte arbitrarily largeC'(N) — R(N, f*).

any other link other than the current flow densities of itsgoing links. This illustrates one of the challenges in
designing distributed routing policies which yieR{\/, f*) as the strong resilience. One can verify ti&t used

in the first case, does not satisfy Property (c) of Definitioangl, in the second case, it does not satisfy Properties
(a) and (c).

Example 3 illustrates that a candidate maximally robudtitisted routing policy has to respond to variations in
the local flow densities, but not respond excessively. Wefaiimalize these features and show that they are satisfied
by locally responsive distributed routing policies. We npass to the characterization of the weak resilience.

Theorem 3 (Weak resiliencel:et N be a flow network satisfying Assumptions 1 and\g,> 0 a constant inflow,
and g a distributed routing policy. Assume that the associatethdyical flow network (5) admits an equilibrium
flow f* € F*(X\o). Then, the weak resilience satisfigs(f*,G) < C(N'). Moreover, ifG is locally responsive,
then’yw(f*a g) = C(N)

Proof: See Section VIII. [ ]

Theorem 3 shows that, given a flow netwavk a constant inflowh, the min-cut capacity’ () is the maximum
weak resilience over all distributed routing policies.l#t@ashows that locally responsive distributed routing gies,
as in Definition 8, are maximally robust with respect to thealvessilience notion. Notice that the maximum weak
resilience coincides with the min-cut capacity, and hemakepends on the flow network” only, and not on the
initial equilibrium f*.

A few remarks are in order. First, it is worth comparing sgand weak resilience. Clearly, the former cannot
exceed the latter, as can be also directly verified from tHimitiens (15) and (3): for this, it is sufficient to consider

u e argmin {Ze€g+ é“ax} : v* € argmax {Ze€g+ (fore — f;)} ,
u v

U origin-destination cut veEU*

. * _ . +
and observe that, smcgeegl; f. = Xo by conservation of mass, a&- C &;., one has

— ma _ ma * ma *N *
CN)=Ao=2 oo O™ =do=D_ . (=)=} . (™= F)=RN.f).
We provide below two examples to illustrate the differenednzen the two quantities.

Example 4:For parallel link topologies, an example of which is illeged in Figure 2 (a), one has that
RN, f*) =Y ece f8% = Ao = CN) = Xo.

Example 5:Consider the topology shown in Figure 2 (b) wity = 1, f* = [¢,1 — ¢,¢,1 — ¢] and f"& =
[1/€,1,1/¢,1] for somee € (0,1). In this case, we have thdt(N) = 1 + 1/e and R(N, f*) = ¢. Therefore,
CN)—R(N,f)=1+1/e—¢, and hencel(N) — R(N, f*) grows unbounded asvanishes.

We conclude this section with the following observationirigsarguments along the lines of those employed in
[8], it is not hard to show tha€(N\') — Ay provides an upper bound on the strong resilience even ifdbality
constraint on the information used by the routing policeseémoved, i.e., if one allow§" to depend on the full
vector of current densitieg, rather than on the local density vectgt only. Indeed, one might exhibit routing
policies which are functions of the global density inforfaatp, for which the strong resilience is exacty(N') — \o
using ideas developed in the companion paper [8]. Hencepmayeinterpret the gap'(N) — \o — RN, f*) as the
strong resilience loss due to the locality constraint onitfiermation available to the distributed routing policies
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One could use Example 5 to again demonstrate arbitrariyelauch loss due to the locality constraint on the
information available to the routing policies. In fact, & possible to consider intermediate levels of information
available to the routing policies, which interpolate betwéhe one-hop information of our current modeling of the
network, and the global information described above.

V. ROBUST EQUILIBRIUM SELECTION

In this section, for a given flow network/ satisfying Assumptions 1 and 2, a constant inflaye [0, C'(N)),
and locally responsive distributed routing policies, walkhddress the issue of optimizing the maximum strong
resilience of the associated dynamical flow netwdtk)\, /*) with respect to the initial equilibrium flow* (recall
that the corresponding weak resilien€g€/\) is independent off*). First, in Section IV-A, we shall address the
issue of maximizingR(f*) := R(N, f*) over all admissible equilibrium flow vectors® € F*()\o), i.e., with the
only constraints given by the link capacities and the cora@m of mass. Then, in Section IV-B we shall focus on
the transportation network case of Section II-B, and addties problem of optimizing?(f*) indirectly, assuming
that f* satisfies the additional constraint of being an equilibrinftuenced by some static tolls. Finally, in Section
IV-C, we shall evaluate the gap between the strong resiierssociated to the maximizer & f*) and a generic
equilibrium f*, and interpret it as the robustness price of anarchy witheesto f*.

A. Robust equilibrium selection as an optimization problem
The robust initial equilibrium condition selection probilecan be posed as an optimization problem as follows:

R*:= sup R(f), (16)
[ €F*(Xo)
where we recall thafF*(\g) is the set of admissible equilibrium flow vectors correspogdo the inflow )\, €
[0, C(N)). Equation (15) implies thaR(f") is the minimum of a set of functions linear jii, and hence is concave
in f*. Since the closure of the constraint $&t()\o) is a polytope, we get that the optimization problem stated in
(16) is equivalent to a simple convex optimization problé#owever, note that the objective functioR(f") is
non-smooth and one needs to use sub gradient techniquesseed25], for finding the optimal solution.

B. Using tolls for equilibrium implementation in transpation networks

In this section, we study the use of static tolls to influer decisions of the drivers in order to get a desired
emergent equilibrium condition for (unperturbed) transmion networks. The static tolls affect the driver demns
over a slower time scale at which the drivers update theifepeaces for global paths through the network. These
global decisions are complemented by thst-scalenode-wise route choice decisions characterized by Defmiti
2 and 8. The details of the analysis of the transportatiowart with such two time-scale driver decisions can
be found in our companion paper [8]. In particular, we shoat tithen the time scales are sufficiently separated
apart, then the network densities converge to a neighbdrled®ardrop equilibrium. In this section, in order to
highlight the relationship between static tolls and theultast equilibrium point, we assume that the fast scale
dynamics equilibrates quickly and focus only on the slowlesclynamics.

We briefly describe the congestion game framework for trariaion networks to formalize the equilibrium
corresponding to the slow scale driver decision dynamies. XL € R be the link-wise vector of tolls, with(,
denoting the toll on linke. Assuming thatY is rescaled in such a way that one unit of toll corresponds tni
amount of delay, the utility of a driver associated with linkvhen the flow on it isf. is — (Tc(f.) + Y.), where
T.(fe) is the delay on linke € £ when the flow through it isf.. Let P be the set of distincpathsfrom node0
to noden. The utility associated with a pathe P is —>_ ., (Te (fe) + Te). In order to formally describe the
functionsT,(f.), we shall assume that each flow functipp satisfies Assumption 2, and additionally is strictly
concave and satisfigg (0) < +oco. Observe that the flow function described in Example 1 safigfiese additional
assumptions. Since the flow on a link is the product of spedddansity on that link, one can define the link-wise
delay functionsT, by

+00 if fe> f&
To(fe) = p'(fe)/fe i fe € (0,f8%), Vecf. (17)
1/pe(0) if fo=0,
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LetT(f) = {Tc(f.) : e € £} be the vector of link-wise delay functions. We are now readgefine &oll-induced
equilibrium.

Definition 9 (Toll-induced equilibrium)For a givenY € R, a toll-induced equilibrium is a vectof” () € F*
that satisfies the following for ajpp € P:

Je>0 Yeep=) (T.(f)+Te) <) (Te(f) +Te) VgeP.

eep ecq

Note that,f"(0) corresponds to a Wardrop equilibrium, e.g., see [26], [@hfere0 is a vector all of whose entries
are zero. For brevity in notation, we shall denote the Wardequilibrium. The following result guarantees the
existence and uniqueness of a toll-induced equilibrium.

Proposition 1 (Existence and uniqueness of toll-inducedilibgium): Let A/ be a flow network satisfying As-
sumptions 1 and 2 an, € [0, C(N)) a constant inflow. Assume additionally that the flow functjanis strictly
concave and satisfigg,(0) < +oo for every linke € £. Then, for every toll vectol' € R, there exists a unique
toll-induced equilibriumf*(Y) € F*.

Proof: It follows from Assumption 2, strict concavity and the asgtion ;.. (0) < +o0o on the flow functions
that, for alle € &£, the delay functior,(f.), as defined by (17), is continuous, strictly increasing, snslich that
T.(0) > 0. The Proposition then follows by applying Theorems 2.4 ardfom [27]. |

In this subsection, to illustrate the proof of concept, wdl ¥acus on equilibrium flowsf* each of whose
components is strictly positive and less than the flow cdigscof the corresponding links. Let € {0,1}7*¢ be
the path-link incidence matrix, i.e., for alle £ andp € P, A, . = 1if e € p and zero otherwise. The results for a
genericf* € F* follow along similar lines. Definition 9 implies that fgf*(T) € R, with f*(T) > 0 for all e € &,
to be the toll-induced equilibrium corresponding to thé welctor Y € R is equivalent toA (T'(f*(Y)) + 1) = v1,
for somer > 0. We shall use this fact in the next result, where we compute to get a desired equilibrium.

Proposition 2 (Tolls for desired equilibrium)et A/ be a flow network satisfying Assumptions 1 and 2 and
Ao € [0,C(N)) a constant inflow. Assume additionally that the flow functjanis strictly concave and satisfies
pL(0) < +oo for every linke € £. Assume that the Wardrop equilibriugif’ is such thatfV > 0 for all e € £. Let
e F*, with £ € (0, f) for all e € £, be the desired toll-induced equilibrium flow vector. Defifiéf) € R

by
1) = (max ) T - 7). (18)

Then f* is the desired toll-induced equilibrium associated to thievector Y'(f*).
Proof: Since f"V is the Wardrop equilibrium, corresponding to the toll vecto= 0, we have that

AT (YY) = 11, (19)

for somev; > 0. For f* to be the toll-induced equilibrium associated to the tottee T € R, one needs to find
9 > 0 such that

A(T(f)+T) =w»l. (20)
Using (19) and simple algebra, one can verify that (20) issBatl with Y(f*) as defined in (18) and, =
v - <maxe€g 17:8((]{9’))> |

Remark 5: The toll vector yielding a desired equilibrium operatinghddion is not unigue. In fact, any toll of
the form Y (f*) = cT'(fV) — T(f"), with ¢ > max{T.(f.)/T.(f¥) : e € £} would inducef" as the toll-induced
equilibrium. Proposition 2 gives just one such toll vector.

C. The robustness price of anarchy

Conventionally, transportation networks have been vieagdtatic flow networks, where a given equilibrium
traffic flow is an outcome of driver’s selfish behavior in respeto the delays associated with various paths and the
incentive mechanisms in place. The price of anarchy [28ble®s suggested as a metric to measure how sub-optimal
a given equilibrium is with respect to the societal optimquiibrium, where the societal optimality is related to
the average delay faced by a driver. In the context of rolesstanalysis of transportation networks, it is natural to
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consider societal optimality from the robustness pointietw thereby motivating a notion of the robustness price of
anarchy. Formally, for &" € F*(\o), define the robustness price of anarchyraf”) := R* — R (f7). It is worth
noting that, for a parallel topology, we have that = R (f*) = 3 .o f7™— Xo for all f*. That is, the strong
resilience is independent of the equilibrium operatingditton and hence, for a parallel topolog¥, (f) = 0.
However, for a general topology and a general equilibriumg guantity is non-zero. This can be easily justified,
for example, for robustness price of anarchy with respedh#oWardrop equilibrium: a Wardrop equilibrium is
determined by the delay functiofd3(f.) as well as the topology of the network, whereas the maximozer(f*)
depends only on the topology and the link-wise flow capaxité the network, as implied by the optimization
problem in (16). In fact, as the following example illus&at for a non-parallel topology, the robustness price of
anarchy with respect to Wardrop equilibrium can be arhljrdarge.

Example 6 (Arbitrarily large robustness price of anarchyttwiespect to Wardrop equilibrium)Consider the net-
work topology shown in Figure 1. Let the link-wise flow furanis be the one given by Example 1. The delay
function is then given by (0) = (a. fI™) ", T.(fe) = —# log(1—fe/ f&®) for f. € (0, f&*) andT.(f.) = +o0
for f. > femax Fix somee € (0,1) and let\g = 1/e. ‘Let the parameters of the flow functions be given by
o — fI = 1/e+ e fO¥= fI¥=1/(2¢) +€/2,a1 =1, a2 = a3 = a4 = ( >log<ﬁ+E )/log<1J{fE§E).

For these values of the parameters, one can verify that thguairWardrop equilibrium is given byW =
1 1/e—1 1/(2¢)—1/2 1/(2¢)—1/2]T. The strong resilience of"V is then given byR(N, fVV) = min{2/e+
2¢—1/e,1/e+e—(1/e—1)} = 1+¢. One can also verify that, for this cad; = 1/¢+ 2¢ which would correspond
tof"=[1/e 0 0 0]T. Therefore,P(fV)=1/e+2¢— (1 +¢) = 1/e+e— 1 which tends to+oo ase — 0.

V. SIMULATIONS

In this section, through numerical experiments, we studydase when the flow functions are set to the ones
commonly accepted in the transportation literature, egg, [4]. In transportation literature, the flow functione ar
defined over a finite interval of the forfy, pI"®, wherep'® is the maximum traffic density that linkcan handle.
Additionally, 1. is assumed to be strictly concave and achieves its maximuf®, gf"®*). For example, consider
the following:

max
fre(pe) = e eﬁqpai 5 p8)7 e [0, p7'™9. (21)
()

An important implication of the finite capacity on the traffiensities is the possibility of cascadegill-backs
traveling upstream as follows. When the density on a linichea its capacity, its outflow permanently becomes
zero and hence the link is effectively cut out from the netw®hen all the outgoing links from a particular node
are cut out, it makes the outflow on all the incoming links tatthode zero. Eventually, thespstreaminks might
possibly reach their capacity on the density and cuttingdedves off permanently and cascading the effect further
upstream. We shall show how such cascaded effects possihlice the resilience.

Another important differentiating feature of the flow fuiacts given by (21) with respect to the flow functions
satisfying Assumption 2 is that the flow functions correging to (21) are not strictly increasing. As a result,
one cannot readily claim that the locally responsive disted routing policies are maximally robust for this case.
However, we illustrate via simulations that, with addigmassumptions, the locally responsive distributed rgutin
policies considered in this paper could possibly be maxinrabust. However, one can show that the upper bound
on the strong and weak resiliences, as given by Theorems 2 &otd true even in this case. For the simulations,
we selected the following parameters:

« the graph topology’” shown in Figure 3.

e Mo =3.
o let p® =3 for all e €é, and flow capacities given bﬁmax Q;ax X — 2 5, f®*=0.9, fi® =175,
max — pmax _ gmax_ = =0.7, =04, fM*= g;jx_tf) max— 2, and f"* = 1.6. The
I|nk -wise flow functions are as given in (21) eth &, orif p < pBa for at least onedownstreanedgee’,
i.e., ¢/ € & such thate € £, ande’ € £} for somev € {1,. — 1}, and the flow functions are uniformly

zero otherwise;
« the equilibrium flow f* has componentgj1 = f; = fo, =05, f2, =2, fZ, = fe*m = 0.3, fo, = 1.5,
= fo, =025, i =0.2, = fz, =09, =0.2, = 0.3, =1.1,andf; =0.7,

€7 610 €12 811 813 614 615
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Fig. 3. The graph topology used in simulations.

« for the route choice function, a modified version of (13) igdisThe modification is done to respect the finite
traffic density constraint on the links. The modified rout®ick policy is

fe exp(=n(pe — p£)) Lo pmex (pe)
Dieer [i exp(=n(pj — p})) Lo pme (p5)
wheren will be a variable parameter for the simulations.

One can verify that, with these parameters, the minimum redaual capacity, and hence an upper bound
on the strong resilience, as defined by (15)i85. One can also verify that the maximum flow capacity of the
network, and hence an upper bound on the weak resilienée?.is

Ge(p) =

A. Effect ofn on the strong resilience

Consider an admissible perturbation such that = & yi,, and fic, = pu, for all k € {1,...,15} \ {10}. As
a result,é.,, = 0.7 andé., = 0 for all & € {1,...,15} \ {10}. Therefore, the magnitude of the perturbation
is 0 = 0.7. Note that this value is less than the minimum node residaphcity of the network. We found that
limy o0 Aeg (£) = 0 for all n < 0.25, andlimy_.» Ae,(t) = Ao = 3 for all n > 0.25. The role ofn in the strong
resilience is best understood by concentrating on a pataj@logy consisting of edges ande;2 with arrival
rate A . Using similar techniques as in the proof of Theorem 2, onesteow the existence of a new equilibrium
for this local system. However, this equilibrium is not attractive fromamfiguration where at least one pf,, or
ey, 1S AL P23 o1 pio*, respectively. Fon < 0.25, p.,, reachesg®*, whereas fom > 0.25, neitherp,,, nor p.,,
hit the maximum density capacity and the system is attraitedrds the new equilibrium.

B. Effect of cascaded shutdowns on the weak resilience

Consider an admissible disturbance such fhat= 2/i.,, fie, = 22 fles, flee = 216, fles = 2Hers fley = 2fles
fico = teor fier = Shteros fiers = s, aNd fi = i for k = {1,2,3,11,13,14, 15}. As result,s,, = 0.7, 5, =
0.6, de, = 0.2, 6. = 0.5, e, = 0.5, b, = 0.2, 8, = 0.6, 0., = 0.7 andé,, = 0 for k = {1,2,3,11,13,14,15}.
Therefore,§ = 4, which is less than the min-cut flow capacity of the networkr this case, it is observed that,
lim; o, Ae, (t) = 0 independent of the value of This can be explained as follows. For the given disturbanee
have thatfmax + fmax = 17 < 1.8 = f* + f* . Therefore, after finite time;, we have thap.,, (t) = p™** and
Pe,, (t) = pia* for all t > t;. As a consequence, we have thAt,(t) = 0 and f., (t) = 0 for all t > ¢;. One can
repeat this argument to conclude that, for the given distocbk, after finite timep., for £ = 1,...,9 reach and
remain at their maximum density capacities. As a conseqyaifter such a finite timef,., (t) + fe, (t) + fe, (t) = 0
and hencelim; ., A, (t) = 0, i.e., the network is not partially transferring. This exadenillustrates that the
cascaded effects can potentially reduce the weak res#lieh@a dynamical flow network.
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VI. PROOF OFTHEOREM 1

Let NV be a flow network satisfying Assumptions 1 andj2a locally responsive distributed routing policy, and
Ao > 0 a constant inflow. We shall prove that there exists a uniffue cl(F) such that the flowf(¢) associated
to the solution of the dynamical flow network (5) convergesftoast grows large, for every initial condition
p(0) € R. We shall proceed by proving a series of intermediate resdime of which will prove useful also in
the following sections.

First, given an arbitrary non-destination nodle< v < n, we shall focus on the input-output properties of the
local system

Sot) =AU W) ~ 1), Rl = pelpet),  Vec EF, 22)

where \(t) is a nonnegative-real-valued, Lipschitz continuous inpmd f(¢) := {f.(t) : e € &S} is interpreted
as the output. We shall first prove existence (and uniqu¢méssglobally attractive limit flow for the system (22)
under constant input. We shall then extend this result tovsthe existence and attractivity of a local equilibrium
point under time-varying, convergent local input. Finallye shall exploit this local input-output property, and the
assumption of acyclicity of the network topology in orderetstablish the main result.

The following is a simple technical result, which will prouseful in order to apply Property (a) of Definition 8.

Lemma 1:Let 0 < v < n be a nondestination node, aif : R, — S, a continuously differentiable function
satisfying Property (a) of Definition 8. Then, for aays € R,

S e sn(oe — ) (GLo) = GU(s) < 0. (23)

Proof: Consider the setk :={e €&/ : o >}, T:i={e €&l : 0. <}, andL:={e €& : 0. <}
Define G (¢) := > pex Gr(C), G(Q) = 221 G (), and Gz (C) = 3 c 7 G3(C). We shall show that, for any
0-7< 6 RU!

Gi(o) < Ge(s),  Grlo) = Ge(s). (24)

Let ¢ € R, be defined byé, = o for all k € K, andé, = ¢ for all e € £\ K. We shall prove that
Gi (o) — Gi(s) < 0 by writing it as a path integral oG (¢) first along the segmerfix: from ¢ to &, and then
along the segmeni, from £ to o. Proceeding in this way, one gets

Gi(o) — Gk(s) = ; VGk(¢) -d¢ + g VGk(¢) -d¢ = — : VG7(C)-dC+ g VGk(¢)-d¢,  (25)
where the second equality follows from the fact tlig¢(¢) = 1 — G7(¢) sinceG*(¢) € S,. Now, Property (a)
of Definition 8 implies thatoGx(¢)/0¢ > 0 for all [ € £, anddG 7(¢)/9¢, > 0 for all k € K. It follows that
VG7(¢)-d¢ > 0 along Sk, andVGi(¢) - d¢ < 0 along S,. Substituting in (25), one gets the first inequality in
(24). The second inequality in (24) follows by similar argemis. Then, one has

D e 5800 = &) (GU(0) = GL(<)) = Gr(0) = Gre(s) + Gr() = Ge(o) <0,
which proves the claim. |

We can now exploit Lemma 1 in order to prove the following kegult guaranteeing that the solution of the
local dynamical system (22) with constant input) = A converges to a limit point which depends on the value
of A but not on the initial condition. For the ease of presentatiet us define

max ,__ max
A T Z:eéfu+ fe '

Lemma 2:Let0 < v < n be a non-destination node, anda nonnegative-real constant. Assume @at R, —
S, is continuously differentiable and satisfies Propertigsafad (c) of Definition 8. Then, there exists a unique
f*(\) € cl(F,) such that, for every initial conditiop”(0) € R,, the solution of the dynamical system (22) with
constant input\(¢) = \ satisfies
Jim fot) = f20), Vee£
Moreover, if A < A™3% then f*(\) < A28 and AGY(u~t(f*(\)) = fF, for everye € EF; if A > A\™% then
fx = fmax for everye € £F. Finally, f*()\) is continuous as a map frof,. to cl(F,).
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Proof: Let us fix some\ € R... For every initial conditionr € R,,, and timet > 0, let ®'(c) := p¥(t) be the
value of the solution of (22) with constant inpitt) = A and initial conditionp(0) = o, at timet > 0. Also, let
V(o) € R, be defined byll(o) = u.(®! (o)), for everye € £F. Now, fix two initial conditionso, s € R,, and
definex(t) := ||®' (o) — ®'()||1 and&(t) := ||V (o) — Ui()]|1. Sincep.(p.) satisfies Assumption 2, one has that

sgn(Pe(0) — PL(c)) = sgn(Pe (o) — (<)) (26)
On the other hand, using Lemma 1, one gets
Zee&+ sgn (P (o) — () (Ge(@(0)) — GL('(s))) <0,  Vt=>0. (27)
From (26) and (27), it follows that, for all > 0,
x(t) = [|12%() = @ (o)[lx
= x(0)+ /Ot Zeeﬁ sgn (g (o) — ©(<)) (GE(®*(0)) — GE(P*(<)) — Te(o) + TE(s))ds
t (28)

< x(0) - ; 1W%(a) = ¥*(s)|lhds

= x(0) = [ &(s)ds.
0

Since x(t) > 0, (28) implies thatfot &(s)ds < x(0) for all ¢ > 0. Passing to the limit of large, one gets
f0+°° &(s)ds < x(0) < 4+o0. This, and the fact thag(s) > 0 for all s > 0, readily imply thaté(¢) converges td,
ast grows large. That is,

lim |[¥'(o) — ¥'()|ly =0, Vo,c € Ry . (29)

t——+o0

Now, for anyo € R,, one can apply (29) with := &7 (o), and get that
Jim |9 (0) = ¥ (0)]; = lim |9 () - T(@7 (o)1 =0, T =0.

The above implies that, for any initial conditig#i (0) = o € R,, the flow ¥!(s) is Cauchy, and hence convergent
to somef*(\, o) € cl(F,). Definep*(\,0) = p* € R, by

. et (i) i fE(N o) < fe
P 40 it fr(\ o) = fmex,

Now, by contradiction, assume that there exists a nonemputyep subset/ C & such thatp’ < +oc for every
j € J, andpf = +oo for everyk € K := &\ J. Thanks to Property (c) of Definition 8, one would have that

tim 37, AGH (1) = ful) = =30, i <0,

t——+o00 kel k
so that there exists some> 0 such that) |, .- (AG}(p"(t)) — fx(t)) < 0 for all t > 7. Hence,

S o) = o0+ [ 30, 066 6) ~ fuls))ds £ 30, ulr) < o, Vez

which would contradict the assumption thgt = +oo for every k € K. Therefore, eithep] is finite for every
e € &, or pt is infinite for everye € &;.

In order to distinguish between the two cases i@ := > ce+ pe(t), (t) :== > cet fe(t). Observe that, for
allt >7>0,

t
() =¢r)+ [ (=0 ds. (30)
First, consider the case when< \™**, and assume by contradiction thet = +oo, and hencef; = fI"**, for

everye € &F. This would imply that
tlim Ht) = A > N
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so that there would exist some > 0 such thatA — 9(¢) < 0 for everyt > 7, and hence (30) would imply
that ¢(t) < ((7) < +oco for all ¢ > 7, thus contradicting the assumption that(t) converges top} = +oo
ast grows large. Hence, for every € R,, f*(\,0) € F,, and hence it is necessarily an equilibrium flow for
the local dynamical system (22). It follows that, for every € R,, andt > 0, ¥!(p*(\,0)) = f*(\,0), and
Ul (p* (N, €)) = f*(\,¢). Then, taking the limit of large in (29) readily implies thatf*(\,o) = f*()\, <), so that
the limit flow f*(\) € F*(\g) does not depend on the initial condition.

On the other hand, wheh > A\™#*  (30) shows that(¢) is non-decreasing, hence convergent to saifee)
[0,+00] at t grows large. Assume, by contradiction, thigbo) is finite. Then, passing to the limit of largein
(30), one would get

+o0o
[ 0= 06)ds = Co0) = ¢() < G(00) < oc.
This, and the fact that(¢) < \™** < X for all t > 0, would imply that
tlig—nooﬂ(t) =\ (31)

Since f.(t) < fI"®, (31) is impossible ifA > A™#*, On the other hand, iA = A™#*, then (31) implies that, for
everye € £, f.(t) converges tgf***, and hence,(t) grows unbounded asgrows large, so thaf(oo) would be
infinite. Hence, ifA > A™#, then necessarily(co) is infinite, and thanks to the previous arguments this insplie
that pi(\, o) = pi(N\) = +o0, and hencef (A, 0) < f™ for all 0 € Ry, e € EF.

Finally, it remains to prove continuity gf*(\) as a function of\. For this, consider the functioH : (0, +-00)& x
(0, Amax) — RE defined by

He(p", X) := AG2(p") — pe(pe) Ve e &F.

Clearly, H is differentiable and such that

T Hpt ) = NG — o) =~ SO ~ o) <~ S0 A Hy' N, (32)

Pe Pe ; Pe ; Pe

jFe j#e

where the inequality follows from the strict monotonicity the flow function (see Assumption 2). Property (a)
in Definition 8 implies thatdH,(p”,\)/dp. > 0 for all j # e € &F. Hence, from (32), we also have that
OH,.(p",\)/9p. < 0 for all e € £F. Therefore, for allp” € (0, +00)%, and X € (0, \2), the Jacobian matrix
V,»H(p", M) is strictly diagonally dominant, and hence invertible bytanslard application of the Gershgorin Circle
Theorem, e.g., see Theorem 6.1.10 in [29]. It then followsnfithe implicit function theorem that"(\), which is
the unique zero of (-, \), is continuous on the intervaD, A™#*). Hence, alsof*(\) = u(p*())) is continuous
on (0, \™#%), since it is the composition of two continuous functions.rbtwver, since

Do =N 0SE S, Vee &l VA€ (™),

one gets thalimy o f5(\) = 0, andlimypamax f5(A) = f37, for all e € £. Now, one has tha} .+ f5(0) =0,
so that0 = f7(0) = limy o f(\) for all e € €. Moreover, as previously showrfiy () = £ = limyjymax f2(N)
for all A > A\™@* This completes the proof of continuity gf(\) on [0, +00). [

While Lemma 2 ensures existence of a unique limit point ferlthical system (22) with constant inphift) = A,
the following lemma establishes a monotonicity propertthwespect to a time-varying input(t).

Lemma 3 (Monotonicity of the local systenbet 0 < v < n be a nondestination nod&" : R, — S, a
continuously differentiable map, satisfying Propertie$ &nd (c) of Definition 8, and\~(¢), and A™(¢) be two
nonnegative-real valued Lipschitz-continuous functisash that\~ (t) < A*(¢) for all t > 0. Let p~ (¢) andp™ ()
be the solutions of the local dynamical system (22) corredjpmy to the inputs\~(¢), and A*(¢), respectively,
with the same initial conditiop™(0) = p*(0). Then

pe () < pl(t), Vee€&y, Vt=0. (33)

Proof: Fore € &, definer, := inf{t > 0: pf(t) > p- (¢)}, and letr := min{7. : e € £ }. Assume by
contradiction thap_ (t) > pZ (¢) for somet > 0, ande € &;F. Then,7 < 400, andZ := argmin{r. : e € £} is
a well defined nonempty subset 8f . Moreover, by continuity, one has that there exists same 0 such that,
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pi (1) = pf (1), p; (t) > pi (1), andp; (t) < (t) forallieZ,je J, andt € (1,7 +¢), whereJ := & \ 7.
Using Lemma 1, one gets, for evene (7,7 + £),
)

0 > LY sl (1) — pf (1) (G2p™ (1) — GE(p* (1))
= (S GH () — S Gt (0) — 5, G (1) + 555 Gt (1))
= DG (1)~ S Gt (0),

where the summation indices i, andj run over&,;", Z, and 7, respectively. On the other hand, Assumption 2
implies thatw; (p; (t)) > pi(p; (t)) foralli € Z, ¢ € [r,7+¢). Now, letx(t) := 3,7 (p; (t) — pi (t)). Then, for
everyt € (1,7 +¢), one has

0 < x(t)—x(7)
N / AT(s) Ziel (GF(p™(5)) = G{(p~(s))) ds
_/ (A (s) —A_(S))ZiEIGf(er(s))ds—/ ZieI (us(p7 (s)) — milpf (s))) ds < 0,

which is a contradiction. Then, necessarily (33) has to liald. [ |

The following lemma establishes that the output of the |l@yastem (22) is convergent, provided that the input
is convergent.

Lemma 4 (Attractivity of the local dynamical systerhpt0 < v < n be a nondestination nodé} : R, — S, a
continuously differentiable map, satisfying Properti@sgnd (c) of Definition 8, and(¢) a nonnegative-real-valued
Lipschitz function such that

t_lg?oo At) = A. (34)

Then, for every initial conditiorp(0) € R, the solution of the local dynamical system (22) satisfies
Jim fot)=fE0), Vee&S, (35)

e

where f*()) is as defined in Lemma 2.

Proof: Fix somes > 0, and letr > 0 be such that\(¢)—\| < e forall ¢ > 7. Fort > 7, let f~(¢t) and f*(¢) be
the flow associated to the solutions of the local dynamicstiesy (22) with initial conditiom™(7) = p* (1) = p(7),
and constant inputd—(¢t) = A\~ := max{\ —¢,0}, and\*(t) = X + ¢, respectively. From Lemma 3, one gets that

fo@) < f.)<fr@, vt>r, Vee&S . (36)

On the other hand, Lemma 2 implies th@at(¢) converges tof*(A\~), and f(¢) converges tof*(\"), ast grows
large. Hence, passing to the limit of largen (36) yields
FEQT) <liminf fo(t) <limsup fe(t) < ff(A+¢), Ve &
—Too t——+o00
Form the arbitrariness af > 0, and the continuity of*(\) as a function of\, it follows thatlim; ., f(t) = f*(\),
which proves the claim. |

We are now ready to prove Theorem 1 by showing that, for artiairdondition p(0) € R, the solution of the
dynamical flow network (5) satisfies

Jim fo(t) = £, 37

for all e € £. We shall prove this by showing via induction en= 0,1,...,n — 1 that, for alle € £}, there
exists f¥ € [0, fi"#X] such that (37) holds true. First, observe that, thanks torharg, this statement is true for
v = 0, since the inflow at the origin is constant. Now, assume thatstatement is true for all < v < w, where
w € {1,...,n — 2} is some intermediate node. Then, sir&e C U“_'E;F, one has that

tl}I-Eloo )‘w (t) - t—lz-imoo ZEE&Z fe(t) - Z e€€y, f - )\

Then, Lemma 4 implies that, for all € £}, (37) holds true withf* = f*(\%), thus proving the statement for
v = w. This completes the proof of Theorem 1.
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VIl. PROOF OFTHEOREM 2

In this section, we shall prove Theorem 2 on the strong esgikk of dynamical flow networks. Throughout the
section, we shall consider a given flow netwoxk satisfying Assumptions 1 and 2, a distributed routing goli
G, and a constant inflowx, > 0, and assume that there exists an equilibrium fiowe F*(\q) for the dynamical
flow network. First, we shall show that (f*,G) < R(N, f*). This will follow mainly from the assumption of
acyclicity of the network topology, and the locality comsiit on the information used by the distributed routing
policy, as per Definition 2. Then, we shall prove that, if thstributed routing policy is locally responsive (as per
Definition 8), theny(f*,G) = R(N, f*). The proof of this second result will heavily rely on Projest(a) and
(c) of Definition 83 In particular, these properties will allow us to prove soney kiiffusivity properties for the
solution of the perturbed dynamical flow network.

A. Upper bound on the strong resilience

The second part of Theorem 2 is restated and proved below.

Lemma 5 (Upper bound on the strong resilienckgt A be a flow network satisfying Assumptions 1 and 2,
Ao > 0 a constant inflow, and any distributed routing policy. Assume that the associdigthmical flow network
has an equilibrium flowf* € F*(\g). Then,v(f",G) < RN, f*).

Proof: In order to prove the result it is sufficient to exhibit a fayriif admissible perturbations, with magnitude
§ arbitrarily close toR(N, f*), under which the network is not fully transferring. Let us $i@ame non-destination
node(0 < v < n minimizing the right-hand side of (15), and put:= 3" .+ f"® For any R(N, f*) < 0 < &,
consider the admissible perturbation defined by

_ K—20 _
fie(pe) = i pe(pe), Vee &S, fie(pe) = pelpe), VYee ENES. (38)
Clearly, the magnitude of such perturbation equale/hile its stretching coefficient is.
Let us consider the origin-destination cut-get= {0,1,...,v}, and put&} = {(u,w) € £: 0 <u < v,v <
w < n}. Observe that the associated perturbed dynamical flow metsatisfies, for every) < u < v,
ﬂe(ﬁe(t)) :f;> VtZO, Veeé’j.

In particular, this implies thafi.(j.(t)) = f. for all ¢ > 0, and for every linke € & \ &. On the other hand,
one has that 5
I{/ —_—

fie(pe(t)) < fmax — Z_Zfmax  ye e £F Wt >0,
K
Therefore, for allt > 0, one has that

~ ~ rmax *
Zeegzj fe(pe(t)) < Zee&f e Zeeeg\&f fe
k=9 max *
B K z:eesv+ e Zeeq\&f fe (39)

SN S S
Z:eeé'u+ € el e ecly fe

— BN, ) =6+ o
Define the edge setd := (J}Z!  &F andB == J}_,., &x

w=v+1 ~w w

C(t) := > oca pe(t). Now, since

% <Ze€&f ﬁe(t)) - Zegg$ (Zeeaj fe(t)) Gg(ﬁw(t)) - Zee&f fe(t)
= D L= D),

3Property (b) is in fact irrelevant for maximal robustnesstia strong resilience sense, while it will be used in the sextion to prove
maximal robustness in the weak resilience sense of localipansive distributed routing policies.

and observe thatt U &7 = B. Fort > 0, put
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for everyv < w < n, one gets, using (39), that

d ~ ~ -
EC(t) - ZeEB fe(t) B Zeé&? fe(t) B ZeGA fe(t)

- () — F (40)
Zeeflj fe(?) Zeeai Je(®)
< RWNLfY) =0+ X —Au(t).
Now assume, by contradiction, that

liminf A\, (t) > RN, f*) — 6+ o

t—+o0

Then, there would exist some > 0 and+ > 0 such that\,(t) > RN, f*) —d + X +¢ forall t > 7. It
would then follow from (40) and Gronwall's inequality thatt) < ((7) — (t — 7)e for all ¢ > 7, so that((¢)
would converge to—oo ast grows large, contradicting the fact thaft) > 0 for all ¢ > 0. Hence, necessarily
lim infyje0 A (t) < RN, f*) =8+ Ao < Ao, SO that the perturbed dynamical flow network is not fully sfemring.
Then, from the arbitrariness of the perturbation’s magtettic (R(N, f*), k), it follows that the network’s strong
resilience is upper bounded W/(N, f*). [ |

B. Lower bound on the strong resilience

We shall now prove the second part of Theorem 2. Hence, thautgthis subsectiong will be a locally
responsive distributed routing policy.

First observe that, for any admissible perturbation, réigas of its magnitude, the perturbed dynamical flow
network (11) satisfies all the assumptions of Theorem 1, wban therefore be applied to show the existence of a
globally attractive perturbed limit flow* € cl(F). This in particular implies thak,, () = D oece- fe(t) converges
to )\;; = D ecer fe ast grows large. However, this is not sufficient in order to preteong resilience of the
perturbed dynamical flow network (11), as it might be the daseS\; < Ao.

In fact, it turns out that, provided that the magnitude of #uknissible perturbation is smaller th&@{\/, /*),
the perturbed limit flowf* is an equilibrium flow for the perturbed dynamical flow netwoso that\* = ), and
(12) is fully transferring. In order to show this, we need tody theperturbed local system

Sh0 = A0 O) - F0),  J0)= ), Vees!, (@1)

for every non-destination node< v < n, and nonnegative-real-valued, Lipschitz local inﬁ(ut) Indeed, Lemma
4 can be applied to the perturbed local system (41) estafdjstonvergence of the perturbed local flofigt) to a
local equilibrium flowf*(\) € F,, provided that the input flowx(¢) converges to a valug which is strictly smaller
than the sum of the perturbed flow capacities of the outgdirigs! However, such local result is not sufficient to
prove strong resilience of the entire perturbed dynamicat fhetwork. The key property in order to prove such a
global result is stated in Lemma 6, which describes how the fedistributes upon the network perturbation. In
particular, it ensures that the increase in flow on all thkdidownstream from a node whose outgoing links are
affected by a given perturbation, is less than the magnitdidee disturbance itself. We shall refer to this property
as to thediffusivity of the local perturbed system.

Lemma 6 (Diffusivity of the local perturbed systerhpt A/ be a flow network satisfying Assumptions 1 and 2,
G be a locally responsive distributed routing policy, > 0 a constant inflow. Assume thgt* € F*()\g) is an
equilibrium flow for the dynamical flow network (5). Let” be an admissible perturbation &f, 0 < v < n be a
nondestination node\; := > .o+ fo, andA € [0,) ] o+ fmaxy Then, for everyJ C &,

Zeej (fe()‘)_fe> S[)‘_)‘v]-f—i_zeeg:réey (42)
where f*()\) is the local equilibrium flow of the perturbed local systen)(With constant local inpuh(t) = A,

andde := ||pe(-) = fie(-)lloo-
Proof: Define A} := > e+ £, and X := max{\, \*}. Let 5"(t) be the solution of the perturbed local

system (41) with constant input(t) = A, and initial conditionp,(0) = pi := p 1(f*), for all e € £, and let
fe(e) := fie(pe(t)). We shall first prove that

f®)>f5, Yt>0 Vee&f. (43)



21

Fig. 4. lllustration of the sets used in proving the inductgiep.

For this, consider a poif” € R,, such thatpV # ", and there exists somec &, such thatp; = p; andp. > p.
for all e # i € £. For such a" andi, Lemma 1 implies thatG} (5") > GY(p"). This, combined with the fact
that A > A} and fi;(p:) < pi(pi) = pip;), yields
MGE(p") = i(pi) = NGY(p) = milpy) = 0. (44)
Considering the regiof := {p* € R, : p; > p;-, Vi € &}, and denoting by € RE the unit outward-pointing
normal vector to the boundary 6f at ¥, (44) shows that
%ﬁ”-w - <;\UG”(ﬁ”) —ﬂv(ﬁ”)> w<0, Yedn, t>0.

Therefore () is invariant under (41). Sincg’(0) = p" € (, this proves (43).
Lemma 2 implies that there exists a unique local equilibrillow f* := f*(\). Then, for anyJ C &, (43)
implies that

>ifi = NS h;
Ao = 2k ﬂk(ﬂ};)* . .
Ao = Ao+ 225 15+ 2 k(o) = 2o k() (45)

(A5 = Nl + 25 5+ kO
g = Nl + 325 f7 + Yy O

where the summation indicgsand k run over7, and&,f \ 7, respectively. Moreover, sinck < A from Lemma
3, one gets thaf (\) < f&(A) = f¢ for all e € &7 . In particular, this implies thap ., f(\) < >_,c 7 f5, for
all 7 c &F. This, combined with (45), proves (42). [ |

The following lemma exploits the diffusivity property frolremma 6 along with an induction argument on the
topological ordering of the node set to prove tfd{\, /*) is indeed a lower bound on the strong resilience of the
network under the locally responsive distributed routimdjgies.

Lemma 7:Consider a flow network\" satisfying Assumptions 1 and 2, a locally responsive disted routing
policy G, and a constant inflow,;, > 0. Assume thatf* € F*()\g) is an equilibrium flow for the associated
dynamical flow network. LetN" be an admissible perturbation ¢f, of magnituded < R(N, f*). Then, the
perturbed dynamical flow network (11) has a globally ativecequilibrium flow and hence it is fully transferring.

Proof: First recall that Theorem 1 can be applied to the perturbethhjcal network (11) in order to prove
existence of a globally attractive limit floi* e cl(F) for the perturbed dynamical network flow (11). For brevity
in notation, for everyl < v < m, PUtX} == S ot fo, Ab 1= Y ce fer ANAAD = 37 oy fmax Also, for
every nodev € V, let D, :=J;_, &F and B, := {(u,w) € £: 0 <u < v, v <w < n} be, respectively, the set
of all outgoing links, and the link-boundary of the node &@t1,...,v}.

We shall prove the following through induction en=0,1,...,n — 1:

Zeej (f§ - f;) < Zeepu b, VI CBy. (46)

IN A AN
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First, notice thatBy = Dy = &;. Since}_ e+ de < & < RN, f*) < 3 cor (f8% — f2), we also have that

Ao < Amax_Therefore, by using (42) of Lemma 6, one can verify that @@ls true forv = 0.
Now, for somev < n — 2, assume that (46) holds true for every< v. Consider a subsef C 5,1 and let
J=JN 85;1 and 7, := J \ J1 (e.g., see Figure 4). By applying Lemma 6 to the $gtone gets that

Zee% (f; —f;> < {NZ—H - :+1L+Zeeg+ 0e, VE>0. (47)

v+1
It is easy to check that, C B, and€&, | C B,. Therefore, using (46) for the sets and > UE, 4,
following inequalities respectively:

Yoo (= 0) =X e (48)
> s (fe-r0)+ Dce (fi-1) < Do, O (49)

Consider the two caseé:Jrl < Ay, Or 5\:+1 > \;.,. By adding up (47) and (48), in the first case, or (47) and
(49) in the second case, one gets that

S(FE-R)=X(F-r)+>X (-1 X o+ o< Y o

eeJ eeJr e€J> 368:;1 e€D, e€Dy41

one gets the

This proves (46) for node + 1 and hence the induction step.
Fix 1 <v <n. Since&; C B,_1, (46) withu = v — 1 implies that

M=M= £4Y 8- > 6,
ec&, ec&, e€D, 3 ec&F ecf e€E\Dy_1

where the third step follows from the fact thaf, .- f; = > .+ f. by conservation of mass. Then, since
EF C £\ D,_1, one gets that

Ny S Deeer fo+ 0= Yeeer O
< Yecer fo F RN f*) = Y ocet e
< Yeeer fo t Veeer (8™ f2) — Leeer Oe
= Zee&* (f&®—6e)
= Zee&* fénax
Hence, it follows from Lemma 2 applied to the perturbed longtem (41) that
fe=FeON) < o, Veeg, (50)

forall 1 <wv <n— 1. Moreover, SinCe\o = > o+ fo < D ocer [, applying Lemma 2 again to the perturbed
local system (41) shows that (50) holds true fo= 0 as well. Hencefcik < firex for all e € &, so that the limit
flow f* € F, and hence it is necessarily an equilibrium flow of the pétdrdynamical flow network (11), as
argued in Remark 1. Therefore, (11) is fully transferring. |

The second part of Theorem 2 now immediately follows fromy the arbitrariness of the admissible pertur-
bation of magnitude smaller thaR(\/, f*).

VIIl. PROOF OFTHEOREM 3

This section is devoted to the proof of Theorem 3 on the wesikeace of dynamical flow networks. Throughout
this section, we shall consider a given flow netwgrksatisfying Assumptions 1 and 2, a distributed routing polic
G, a constant inflow\, > 0. First, we shall prove that, i/ is an arbitrary distributed routing policy such that the
associated dynamical flow network has an equilibrium flowe F*(\¢), then the min-cut capacity of the network,
C(N), provides an upper bound on the weak resiliepgdg™, G). This will follow from a basic conservation of mass
argument. Then, we shall show that, when the distributetimgolicy G is locally responsive, as per Definition
8, then the weak resilience of the associated dynamical fletwark coincides withC'(A). This will follow from
some arguments in part close to those developed in SectieB \dnd in part exploiting the additional Property (b)
of Definition 8, which was not necessary for showing maxinedustness of locally responsive distributed routing
policies in the strong resilience sense.
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A. Upper bound on the weak resilience

We start by proving tha€’ (/) is indeed an upper bound on the weak resilience. Recallitht, € 7*(\g) is
an equilibrium flow of the associated dynamical flow netwahlen its weak resilience is defined as the double limit
limgpoo lima o Ya,0(f*), Wherey, o(f*) is the infimum magnitude of all the admissible perturbatiohstretching
coefficient less than or equal tofor which the associated perturbed dynamical flow netwonkasa-transferring
with respect tof*. The following result will readily imply the first part of Tloeem 3.

Lemma 8 (Upper bound on the weak resiliencegt N be a flow network satisfying Assumptions 1 and@,
a distributed routing policy, and, > 0 a constant inflow. Assume thgt* € F()\o) is an equilibrium for the
dynamical flow network (5). Then, for every € (0, 1], and everyd > 1,

Yoo (f1G) < CN) = E)\O_

Proof: Consider a minimal origin-destination cut, i.e., sathe V suchthab € U, n ¢ U, and}_ o+ o™ =
C(N). Definee := a\g/(2C(N)), and consider an admissible perturbation such thép.) = cp.(p.) for every
e € Szj, and fic(pe) = pe(pe) for all e € £\ 5* It is readily verified that the magnitude of such perturati
satisfies

b= (-9 Y . = (1-2)CN) = CV) — 5o,

while its stretching coefficient i$. Moreover Ze€g+ fmax — eze€g+ fax = a)o/2. Then, arguing in the same
way as in the proof of Lemma 5, one shows thiatinf;;. )\n( ) < a)g, so that the perturbed dynamical network
is not a-transferring. This implies the claim. |

Observe now that it immediately follows from Lemma 8 that
* — . . * < . . _ —
W(f,G) = limlimaeo(f ) < lim E%(C(N) aXo/2) =C(N),

which proves the first part of Theorem 3.

B. Lower bound on the weak resilience

We now prove the lower bound on the weak resilience of a dyoalffiow network when the distributed routing
policy G is locally responsive. To start with, let us recall that instbase Theorem 1 implies the existence of a
globally attractive limit flow f* ¢ cl(F) for the perturbed dynamical flow network associated to anyissible
perturbation\. Define A\ = Ao, and)\ =D ecer f* for0 < v <n.

Lemma 9:Consider a dynamical flow network/ satisfying Assumptions 1 and 2, with locally responsive
distributed routing policyg. For everyd > 1, there exists3; € (0,1) such that, if\" is an admissible perturbation
of AV with stretching coefficient less than or equabtaand f* ¢ cl(F) is the limit flow vector of the corresponding
perturbed dynamical flow network (11), then .

fo = BoAy s

for every non-destination node< v < n, and every linke € £ for which f* < fmax /9,

Proof: Fix some linke € £ for which f; < f;naX/Q. Definep? € R, by pg’- =0 forall j €&, j#e and
p? = 6pt, where recall thap! is the median density of the flow functign.. Since the stretching coefficient of
is less than or equal t8, one has that the median densities of the perturbed and mermmed flow functions
satlsfypé‘ < #pt. This and the fact thaf* < fmax/2 imply that 5¢ < gt < p?, while clearlyp; > 0 = pg’- for all

EX,j # e. Now, let 3y := G(p%), and observe that, thanks to Property (b) of Def|n|t|on 8, bagsjy > 0.
Then, from Lemma 1 one gets that

G =5 (G +1-3 G3") 2 5 (G +1-3 GI6") =G = (5D

On the other hand, sincg < f™»</2 < fma | emma 2 implies that necessarily G (5*) = f>. The claim now
follows by combining this and (51). |
We are now ready to prove the following lower bound on thelisrsie.
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Lemma 10:Let A/ be a flow network satisfying Assumptions 1 and\3,e [0, C(N)) a constant inflow, ang
a locally responsive distributed routing policy. LEt € F()\g) be an equilibrium for the dynamical flow network
(5). Then, for every > 1, and everyx € (0, 53], the resilience of the associated dynamical flow networlsfses

Yoo (f,G) > C(N) = 2[E| NS e,

where gy € (0,1) is as in Lemma 9. )
Proof: Consider an arbitrary admissible perturbatidhof stretching coefficient less than or equalétoand
of magnitude

5 < C(N) —2E| X "ar. (52)
We shall iteratively select a sequence of nodes: vy, v1,...,vr :=n € V such that, for every < j <k,
Ji€{0,....j—1}  suchthat (v,v;) €&, f{, )=l " (53)

Sincev, = n, andﬁg‘" > 1, the above withj = & < n will immediately imply that
. Y q * £k k—n
tl}gloo )\n(t) = )\n = Zeeg; fe Z O[/\Oﬁe 2 Oé)\(] 5
so that the perturbed dynamical flow network dstransferring. The claim will then readily follow from the
arbitrariness of the considered admissible perturbation. .
First, let us consider the cage= 1. Assume by contradiction thaf' < )\Oaﬂé‘f, for every linke € £ . Since
a < B, this would imply thatf* < 8y\o and hence, by Lemma 9, th#f*® < 2f* for all e € &, so that
D 2266&)+ fr < 20)E5 185N < 2a/€]85 " Ao -

ec& ¢

Combining the above with the inequality(N) < D ecer f&, one would get
623 o (= ) > CV) — 208185,

thus contradicting the assumption (52). Hence, necegsiidire existse € & such thatf* > Aoaﬁ;‘", and
choosingu; to be the unique node il such thate € £, one sees that (53) holds true with= 1.

Now, fix somel < j* < k, and assume that (53) holds true for evérg j < j*. Then, by choosing as in
(53), one gets that

Xy, = Zeegvf P2 Flny 2 Mool " 2 Mooy T VIS < (54)

Moreover,
5\*

U

C= o> Xoafy" > NoaB) T (55)

Letif := {vg,v1,...,v5-—1} and&;; C £ be the set of links with tail node &7 and head node i\ Y. Assume by
contradiction thatf < Aoaﬁg*‘" for all e € Szj. Thanks to (54) and (55), this would imply thaf; < 5yA%, for
every0 < j < j* ande € & N&. Then, Lemma 9 would imply that>x < 2f: forall e € &) = UM (EFNEY).

This would yield
f f Jj*—n 1—
ZeEé’J femax < Zeeé';; 2f€ <2 Zeng )‘00469 < 2‘5’)\00[[39 ",

From the above and the inequalif(\) < Zeeq frax one would get
5237 o (= J0) > COV) 208150

thus contradicting the assumption (52). Hence, necegshglre existse € Ezj such thatf;k > )\Oaﬂé‘", and
choosingu;- to be the unique node i such thate € £, . one sees that (53) holds true with= j*. Iterating this
argument untikv;- = n proves the claim. [ |

It is now easy to see that Lemma 10 implies that, o v,.,0 > C(N) for everyd > 1, thus showing that
Y0 = CN).
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IX. CONCLUSION

In this paper, we studied robustness properties of dyndrfima networks, where the dynamics on every link
is driven by the difference between the inflow, which depemishe upstream routing decisions, and the outflow,
which depends on the particle density, on that link. We aereid distributed routing policies that depend only
on the local information about the particle densities in tiedwork. We proposed a class of locally responsive
distributed routing policies that yield the maximum resilce under local information constraint, with respect to
malicious disturbances that reduce the flow functions ofittes of the network. We also established the relationship
between the resilience and the topology as well as the liggailibrium flow of the network. The findings of this
paper stand to provide important guidelines for managewiesgveral large scale critical infrastructures both from
planning as well as real-time operation point of view.

In future, we plan to extend the research in several dirasti@/e plan to rigorously study the robustness properties
of the network with finite link-wise capacity for the dens#i and formally establish the results on the resilience as
suggested in Section V. We plan to study the scaling of th#ierese with respect to the amount of information,
e.g., multi-hop as opposed to just single-hop, availablén¢orouting policies. We also plan to perform robustness
analysis in a probabilistic framework to complement theeadarial framework of this paper, possibly considering
other general models for disturbances. In particular, iulddde interesting to study robustness with respect to
sequential disturbances than just one-shot disturbantsidared in this paper. We plan to consider a setting with
buffer capacities on the nodes and study the scaling of thierece with such buffer capacities. We also plan to
consider more general graph topologies, e.g., graphs gayicles and multiple origin-destination pairs.
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