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Robust Distributed Routing in
Dynamical Flow Networks

Giacomo Como Ketan Savla Daron Acemoglu Munther A. Dahleh Emilio Frazzoli

Abstract

Robustness of distributed routing policies is studied for dynamical flow networks, with respect to adversarial
disturbances that reduce the link flow capacities. A dynamical flow network is modeled as a system of ordinary
differential equations derived from mass conservation laws on a directed acyclic graph with a single origin-destination
pair and a constant inflow at the origin. Distributed routingpolicies regulate the way the incoming flow at a non-
destination node gets split among its outgoing links as a function of the local information about the current particle
density, while the outflow of a link is modeled to depend on thecurrent particle density through a flow function. A
dynamical flow network is called fully transferring if the outflow at the destination node is asymptotically equal to the
inflow at the origin node, and partially transferring if the outflow at the destination node is asymptotically bounded
away from zero. A class of distributed routing policies thatare locally responsive is shown to yield the maximum
possible resilience under local information constraint with respect to the two transferring properties, where resilience
is measured as the minimum, among all the disturbances that make the network loose its transferring property, of
the sum of the link-wise magnitude of disturbances. In particular, the maximum resilience of a dynamical flow
network starting from an equilibrium condition, in order toremain fully transferring, is shown to equal its minimum
node residual capacity. The latter is defined as the minimum,among all the non-destination nodes, of the sum of
the difference between the maximum flow capacity and the initial equilibrium flow on all the links outgoing from
the node. On the other hand, the maximum resilience of a dynamical flow network starting from an equilibrium
condition, in order to remain partially transferring, is shown to be equal to the network’s min-cut capacity and hence
is independent of the initial equilibrium flow. Finally, a simple convex optimization problem is formulated for the
most resilient initial equilibrium flow, and the use of tollsto induce such an initial equilibrium flow in transportation
networks is discussed.

I. INTRODUCTION

Flow networks provide a fruitful modeling framework for many applications of interest such as transportation,
data, or production networks. They entail a fluid-like description of the macroscopic motion ofparticles, which
are routed from their origins to their destinations via intermediate nodes: we refer to standard textbooks, such
as [2], for a thorough treatment. Robustness of routing policies for flow networks is a central problem which is
gaining increased attention with a growing awareness to safeguard critical infrastructure networks against natural
and man-induced disruptions. Information constraints limit the efficiency and resilience of such routing policies,
and the possibility of cascaded failures through the network adds serious challenges to this problem. The difficulty
is further magnified by the presence of dynamical effects [3].

This paper studiesdynamical flow networks, modeled as systems of ordinary differential equations derived from
mass conservation laws on directed acyclic graphs with a single origin-destination pair and a constant inflow at
the origin. The rate of change of the particle density on eachlink of the network equals the difference between
the inflow and theoutflowof that link, while the way the incoming flow at an intermediate node gets split among
its outgoing links depends on the current particle density on the outgoing links through the routing policy. We
focus ondistributed routing policieswhereby the proportion of incoming flow routed to the outgoing links of a
node is allowed to depend only onlocal information, consisting of the current particle densities on the outgoing
links of the same node. We model the outflow of a link to be dependent on the current particle density on that
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link through aflow function. The inspiration for such a modeling paradigm comes from empirical findings from
several application domains, such asfundamental diagramsin transportation networks [4], congestion-dependent
throughputandaverage delaysin data networks [5], andclearing functionsin production networks [6].

Our objective is the design and analysis of distributed routing policies for dynamical flow networks that are
maximally robustwith respect toadversarial disturbancesthat reduce the link flow capacities. We define two notions
of transfer efficiency in order to capture the extremes of theresilience of the network towards disturbances: we call
the the dynamical flow networkfully transferringif the outflow at the destination node asymptotically approaches the
inflow at the origin node, andpartially transferringif the outflow at the destination node is asymptotically bounded
away from zero. We consider a setup where, before the disturbance, the network is operating at anequilibrium
flow and hence is fully transferring: such an equilibrium flow might alternatively be thought of as the outcome
of a slower time-scale learning process (e.g., see [7], [8] in case of transportation networks, or [9] in case of
communication networks), or the outcome of the routing policies. We analyze the robustness of distributed routing
policies, evaluating it in terms of the network’sstrong and weak resilience, which are defined as the minimum
sum of link-wise magnitude of disturbances making the perturbed dynamical flow network not fully transferring,
and, respectively, not partially transferring. We prove that the maximum possible resilience with respect to both
notions is yielded by a class oflocally responsivedistributed routing policies, characterized by the property that the
portion of its incoming flow that a node routes towards an outgoing link does not decrease as the particle density
on any other outgoing link increases. Moreover, we show thatthe strong resilience of a dynamical flow network
with such locally responsive distributed routing policiesequals theminimum node residual capacity. The latter is
defined as the minimum, among all the non-destination nodes,of the sum of the difference between the maximum
flow capacity and the initial equilibrium flow on all the linksoutgoing from the node. On the other hand, the
weak resilience of the dynamical flow network equals itsmin-cut capacityand hence is independent of the initial
equilibrium flow. We also formulate a simple convex optimization problem to solve for the most strongly resilient
initial equilibrium flow, and discuss the use of tolls to induce such an initial equilibrium flow in transportation
networks. Our analysis assumes that every link has infinite capacity to hold particles and that the flow is a bounded,
strictly increasing function of the particle density. We report results from numerical simulations illustrating how
violation of these assumptions can result in cascaded spill-backs and possibly affect the network’s resilience.

Stability analysis of network flow control policies under non-persistent disturbances, especially in the context of
internet, has attracted a lot of attention, e.g., see [10], [11], [12], [13]. Recent work on robustness analysis of static
flow networks under adversarial and probabilistic persistent disturbances in the spirit of this paper include [14],
[15], [16]. It is also worth comparing the distributed routing policies studied in this paper with the backpressure
policy [17], which is one of the most well-known robust distributed routing policy for queueing networks. While
relying on local information in the same way as the distributed routing policies studied here, backpressure policies
require the nodes to have, possibly unlimited, buffer capacity. In contrast, in our framework, the nodes have no
buffer capacity. In fact, the distributed routing policiesconsidered in this paper are closely related to the well-known
hot-potatoor deflection routing policies [18] [5, Sect. 5.1], where thenodes route incoming packets immediately
to one of the outgoing links. However, to the best of our knowledge, the robustness properties of dynamical flow
networks, where the outflow from a link is not necessarily equal to its inflow have not been studied before.

The contributions of this paper are as follows: (i) we formulate a novel dynamical system framework for robustness
analysis of dynamical flow networks under local informationconstraint on the routing policies; (ii) we characterize
a general class of distributed routing policies that yield the maximum strong and weak resilience under local
information constraint; (iii) we provide a simple characterization of the resilience in terms of the topology and
the pre-disturbance equilibrium flow of the network. For a given initial equilibrium flow, the class of locally
responsive distributed routing policies can be interpreted as approximate Nash equilibria in an appropriate zero-
sum game setting where the objective of the adversary inflicting the disturbance is to destabilize the network with a
disturbance of minimum possible magnitude and the objective of the system planner is to design distributed routing
policies that yield the maximum possible resilience. The technical results of this paper hinge on tools from several
different fields. The upper bounds on the resilience for a given equilibrium flow use graph theory notions from flow
networks (e.g., see [2]). The properties of the routing functions that give maximum resilience are reminiscent of
cooperative dynamical systems in the sense of [19], [20]. The problem of determining tolls for a desired equilibrium
flow exploits the fact that the associated congestion game isa potential game and that the extremum of the potential
function corresponds to the equilibrium [21], [22].
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The rest of the paper is organized as follows. In Section II, we formulate the problem by formally defining the
notion of a dynamical flow network and its resilience. In Section III, we define the class of locally responsive
distributed routing policies, state the main results on thenetwork resilience, and provide discussions on the results.
Section IV discusses the problem of selection of the most strongly resilient equilibrium flow of the network and
the use of tolls to induce such a desired equilibrium in transportation networks. In Section V, we report illustrative
numerical simulation results. In Sections VI, VII and VIII,we state proofs of the main results on network resilience.
Finally, we conclude in Section IX with remarks on future research directions.

Before proceeding, we define some preliminary notation to beused throughout the paper. LetR be the set of real
numbers,R+ := {x ∈ R : x ≥ 0} be the set of nonnegative real numbers. LetA andB be finite sets. Then,|A|
will denote the cardinality ofA, RA (respectively,RA

+) the space of real-valued (nonnegative-real-valued) vectors
whose components are indexed by elements ofA, and RA×B the space of matrices whose real entries indexed
by pairs of elements inA × B. The transpose of a matrixM ∈ RA×B, will be denoted byMT ∈ RB×A, while
1 the all-one vector, whose size will be clear from the context. Let cl(X ) be the closure of a setX ⊆ RA. If
B ⊆ A, 1B : A → {0, 1} will stand for the indicator function ofB, with 1B(a) = 1 if a ∈ B, 1B(a) = 0 if
a ∈ A \ B. For p ∈ [1,∞], ‖ · ‖p is the p-norm. By default, let‖ · ‖ := ‖ · ‖2 denote the Euclidean norm. Let
sgn : R → {−1, 0, 1} be the sign function, defined bysgn(x) is 1 if x > 0, sgn(x) = −1 if x < 1, andsgn(x) = 0
if x = 0. Conventionally, we shall assume the identityd|x|/dx = sgn(x) to be valid for everyx ∈ R, including
x = 0.

II. DYNAMICAL FLOW NETWORKS AND THEIR RESILIENCE

In this section, we introduce our model of dynamical flow networks and define the notions of transfer efficiency.

A. Dynamical flow networks

We start with the following definition of a flow network.

Definition 1 (Flow network):A flow networkN = (T , µ) is the pair of atopology, described by a finite directed
graph T = (V, E), whereV is the node set andE ⊆ V × V is the link set, and a family offlow functions
µ := {µe : R+ → R+}e∈E describing the functional dependencefe = µe(ρe) of the flow on the density of particles
on every linke ∈ E .

The flow capacityof a link e ∈ E is defined by

fmax
e := sup

ρe≥0
µe(ρe) . (1)

For every nodev ∈ V, we shall denote byE+
v ⊆ E , andE−

v ⊆ E , the set of its outgoing and incoming links,
respectively. Moreover, we shall use the shorthand notation Rv := R

E+
v

+ for the set of nonnegative-real-valued
vectors whose entries are indexed by elements ofE+

v , Fv := ×e∈E+
v
[0, fmax

e ) for the set of admissible flow vectors
on outgoing links from nodev, and Sv := {p ∈ Rv :

∑

e∈E+
v

pe = 1} for the simplex of probability vectors
overE+

v . We shall also use the notationR := RE
+ for the set of nonnegative-real-valued vectors whose entries are

indexed by the links inE , andF := ×e∈E [0, f
max
e ) for the set of admissible flow vectors for the network. We shall

write f := {fe : e ∈ E} ∈ F , andρ := {ρe : e ∈ E} ∈ R, for the vectors of flows and of densities, respectively,
on the different links. The notationf v := {fe : e ∈ E+

v } ∈ Fv, andρv := {ρe : e ∈ E+
v } ∈ Rv will stand for

the vectors of flows and densities, respectively, on the outgoing links of a nodev. We shall compactly denote by
f = µ(ρ) andf v = µv(ρv) the functional relationships between density and flow vectors.

Throughout this paper, we shall restrict ourselves to network topologies satisfying the following:

Assumption 1:The topologyT contains no cycles, has a unique origin (i.e., a nodev ∈ V such thatE−
v is

empty), and a unique destination (i.e., a nodev ∈ V such thatE+
v is empty). Moreover, there exists a path inT to

the destination node from every other node inV.

Assumption 1 implies that one can find a (not necessarily unique) topological ordering of the node setV (see,
e.g., [23]). We shall assume to have fixed one such ordering, identifyingV with the integer set{0, 1, . . . , n}, where
n := |V| − 1, in such a way that

E−
v ⊆

⋃

0≤u<v
E+

u , ∀v = 0, . . . , n . (2)
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In particular, (2) implies that0 is the origin node, andn the destination node in the network topologyT . An
origin-destination cut(see, e.g., [2]) ofT is a partition ofV into U andV \ U such that0 ∈ U andn ∈ V \ U . Let
E+
U = {(u, v) ∈ E : u ∈ U , v ∈ V \ U} be the set of all the links pointing from some node inU to some node in

V \ U . The min-cut capacityof a flow networkN is defined as

C(N ) := min
U

∑

e∈E+

U

fmax
e , (3)

where the minimization runs over all the origin-destination cuts ofT . Throughout this paper, we shall assume a
constant inflowλ0 ≥ 0 at the origin node. Let us define the set ofadmissible equilibrium flowsassociated to an
inflow λ0 as

F∗(λ0) :=

{

f∗ ∈ F :
∑

e∈E+

0

f∗
e = λ0,

∑

e∈E+
v

f∗
e =

∑

e∈E−
v

f∗
e , ∀ 0 < v < n

}

.

Then, it follows from the max-flow min-cut theorem (see, e.g., [2]), thatF∗(λ0) 6= ∅ wheneverλ0 < C(N ). That
is, the min-cut capacity equals the maximum flow that can passfrom the origin to the destination while satisfying
capacity constraints on the links, and conservation of massat the intermediate nodes.

Throughout the paper, we shall make the following assumption on the flow functions:

Assumption 2:For every linke ∈ E , the mapµe : R+ → R+ is continuously differentiable, strictly increasing,
such thatµe(0) = 0, andfmax

e < +∞.

Thanks to Assumption 2, one can define themedian densityon link e ∈ E as the unique valueρµ
e ∈ R+ such

that
µe(ρ

µ
e ) = fmax

e /2. (4)

Example 1 (Flow function):For every link e ∈ E , let ae and fmax
e be positive real constants. Then, a simple

example of flow function satisfying Assumption 2 is given by

µe(ρe) = fmax
e (1 − exp(−aeρe)) .

It is easily verified that the flow capacity isfmax
e , while the median density for such a flow function isρµ

e = a−1
e log 2.

We now introduce the notion of a distributed routing policy used in this paper.
Definition 2 (Distributed routing policy):A distributed routing policyfor a flow networkN is a family of

functionsG := {Gv : Rv → Sv}0≤v<n describing the ratio in which the particle flow incoming in each non-
destination nodev gets split among its outgoing link setE+

v , as a function of the observed current particle density
ρv on the outgoing links themselves.

The salient feature of Definition 2 is that the routing policyGv(ρv) depends only on thelocal informationon the
particle densityρv on the setE+

v of outgoing links of the non-destination nodev. On the other hand, the structural
form of the routing policyG may depend on some global information on the flow network which might have been
accumulated through a slower time-scale evolutionary dynamics. A two time-scale process of this sort has been
analyzed in our related work [8] in the context of transportation networks.

We are now ready to define a dynamical flow network.

Definition 3 (Dynamical flow network):A dynamical flow networkassociated to a flow networkN satisfying
Assumption 1, a distributed routing policyG, and an inflowλ0 ≥ 0, is the dynamical system

d

dt
ρe(t) = λv(t)G

v
e(ρ

v(t)) − fe(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+
v , (5)

where

fe(t) := µe(ρe(t)) , λv(t) :=

{

λ0 if v = 0
∑

e∈E−
v

fe(t) if 0 < v ≤ n.
(6)

Equation (5) states that the rate of variation of the particle density on a linke outgoing from some non-destination
nodev is given by the difference betweenλv(t)G

v
e(ρ

v(t)), i.e., the portion of the incoming particle flow of node
v which is routed to linke, andfe(t), i.e., the particle flow on linke. Observe that the distributed routing policy
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Gv(ρv) induces a local feedback which couples the dynamics of the particle flow on the outgoing links of each
non-destination nodev.

We can now introduce the following notion of transfer efficiency of a dynamical flow network.

Definition 4 (Transfer efficiency of a dynamical flow network): Consider a dynamical flow networkN satisfying
Assumptions 1 and 2. Given some flow vectorf̂ ∈ F , andα ∈ [0, 1], the dynamical flow network (5) is said to be
α-transferringwith respect tof̂ if the solution of (5) with initial conditionρ(0) = µ−1(ρ̂) satisfies

lim inf
t→+∞

λn(t) ≥ αλ0 . (7)

Definition 4 states that a dynamical flow network isα-transferring when the outflow is asymptotically not smaller
thanα times the inflow. In particular, a fully transferring dynamical flow network is characterized by the property
of having outflow asymptotically equal to its inflow, so that there is no throughput loss. On the other hand, a
partially transferring dynamical flow network might allow for some throughput loss, provided that some fraction
of the flow is still guaranteed to be asymptotically transferred.

Observe that a fully transferring dynamical flow network does not necessarily imply that the link-wise flows
necessarily converge to an equilibrium, for it might in principle have a persistently oscillatory or more complex
behavior. Nevertheless, it will prove useful to introduce the notions of equilibrium and limit flow as follows.

Definition 5 (Equilibrium and limit flow of a dynamical flow network): An equilibrium flow for the dynamical
flow network (5) is a vectorf∗ ∈ F∗(λ0) such that

λ∗
vG

v
e(ρ

v) = f∗
e , ∀e ∈ E+

v , ∀0 ≤ v < n , (8)

whereρv
e := µ−1

e (f∗
e ), andλ∗

v = λ0 for v = 0 andλ∗
v =

∑

e∈E−
v

f∗
e for 0 < v < n. A limit flow for the dynamical

flow network (5) is a vectorf∗ ∈ cl(F) such that, for some initial conditionρ(0) ∈ R, the flowf(t) converges to
f∗ as t grows large.

Remark 1:Observe that an equilibrium flowf∗ ∈ F∗(λ0) is always a limit flow, since the solution of the
dynamical flow network (5) with initial conditionρ(0) = µ−1(f∗) stays put for allt ≥ 0, and hence it is trivially
convergent tof∗. On the other hand, if a limit flowf∗ ∈ cl(F) satisfies all the capacity constraints with strict
inequality, i.e., if f∗ ∈ F , then necessarilyf∗ ∈ F∗(λ0) is also an equilibrium flow for (5), i.e., it satisfies
mass conservation equations at all the non-destination nodes. In particular, if a dynamical flow network admits an
equilibrium flow f∗, then it is necessarily fully transferring with respect tof∗, as well as with respect to all the
initial flows f(0) ∈ F which are attracted byf∗.

In contrast, iff∗ ∈ cl(F) \F , i.e., if at least one of the capacity constraints is satisfied with equality, thenf∗ is
not an equilibrium flow for (5). In fact, in this case one has that

∑

e∈E+
v

f∗
e ≤ λ∗

v with possibly strict inequality for
some non-destination node0 ≤ v < n. Hence, the dynamical flow network might still be non fully transferring.
Finally, observe that a limit flowf∗ ∈ cl(F) (and,a fortiori, an equilibrium flow) may not exist for general flow
networksN , and distributed routing policiesG.

Remark 2:Standard definitions in the literature are typically limited to static flow networks describing the particle
flow at equilibrium via conservation of mass. In fact, they usually consist (see e.g., [2]) in the specification of a
topology T , a vector of flow capacitiesfmax ∈ R, and an admissible equilibrium flow vectorf∗ ∈ F∗(λ0) for
λ0 < C(N ) (or, often,f∗ ∈ cl(F∗(λ0)) for λ0 ≤ C(N )).

In contrast, in our model we focus on the off-equilibrium particle dynamics on a flow networkN , induced by a
distributed routing policyG. Existence of an equilibrium of the dynamical flow network (5) depends on the topology
T , the structural form of the flow functionsµ and of the distributed routing policyG, as well as on the inflowλ0.
A necessary condition for that isλ0 < C(N ). In contrast, simple, locally verifiable, sufficient conditions onG for
the existence of an equilibrium flow might be hard to find for complex flow networks. However, in some cases, it is
reasonable to assume the distributed routing policyG to be the outcome of a slow time-scale evolutionary dynamics
with global feedback which can naturally lead to an equilibrium flow f∗ ∈ F∗(λ0). This has been shown, e.g., in
our related work [8] on transportation networks, where the emergence of Wardrop equilibria is proven using tools
from singular perturbation theory and evolutionary dynamics.

On the other hand, as shown in Section III, there is a class of locally responsive distributed routing policies
(as characterized by Definition 8) such the associated dynamical flow network (5) always has a unique limit flow
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f∗ ∈ cl(F) such that, from any initial conditionρ(0) ∈ R, the flow f(t) associated to (5) converges tof∗ as t
grows large. Provided that suchf∗ ∈ F , i.e., such limit flow satisfies the capacity constraints with strict inequality,
this will prove thatf∗ ∈ F∗(λ0), and it is a globally attractive equilibrium for the dynamical flow network (5).

B. Examples

We now present three illustrative applications of the dynamical flow network framework.

(i) Transportation networks: In transportation networks, particles represent driversand distributed routing policies
correspond to their local route choice behavior in responseto the locally observed link congestions. A
desired route choice behavior from a social optimization perspective may be achieved by appropriate incentive
mechanisms. However, we do not address the issue of mechanism design in this paper. Section IV, however,
discusses the use of tolls in influencing the long-term global route choice behavior of drivers to get a desired
initial equilibrium state for the network. The robust distributed routing policies designed in this paper would
correspond to theideal node-wise route choice behavior of the drivers. The flow function µe(ρe) presented
in this paper is related to the notion of fundamental diagramin traffic theory, e.g., see [4]. Note that in our
formulation, we assume that the density of drivers is homogeneous over a link. One can refer to [4] for
models that incorporate inhomogeneity, although the models and their analysis in [4] are developed under
static routing policies. We shall refer to the transportation network setup frequently in the course of the paper.

(ii) Data networks: In data networks, the particles represent data packets that are to be routed from sources to
destinations by routers placed at the nodes (see, e.g., [5, Ch. 5]). Typically the average packet delay from one
router to the other increases with the increase in queue length on the link between the two routers. Hence,
one has that such average delay is given byde(ρe), wherede(ρe) is an increasing function. If one further
assumes that the delay functionde(ρe) is concave and such thatde(ρe) = Ω(ρe)

1 asρe grows large, then the
relationship between the throughput and the queue length,fe ∝ ρe/de(ρe), can be easily shown to satisfy
Assumption 2. Therefore, in analogy with the general framework, ρe andfe denote the queue length and the
throughput, respectively, andµe(ρe) represents the throughput functions on the links of data networks.

(iii) Production networks: In production networks, the particles represent goods that need to be processed by a
series of production modules represented by nodes. It is known, e.g., see [6], that the rate of doing work
decreases with the amount of work in progress at a productionmodule. This relationship is formalized by
the concept ofclearing functions. In this context, production networks have a clear analogy with our setup
whereρe represents the work-in-progress,fe represents the rate of doing work, andµe(ρe) represents the
clearing function.

Remark 3:While there are many examples of congestion-dependent throughput functions and clearing functions
that satisfy Assumption 2, typical fundamental diagrams intransportation systems have a∩-shaped profile. While
we do not study the implications of this analytically, we provide some simulations in Section V to illustrate how
the results of this paper could be extended to this case.

C. Perturbed network and resilience

We shall consider persistent perturbations of the dynamical flow network (5) that reduce the flow functions on
the links, as per the following:

Definition 6 (Admissible perturbation):An admissible perturbationof a flow networkN = (T , µ), satisfying
Assumptions 1 and 2, is a flow network̃N = (T , µ̃), with the same topologyT , and a family of perturbed flow
functionsµ̃ := {µ̃e : R+ → R+}e∈E , such that, for everye ∈ E , µ̃e satisfies Assumption 2, as well as

µ̃e(ρe) ≤ µe(ρe) , ∀ρe ≥ 0 .

We accordingly letf̃max
e := sup{µ̃e(ρ̃e) : ρ̃e ≥ 0}. The magnitudeof an admissible perturbation is defined as

δ :=
∑

e∈E
δe , δe := sup {µe(ρe) − µ̃e(ρe) : ρe ≥ 0} . (9)

1Here, we use the Landau notationf(x) = Ω(g(x)) as x → +∞ to mean that there exists positive constantsK and x0, such that
f(x) ≥ Kg(x) for all x ≥ x0.
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The stretching coefficientof an admissible perturbation is defined as

θ := max{ρ̃µ
e /ρµ

e : e ∈ E} , (10)

whereρµ
e , andρ̃µ

e are the median densities respectively associated to the unperturbed and the perturbed flow function
on link e ∈ E , as defined in (4).

Given a dynamical flow network as in Definition 3, and an admissible perturbation as in Definition 6, we shall
consider theperturbed dynamical flow network

d

dt
ρ̃e(t) = λ̃v(t)G

v
e(ρ̃

v(t)) − f̃e(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+
v , (11)

where

f̃e(t) := µ̃e(ρ̃e(t)) , λ̃v(t) :=

{
∑

e∈E−
v

f̃e(t) if 0 < v < n
λ0 if v = 0 .

(12)

Observe that the perturbed dynamical flow network (11) has the same structure of the original dynamical flow
network (5), as it describes the rate of variation of the particle density on each linke outgoing from some non-
destination nodev as the difference betweeñλv(t)G

v
e(ρ̃

v(t)), i.e., the portion of the incoming perturbed flow of
nodev routed to link e, minus the perturbed flow on linke itself. Notice that the only difference with respect
to the original dynamical flow network (5) is in the perturbedflow function µ̃e(ρe) on each linke ∈ E , which
replaces the original one,µe(ρe). In particular, the distributed routing policyG is the same for the unperturbed and
the perturbed dynamical flow networks. In this way, we model asituation in which the routers are not aware of
the fact that the flow network has been perturbed, but react tothis change only indirectly, in response to variations
of the local density vectors̃ρv(t).

We are now ready to define the following notion of resilience of a dynamical flow network as in Definition 3
with respect to an initial equilibrium flowf∗.

Definition 7 (Resilience of a dynamical flow network):Let N be a flow network satisfying Assumptions 1 and
2, G be a distributed routing policy, andλ0 ≥ 0 be a constant inflow at the origin node. Assume that the associated
dynamical flow network (5) admitsf∗ ∈ F∗(λ0) as an equilibrium flow. For everyα ∈ (0, 1], θ ≥ 1, let γα,θ(f

∗,G)
be equal to the infimum magnitude of all the admissible perturbations of stretching coefficient less than or equal
to θ for which the perturbed dynamical flow network (11) is notα-transferring with respect tof∗. Also, define
γ0,θ(f

∗) := limα↓0 γα,θ(f
∗). For α ∈ [0, 1], the α-resilience with respect tof∗ is defined as2 γα(f∗,G) :=

limθ↑∞ γα,θ . The 1-resilience will be referred to as thestrong resilience, while the0-resilience will be referred to
as theweak resilience.

In the remainder of the paper, we shall focus on the characterization of the strong and weak resilience of dynamical
flow networks. Before proceeding, let us elaborate a bit on Definition 7. Notice that, for everyα ∈ (0, 1], the α-
resilienceγα(f∗,G) is simply the infimum magnitude of all the admissible perturbations such that the perturbed
dynamical network (11) is notα-transferring with respect to the equilibrium flowf∗. In fact, one might think
of γα(f∗,G) as the minimum effort required by a hypothetical adversary in order to modify the dynamical flow
network from (5) to (11), and make it notα-transferring, provided that such an effort is measured in terms of the
magnitude of the perturbationδ =

∑

e∈E ||µe( · ) − µ̃e( · )||∞. For α = 0, trivially the perturbed network flow is
always0-transferring with respect to any initial flow. For this reason, the definition of the weak resilienceγ0(f

∗)
involves the double limitlimθ↑∞ limα↓0 γα,θ: the introduction of the bound on the stretching coefficientof the
admissible perturbation is a mere technicality whose necessity will become clear in Section VIII-B.

Remark 4 (Zero-sum game interpretation):The notions of resilience are with respect to adversarial perturbations.
Therefore, one can provide a zero-sum game interpretation as follows. Let the strategy space of the system planner be
the class of distributed routing policies and the strategy space of an adversary be the set of admissible perturbations.
Let the utility function of the adversary beMΘ − δ, whereM is a large quantity, e.g.,

∑

e∈E fmax
e , andΘ takes

the value1 if the network is notα-transferring under given strategies of the system plannerand the adversary, and

2It is easily seen that the limits involved in this definition always exist, asγα,θ is clearly nonincreasing inα (the higherα, the more
stringent the requirement ofα-transfer) andθ (the higherθ, the more admissible perturbations are considered that maypotentially make the
dynamical flow network to be notα-transferring).
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zero otherwise. Let the utility function of the system planner beδ − MΘ. As stated in Section III, a certain class
of locally responsivedistributed routing policies, characterized by Definition8, is maximally robust with respect
to both notions of weak and strong resilience. This will thenshow that the locally responsive distributed routing
policies correspond to approximate Nash equilibria in thiszero-sum game setting.

III. M AIN RESULTS AND DISCUSSION

In this paper, we shall be concerned with the characterization of maximally robustdistributed routing policies.
That is, for a given flow networkN , and inflow λ0 ∈ [0, C(N )), we shall study a class of distributed routing
policiesG which have the maximum margin both weak and strong resilience under local information constraint.

The candidate class of such maximally robust distributed routing policy is characterized by the following.

Definition 8 (Locally responsive distributed routing policy): A locally responsivedistributed routing policy for
a flow network topologyT = (V, E) with node setV = {0, 1, . . . , n} is a family of continuously differentiable
distributed routing functionsG = {Gv : Rv → Sv}v∈V such that, for every non-destination node0 ≤ v < n:

(a)
∂

∂ρe
Gv

j (ρ
v) ≥ 0 , ∀j, e ∈ E+

v , j 6= e , ρv ∈ Rv ;

(b) Gv
e(ρ

v) > 0, for everye ∈ E+
v , ρv ∈ Rv;

(c) for every nonempty proper subsetJ ( E+
v , there exists a continuously differentiable mapGJ : RJ → SJ ,

whereRJ := RJ
+ , andSJ := {p ∈ RJ :

∑

j∈J pj = 1} is the simplex of probability vectors overJ ,
such that, for everyρJ ∈ RJ , if ρv

e → +∞ for all e ∈ E+
v \ J andρj → ρJj for all j ∈ J , then

Gv
e(ρ

v) → 0, ∀e ∈ E+
v \ J , Gv

j (ρ) → GJ
j (ρJ ), ∀j ∈ J .

Property (a) in Definition 8 states that, as the particle density on an outgoing linke ∈ E+
v increases while the

particle density on all the other outgoing links remains constant, the fraction of incoming particle flow of nodev
routed to any linkj ∈ E+

v \{e} does not decrease, and hence the fraction of incoming particle flow routed to linke
itself does not increase. In fact, Property (a) in Definition8 is reminiscent of the definition ofcooperative dynamical
systemsin the sense of [19], [20]. Property (b), instead, implies that for every observed local densityρv ∈ Rv,
every link e ∈ E+

v gets a nonzero fraction of the incoming particle flow of nodev. On the other hand, Property (c)
implies that the fraction of incoming particle flow routed toa subset of outgoing linksJ ⊂ E+

v vanishes as the
density on links inJ grows unbounded while the density on the remaining outgoinglinks remains bounded.

Example 2 (Locally responsive distributed routing policy): An example of a locally responsive distributed rout-
ing policy corresponding to an equilibrium flow vectorf * = µ(ρ* ) ∈ F∗(λ0) is given by

Gv
e(ρ) =

f *
e exp(−η(ρe − ρ*

e))
∑

j∈E+
v

f *
j exp(−η(ρj − ρ*

j))
, ∀e ∈ E+

v , ∀0 ≤ v < n , (13)

whereη > 0 is a constant. Computing partial derivatives one gets

∂

∂ρj

Ge(ρ
v) = η

f *
e f *

j exp(−η(ρe − ρ*
e)) exp(−η(ρj − ρ*

j))
(
∑

i∈E+
v

f *
i exp(−η(ρi − ρ*

i ))
)2 ≥ 0 ∀e, j ∈ E+

v , e 6= j , (14)

so that Property (a) of Definition 8 holds true. Properties (b) and (c) are also easily verified. In the context
of transportation networks, the example in (13) is a variantof the logit function from discrete choice theory
emerging from utilization maximization perspective of drivers, where the utility associated with linke is the sum
of ρ*

e − ρe + log f *
e/η and a double exponential random variable with parameterη (see, e.g., [24]).

We are now ready to state our main results. The first one shows that, when the distributed routing policyG is
locally responsive, the dynamical flow network (5) always admits a unique, globally attractive limit flowf∗ ∈ cl(F).

Theorem 1 (Existence of a globally attractive limit flow under locally responsive routing policies):Let N be a
flow network satisfying Assumptions 1 and 2,λ0 ≥ 0 a constant inflow, andG a locally responsive distributed
routing policy. Then, there exists a unique limit flowf∗ ∈ cl(F) such that, for every initial conditionρ(0) ∈ R,
the flow f(t) associated to the dynamical flow network (5) converges tof∗ as t grows large.

Proof: See Section VI.



9

0

1

2
λ0

e1

e2

e3

e4

Fig. 1. The network topology used in Example 3.

The following is an immediate consequence of Theorem 1 and Remarks 1 and 2.

Corollary 1: Let N be a flow network satisfying Assumptions 1 and 2,λ0 ≥ 0 a constant inflow, andG a locally
responsive distributed routing policy. If the limit flowf∗ ∈ F , then it is a globally attractive equilibrium flow for
the dynamical network flow (5).

We start by providing a characterization of the strong resilience of the dynamical flow network. Towards this,
for a flow networkN , and an equilibrium flow vectorf * ∈ F∗, define theminimum node residual capacityas

R(N , f * ) := min
0≤v<n

{

∑

e∈E+
v

(

fmax
e − f *

e

)

}

. (15)

Theorem 2 (Strong resilience):Let N be a flow network satisfying Assumptions 1 and 2,λ0 ≥ 0 a constant
inflow, and G a distributed routing policy. Assume that the associated dynamical flow network (5) admits an
equilibrium flowf∗ ∈ F∗(λ0). Then, its strong resilience satisfiesγ1(f

* ,G) ≤ R(N , f * ) . Moreover, ifG is locally
responsive, thenγ1(f

∗,G) = R(N , f * ) .
Proof: See Section VII.

For a given flow networkN , a constant inflowλ0, Theorem 2 shows that any locally responsive distributed
routing policyG such that the associated dynamical flow network (5) admits anequilibrium flow f∗ ∈ F∗, has
strong resilienceR(N , f∗) larger than or equal to that of any distributed routing policy whose associated dynamical
flow network admits the same equilibrium flowf∗. It is worth stressing that the minimum node residual capacity
R(N , f∗) depends both on the flow networkN , and on the equilibrium flowf∗. While the proof of upper bound
on γ1(f

* ,G) for an arbitrary distributed routing policyG is relatively straightforward (see Lemma 5 in Section
VII), the fact thatγ1(f

* ,G) = R(N , f∗) when the distributed routing policy responds to local variations in the
density is nontrivial, as illustrated in the following Example.

Example 3:Consider the topology illustrated in Figure 1, withλ0 = 2, flow functions as in Example 1 with
a1 = a2 = a3 = a4 = 1 and fmax

e1
= fmax

e2
= 2, fmax

e3
= fmax

e4
= 0.75. First consider the case whenG0

e1
(ρ0) =

1 − G0
e2

(ρ0) ≡ 0.75, and G1
e3

(ρ1) = 1 − G1
e4

(ρ1) ≡ 0.5. One can verify that the associated dynamical flow
network has a unique equilibrium flowf∗ with f *

e1
= 1.5, f *

e2
= 0.5, andf *

e3
= f *

e3
= 0.25. Now, consider an

admissible perturbation such thatµ̃e1
= 0.7µe1

and µ̃ek
= µek

for k = 2, 3, 4. The magnitude of such perturbation
is δ = δe1

= 0.6. It is easy to see that in this caselimt→∞ f̃e1
(t) = 1.4 = f̃max

e1
which is less than1.5, which is

the the flow routed to it. Therefore,limt→∞ λ̃2(t) = 1.9 < λ0, and hence the network is not fully transferring.
Now, consider the same (unperturbed) flow network as before,but with distributed routing policies such that

G0
e1

(ρ0) = 1−G0
e2

(ρ0) = 2e−0.031ρ1/(2e−0.031ρ1 +e0.7196ρ2) andG1
e3

(ρ1) = 1−G1
e4

(ρ1) ≡ 0.5. One can verify that
the associated dynamical flow network again admits the samef∗ as before as an equilibrium flow. Let us consider
the same admissible perturbation as before. One can verify that, for the corresponding perturbed dynamical flow
network, limt→∞ f̃e1

(t) = 0.4 < f̃max
e1

= 1.4 and limt→∞ f̃e2
(t) = 1.6 < f̃max

e2
= 2. However, with an asymptotic

arrival rate of1.6 at node1, we have thatlimt→∞ f̃e3
(t) = 0.75 = f̃max

e3
and limt→∞ f̃e4

(t) = 0.75 = f̃max
e4

.
Therefore,limt→∞ λ̃2(t) = 1.9 < λ0, and hence the network is not fully transferring.

In both the cases,R(N , f∗) = 1 and a disturbance of magnitude0.6 is enough to ensure that the perturbed
dynamical flow network is not fully transferring. However, note that in the second case, unlike the first case, the
routing policy at node0 responds to variations in the local flow densities by sendingmore flow to linke2, but it is
overly responsive in the sense that it sends more flow downstream than the cumulative flow capacity of the links
outgoing from node1. However, by Definition 2, a distributed routing policy is not allowed any information about
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Fig. 2. (a) A parallel link topology. (b) A topology to illustrate arbitrarily largeC(N ) − R(N , f∗).

any other link other than the current flow densities of its outgoing links. This illustrates one of the challenges in
designing distributed routing policies which yieldR(N , f∗) as the strong resilience. One can verify thatG0 used
in the first case, does not satisfy Property (c) of Definition 8and, in the second case, it does not satisfy Properties
(a) and (c).

Example 3 illustrates that a candidate maximally robust distributed routing policy has to respond to variations in
the local flow densities, but not respond excessively. We will formalize these features and show that they are satisfied
by locally responsive distributed routing policies. We nowpass to the characterization of the weak resilience.

Theorem 3 (Weak resilience):LetN be a flow network satisfying Assumptions 1 and 2,λ0 ≥ 0 a constant inflow,
andG a distributed routing policy. Assume that the associated dynamical flow network (5) admits an equilibrium
flow f∗ ∈ F∗(λ0). Then, the weak resilience satisfiesγw(f∗,G) ≤ C(N ). Moreover, ifG is locally responsive,
thenγw(f∗,G) = C(N ).

Proof: See Section VIII.

Theorem 3 shows that, given a flow networkN , a constant inflowλ0, the min-cut capacityC(N ) is the maximum
weak resilience over all distributed routing policies. It also shows that locally responsive distributed routing policies,
as in Definition 8, are maximally robust with respect to the weak resilience notion. Notice that the maximum weak
resilience coincides with the min-cut capacity, and hence it depends on the flow networkN only, and not on the
initial equilibrium f∗.

A few remarks are in order. First, it is worth comparing strong and weak resilience. Clearly, the former cannot
exceed the latter, as can be also directly verified from the definitions (15) and (3): for this, it is sufficient to consider

U∗ ∈ argmin
U origin-destination cut

{

∑

e∈E+

U

fmax
e

}

, v∗ ∈ argmax
v∈U∗

{

∑

e∈E+
v

(fmax
e − f∗

e )
}

,

and observe that, since
∑

e∈E+

U∗
f *

e = λ0 by conservation of mass, andE+
v∗ ⊆ E+

U∗ , one has

C(N ) − λ0 =
∑

e∈E+

U∗

fmax
e − λ0 =

∑

e∈E+

U∗

(fmax
e − f *

e ) ≥
∑

e∈E+

v∗

(fmax
e − f *

e ) = R(N , f∗) .

We provide below two examples to illustrate the difference between the two quantities.

Example 4:For parallel link topologies, an example of which is illustrated in Figure 2 (a), one has that
R(N , f∗) =

∑

e∈E fmax
e − λ0 = C(N ) − λ0.

Example 5:Consider the topology shown in Figure 2 (b) withλ0 = 1, f * = [ǫ, 1 − ǫ, ǫ, 1 − ǫ] and fmax
e =

[1/ǫ, 1, 1/ǫ, 1] for someǫ ∈ (0, 1). In this case, we have thatC(N ) = 1 + 1/ǫ and R(N , f * ) = ǫ. Therefore,
C(N ) − R(N , f * ) = 1 + 1/ǫ − ǫ, and henceC(N ) − R(N , f * ) grows unbounded asǫ vanishes.

We conclude this section with the following observation. Using arguments along the lines of those employed in
[8], it is not hard to show thatC(N ) − λ0 provides an upper bound on the strong resilience even if the locality
constraint on the information used by the routing policies is removed, i.e., if one allowsGv to depend on the full
vector of current densitiesρ, rather than on the local density vectorρv only. Indeed, one might exhibit routing
policies which are functions of the global density information ρ, for which the strong resilience is exactlyC(N )−λ0

using ideas developed in the companion paper [8]. Hence, onemay interpret the gapC(N )−λ0−R(N , f *) as the
strong resilience loss due to the locality constraint on theinformation available to the distributed routing policies.
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One could use Example 5 to again demonstrate arbitrarily large such loss due to the locality constraint on the
information available to the routing policies. In fact, it is possible to consider intermediate levels of information
available to the routing policies, which interpolate between the one-hop information of our current modeling of the
network, and the global information described above.

IV. ROBUST EQUILIBRIUM SELECTION

In this section, for a given flow networkN satisfying Assumptions 1 and 2, a constant inflowλ0 ∈ [0, C(N )),
and locally responsive distributed routing policies, we shall address the issue of optimizing the maximum strong
resilience of the associated dynamical flow network,R(N , f∗) with respect to the initial equilibrium flowf∗ (recall
that the corresponding weak resilienceC(N ) is independent off∗). First, in Section IV-A, we shall address the
issue of maximizingR(f∗) := R(N , f∗) over all admissible equilibrium flow vectorsf∗ ∈ F∗(λ0), i.e., with the
only constraints given by the link capacities and the conservation of mass. Then, in Section IV-B we shall focus on
the transportation network case of Section II-B, and address the problem of optimizingR(f∗) indirectly, assuming
thatf∗ satisfies the additional constraint of being an equilibriuminfluenced by some static tolls. Finally, in Section
IV-C, we shall evaluate the gap between the strong resilience associated to the maximizer ofR(f∗) and a generic
equilibrium f∗, and interpret it as the robustness price of anarchy with respect tof∗.

A. Robust equilibrium selection as an optimization problem

The robust initial equilibrium condition selection problem can be posed as an optimization problem as follows:

R∗ := sup
f∗∈F∗(λ0)

R(f∗) , (16)

where we recall thatF∗(λ0) is the set of admissible equilibrium flow vectors corresponding to the inflowλ0 ∈
[0, C(N )). Equation (15) implies thatR(f *) is the minimum of a set of functions linear inf * , and hence is concave
in f * . Since the closure of the constraint setF∗(λ0) is a polytope, we get that the optimization problem stated in
(16) is equivalent to a simple convex optimization problem.However, note that the objective function,R(f * ) is
non-smooth and one needs to use sub gradient techniques, e.g., see [25], for finding the optimal solution.

B. Using tolls for equilibrium implementation in transportation networks

In this section, we study the use of static tolls to influence the decisions of the drivers in order to get a desired
emergent equilibrium condition for (unperturbed) transportation networks. The static tolls affect the driver decisions
over a slower time scale at which the drivers update their preferences for global paths through the network. These
global decisions are complemented by thefast-scalenode-wise route choice decisions characterized by Definition
2 and 8. The details of the analysis of the transportation network with such two time-scale driver decisions can
be found in our companion paper [8]. In particular, we show that when the time scales are sufficiently separated
apart, then the network densities converge to a neighborhood of Wardrop equilibrium. In this section, in order to
highlight the relationship between static tolls and the resultant equilibrium point, we assume that the fast scale
dynamics equilibrates quickly and focus only on the slow scale dynamics.

We briefly describe the congestion game framework for transportation networks to formalize the equilibrium
corresponding to the slow scale driver decision dynamics. Let Υ ∈ R be the link-wise vector of tolls, withΥe

denoting the toll on linke. Assuming thatΥ is rescaled in such a way that one unit of toll corresponds to aunit
amount of delay, the utility of a driver associated with linke when the flow on it isfe is − (Te(fe) + Υe), where
Te(fe) is the delay on linke ∈ E when the flow through it isfe. Let P be the set of distinctpaths from node0
to noden. The utility associated with a pathp ∈ P is −

∑

e∈p (Te (fe) + Υe). In order to formally describe the
functionsTe(fe), we shall assume that each flow functionµe satisfies Assumption 2, and additionally is strictly
concave and satisfiesµ′

e(0) < +∞. Observe that the flow function described in Example 1 satisfies these additional
assumptions. Since the flow on a link is the product of speed and density on that link, one can define the link-wise
delay functionsTe by

Te(fe) :=







+∞ if fe ≥ fmax
e ,

µ−1
e (fe)/fe if fe ∈ (0, fmax

e ),
1/µ′

e(0) if fe = 0,
∀e ∈ E . (17)
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Let T (f) = {Te(fe) : e ∈ E} be the vector of link-wise delay functions. We are now ready to define atoll-induced
equilibrium.

Definition 9 (Toll-induced equilibrium):For a givenΥ ∈ R, a toll-induced equilibrium is a vectorf * (Υ) ∈ F∗

that satisfies the following for allp ∈ P:

fe > 0 ∀e ∈ p =⇒
∑

e∈p

(Te (fe) + Υe) ≤
∑

e∈q

(Te (fe) + Υe) ∀q ∈ P.

Note that,f *(0) corresponds to a Wardrop equilibrium, e.g., see [26], [21],where0 is a vector all of whose entries
are zero. For brevity in notation, we shall denote the Wardrop equilibrium. The following result guarantees the
existence and uniqueness of a toll-induced equilibrium.

Proposition 1 (Existence and uniqueness of toll-induced equilibrium): Let N be a flow network satisfying As-
sumptions 1 and 2 andλ0 ∈ [0, C(N )) a constant inflow. Assume additionally that the flow functionµe is strictly
concave and satisfiesµ′

e(0) < +∞ for every link e ∈ E . Then, for every toll vectorΥ ∈ R, there exists a unique
toll-induced equilibriumf∗(Υ) ∈ F∗.

Proof: It follows from Assumption 2, strict concavity and the assumption µ′
e(0) < +∞ on the flow functions

that, for alle ∈ E , the delay functionTe(fe), as defined by (17), is continuous, strictly increasing, andis such that
Te(0) > 0. The Proposition then follows by applying Theorems 2.4 and 2.5 from [27].

In this subsection, to illustrate the proof of concept, we will focus on equilibrium flowsf∗ each of whose
components is strictly positive and less than the flow capacities of the corresponding links. LetA ∈ {0, 1}P×E be
the path-link incidence matrix, i.e., for alle ∈ E andp ∈ P, Ap,e = 1 if e ∈ p and zero otherwise. The results for a
genericf∗ ∈ F∗ follow along similar lines. Definition 9 implies that forf∗(Υ) ∈ R, with f∗

e (Υ) > 0 for all e ∈ E ,
to be the toll-induced equilibrium corresponding to the toll vectorΥ ∈ R is equivalent toA (T (f∗(Υ)) + Υ) = ν1,
for someν > 0. We shall use this fact in the next result, where we compute tolls to get a desired equilibrium.

Proposition 2 (Tolls for desired equilibrium):Let N be a flow network satisfying Assumptions 1 and 2 and
λ0 ∈ [0, C(N )) a constant inflow. Assume additionally that the flow functionµe is strictly concave and satisfies
µ′

e(0) < +∞ for every link e ∈ E . Assume that the Wardrop equilibriumfW is such thatfW
e > 0 for all e ∈ E . Let

f * ∈ F∗, with f∗
e ∈ (0, fmax

e ) for all e ∈ E , be the desired toll-induced equilibrium flow vector. DefineΥ(f) ∈ R
by

Υ(f) =

(

max
e∈E

Te(fe)

Te(fW
e )

)

T (fW) − T (f) . (18)

Thenf∗ is the desired toll-induced equilibrium associated to the toll vector Υ(f∗).
Proof: SincefW is the Wardrop equilibrium, corresponding to the toll vector Υ = 0, we have that

AT (fW) = ν11, (19)

for someν1 > 0. For f * to be the toll-induced equilibrium associated to the toll vector Υ ∈ R, one needs to find
ν2 > 0 such that

A
(

T (f *) + Υ
)

= ν21. (20)

Using (19) and simple algebra, one can verify that (20) is satisfied with Υ(f *) as defined in (18) andν2 =

ν1 ·
(

maxe∈E
Te(f∗

e )
Te(fW

e )

)

.

Remark 5:The toll vector yielding a desired equilibrium operating condition is not unique. In fact, any toll of
the formΥ(f * ) = cT (fW) − T (f * ), with c ≥ max{Te(f

*
e )/Te(f

W
e ) : e ∈ E} would inducef * as the toll-induced

equilibrium. Proposition 2 gives just one such toll vector.

C. The robustness price of anarchy

Conventionally, transportation networks have been viewedas static flow networks, where a given equilibrium
traffic flow is an outcome of driver’s selfish behavior in response to the delays associated with various paths and the
incentive mechanisms in place. The price of anarchy [28] hasbeen suggested as a metric to measure how sub-optimal
a given equilibrium is with respect to the societal optimal equilibrium, where the societal optimality is related to
the average delay faced by a driver. In the context of robustness analysis of transportation networks, it is natural to
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consider societal optimality from the robustness point of view, thereby motivating a notion of the robustness price of
anarchy. Formally, for af * ∈ F∗(λ0), define the robustness price of anarchy asP

(

f *
)

:= R∗−R
(

f *
)

. It is worth
noting that, for a parallel topology, we have thatR∗ = R

(

f *
)

=
∑

e∈E fmax
e − λ0 for all f * . That is, the strong

resilience is independent of the equilibrium operating condition and hence, for a parallel topology,P
(

f *
)

≡ 0.
However, for a general topology and a general equilibrium, this quantity is non-zero. This can be easily justified,
for example, for robustness price of anarchy with respect tothe Wardrop equilibrium: a Wardrop equilibrium is
determined by the delay functionsTe(fe) as well as the topology of the network, whereas the maximizerof R(f∗)
depends only on the topology and the link-wise flow capacities of the network, as implied by the optimization
problem in (16). In fact, as the following example illustrates, for a non-parallel topology, the robustness price of
anarchy with respect to Wardrop equilibrium can be arbitrarily large.

Example 6 (Arbitrarily large robustness price of anarchy with respect to Wardrop equilibrium):Consider the net-
work topology shown in Figure 1. Let the link-wise flow functions be the one given by Example 1. The delay
function is then given byTe(0) = (aef

max
e )−1, Te(fe) = − 1

aefe
log(1−fe/f

max
e ) for fe ∈ (0, fmax

e ) andTe(fe) = +∞
for fe ≥ fmax

e . Fix someǫ ∈ (0, 1) and let λ0 = 1/ǫ. Let the parameters of the flow functions be given by

fmax
e1

= fmax
e2

= 1/ǫ + ǫ, fmax
e3

= fmax
e4

= 1/(2ǫ) + ǫ/2, a1 = 1, a2 = a3 = a4 =
(

3ǫ
1−ǫ

)

log
(

ǫ+ǫ2

1+ǫ2

)

/ log
(

1+ǫ2−ǫ
1+ǫ2

)

.

For these values of the parameters, one can verify that the unique Wardrop equilibrium is given byfW =
[1 1/ǫ−1 1/(2ǫ)−1/2 1/(2ǫ)−1/2]T . The strong resilience offW is then given byR(N , fW) = min{2/ǫ+
2ǫ−1/ǫ, 1/ǫ+ǫ−(1/ǫ−1)} = 1+ǫ. One can also verify that, for this case,R∗ = 1/ǫ+2ǫ which would correspond
to f * = [1/ǫ 0 0 0]T . Therefore,P (fW) = 1/ǫ + 2ǫ − (1 + ǫ) = 1/ǫ + ǫ − 1 which tends to+∞ as ǫ → 0+.

V. SIMULATIONS

In this section, through numerical experiments, we study the case when the flow functions are set to the ones
commonly accepted in the transportation literature, e.g.,see [4]. In transportation literature, the flow functions are
defined over a finite interval of the form[0, ρmax

e ], whereρmax
e is the maximum traffic density that linke can handle.

Additionally, µe is assumed to be strictly concave and achieves its maximum in(0, ρmax
e ). For example, consider

the following:

µe(ρe) =
4fmax

e ρe(ρ
max
e − ρe)

(ρmax
e )2

, ρe ∈ [0, ρmax
e ]. (21)

An important implication of the finite capacity on the trafficdensities is the possibility of cascadedspill-backs
traveling upstream as follows. When the density on a link reaches its capacity, its outflow permanently becomes
zero and hence the link is effectively cut out from the network. When all the outgoing links from a particular node
are cut out, it makes the outflow on all the incoming links to that node zero. Eventually, theseupstreamlinks might
possibly reach their capacity on the density and cutting themselves off permanently and cascading the effect further
upstream. We shall show how such cascaded effects possibly reduce the resilience.

Another important differentiating feature of the flow functions given by (21) with respect to the flow functions
satisfying Assumption 2 is that the flow functions corresponding to (21) are not strictly increasing. As a result,
one cannot readily claim that the locally responsive distributed routing policies are maximally robust for this case.
However, we illustrate via simulations that, with additional assumptions, the locally responsive distributed routing
policies considered in this paper could possibly be maximally robust. However, one can show that the upper bound
on the strong and weak resiliences, as given by Theorems 2 and3 hold true even in this case. For the simulations,
we selected the following parameters:

• the graph topologyT shown in Figure 3.
• λ0 = 3.
• let ρmax

e = 3 for all e ∈ E , and flow capacities given byfmax
e1

= fmax
e2

= fmax
e3

= 2.5, fmax
e4

= 0.9, fmax
e5

= 1.75,
fmax

e6
= fmax

e11
= fmax

e13
= 1, fmax

e7
= fmax

e8
= 0.7, fmax

e9
= 0.4, fmax

e10
= fmax

e12
= 1.5, fmax

e14
= 2, andfmax

e15
= 1.6. The

link-wise flow functions are as given in (21), ife ∈ E−
n or if ρ < ρmax

e′ for at least onedownstreamedgee′,
i.e., e′ ∈ E such thate ∈ E−

v ande′ ∈ E+
v for somev ∈ {1, . . . , n − 1}, and the flow functions are uniformly

zero otherwise;
• the equilibrium flowf∗ has componentsf∗

e1
= f∗

e3
= f∗

e6
= 0.5, f∗

e2
= 2, f∗

e4
= f∗

e13
= 0.3, f∗

e5
= 1.5,

f∗
e7

= f∗
e8

= 0.25, f∗
e9

= 0.2, f∗
e10

= f∗
e12

= 0.9, f∗
e11

= 0.2, f∗
e13

= 0.3, f∗
e14

= 1.1, andf∗
e15

= 0.7;
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Fig. 3. The graph topology used in simulations.

• for the route choice function, a modified version of (13) is used. The modification is done to respect the finite
traffic density constraint on the links. The modified route choice policy is

Gv
e(ρ

v) =
f *

e exp(−η(ρe − ρ∗e))1[0,ρmax
e ](ρe)

∑

j∈E+
v

f *
j exp(−η(ρj − ρ∗j))1[0,ρmax

j ](ρj)
,

whereη will be a variable parameter for the simulations.

One can verify that, with these parameters, the minimum noderesidual capacity, and hence an upper bound
on the strong resilience, as defined by (15) is0.75. One can also verify that the maximum flow capacity of the
network, and hence an upper bound on the weak resilience, is5.2.

A. Effect ofη on the strong resilience

Consider an admissible perturbation such thatµ̃e10
= 8

15µe10
and µ̃ek

= µk for all k ∈ {1, . . . , 15} \ {10}. As
a result,δe10

= 0.7 and δek
= 0 for all k ∈ {1, . . . , 15} \ {10}. Therefore, the magnitude of the perturbation

is δ = 0.7. Note that this value is less than the minimum node residual capacity of the network. We found that
limt→∞ λe8

(t) = 0 for all η < 0.25, and limt→∞ λe8
(t) = λ0 = 3 for all η ≥ 0.25. The role ofη in the strong

resilience is best understood by concentrating on a parallel topology consisting of edgese10 and e12 with arrival
rateλ∗

e4
. Using similar techniques as in the proof of Theorem 2, one can show the existence of a new equilibrium

for this local system. However, this equilibrium is not attractive from a configuration where at least one ofρ̃e10
or

ρ̃e12
is at ρmax

e10
or ρmax

e12
, respectively. Forη < 0.25, ρ̃e10

reachesρmax
e10

, whereas forη ≥ 0.25, neitherρ̃e10
nor ρ̃e12

hit the maximum density capacity and the system is attractedtowards the new equilibrium.

B. Effect of cascaded shutdowns on the weak resilience

Consider an admissible disturbance such thatµ̃e4
= 2

9µe4
, µ̃e5

= 23
35µe5

, µ̃e6
= 4

5µ6, µ̃e7
= 2

7µe7
, µ̃e8

= 2
7µe8

,
µ̃e9

= 1
2µe9

, µ̃e10
= 3

5µe10
, µ̃e12

= 8
15µe12

and µ̃k = µk for k = {1, 2, 3, 11, 13, 14, 15}. As result,δe4
= 0.7, δe5

=
0.6, δe6

= 0.2, δe7
= 0.5, δe8

= 0.5, δe9
= 0.2, δe10

= 0.6, δe12
= 0.7 andδek

= 0 for k = {1, 2, 3, 11, 13, 14, 15}.
Therefore,δ = 4, which is less than the min-cut flow capacity of the network. For this case, it is observed that,
limt→∞ λe8

(t) = 0 independent of the value ofη. This can be explained as follows. For the given disturbance, we
have thatf̃max

e10
+ f̃max

e12
= 1.7 < 1.8 = f∗

e10
+ f∗

e12
. Therefore, after finite timet1, we have that̃ρe10

(t) = ρmax
e10

and
ρ̃e12

(t) = ρmax
e12

for all t ≥ t1. As a consequence, we have that,f̃e4
(t) = 0 and f̃e5

(t) = 0 for all t ≥ t1. One can
repeat this argument to conclude that, for the given disturbance, after finite time,̃ρek

for k = 1, . . . , 9 reach and
remain at their maximum density capacities. As a consequence, after such a finite time,̃fe1

(t)+ f̃e2
(t)+ f̃e3

(t) = 0
and hence,limt→∞ λe8

(t) = 0, i.e., the network is not partially transferring. This example illustrates that the
cascaded effects can potentially reduce the weak resilience of a dynamical flow network.
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VI. PROOF OFTHEOREM 1

Let N be a flow network satisfying Assumptions 1 and 2,G a locally responsive distributed routing policy, and
λ0 ≥ 0 a constant inflow. We shall prove that there exists a uniquef∗ ∈ cl(F) such that the flowf(t) associated
to the solution of the dynamical flow network (5) converges tof∗ as t grows large, for every initial condition
ρ(0) ∈ R. We shall proceed by proving a series of intermediate results some of which will prove useful also in
the following sections.

First, given an arbitrary non-destination node0 ≤ v < n, we shall focus on the input-output properties of the
local system

d

dt
ρe(t) = λ(t)Gv

e(ρ
v(t)) − fe(t) , fe(t) = µe(ρe(t)) , ∀e ∈ E+

v , (22)

whereλ(t) is a nonnegative-real-valued, Lipschitz continuous input, andf v(t) := {fe(t) : e ∈ E+
v } is interpreted

as the output. We shall first prove existence (and uniqueness) of a globally attractive limit flow for the system (22)
under constant input. We shall then extend this result to show the existence and attractivity of a local equilibrium
point under time-varying, convergent local input. Finally, we shall exploit this local input-output property, and the
assumption of acyclicity of the network topology in order toestablish the main result.

The following is a simple technical result, which will proveuseful in order to apply Property (a) of Definition 8.
Lemma 1:Let 0 ≤ v < n be a nondestination node, andGv : Rv → Sv a continuously differentiable function

satisfying Property (a) of Definition 8. Then, for anyσ, ς ∈ Rv,
∑

e∈E+
v

sgn(σe − ςe) (Gv
e(σ) − Gv

e(ς)) ≤ 0. (23)

Proof: Consider the setsK := {e ∈ E+
v : σe > ςe}, J := {e ∈ E+

v : σe ≤ ςe}, andL := {e ∈ E+
v : σe < ςe}.

DefineGK(ζ) :=
∑

k∈K Gv
k(ζ), GL(ζ) :=

∑

l∈L Gv
l (ζ), andGJ (ζ) :=

∑

j∈J Gv
j (ζ). We shall show that, for any

σ, ς ∈ Rv,
GK(σ) ≤ GK(ς), GL(σ) ≥ GL(ς) . (24)

Let ξ ∈ Rv be defined byξk = σk for all k ∈ K, and ξe = ςe for all e ∈ E+
v \ K. We shall prove that

GK(σ) − GK(ς) ≤ 0 by writing it as a path integral of∇GK(ζ) first along the segmentSK from ς to ξ, and then
along the segmentSL from ξ to σ. Proceeding in this way, one gets

GK(σ) − GK(ς) =

∫

SK

∇GK(ζ) · dζ +

∫

SL

∇GK(ζ) · dζ = −

∫

SK

∇GJ (ζ) · dζ +

∫

SL

∇GK(ζ) · dζ , (25)

where the second equality follows from the fact thatGK(ζ) = 1 − GJ (ζ) sinceGv(ζ) ∈ Sv. Now, Property (a)
of Definition 8 implies that∂GK(ζ)/∂ζl ≥ 0 for all l ∈ L, and∂GJ (ζ)/∂ζk ≥ 0 for all k ∈ K. It follows that
∇GJ (ζ) · dζ ≥ 0 alongSK, and∇GK(ζ) · dζ ≤ 0 alongSL. Substituting in (25), one gets the first inequality in
(24). The second inequality in (24) follows by similar arguments. Then, one has

∑

e∈E+
v

sgn(σe − ςe) (Gv
e(σ) − Gv

e(ς)) = GK(σ) − GK(ς) + GL(ς) − GL(σ) ≤ 0 ,

which proves the claim.

We can now exploit Lemma 1 in order to prove the following key result guaranteeing that the solution of the
local dynamical system (22) with constant inputλ(t) ≡ λ converges to a limit point which depends on the value
of λ but not on the initial condition. For the ease of presentation, let us define

λmax :=
∑

e∈E+
v

fmax
e .

Lemma 2:Let 0 ≤ v < n be a non-destination node, andλ a nonnegative-real constant. Assume thatGv : Rv →
Sv is continuously differentiable and satisfies Properties (a) and (c) of Definition 8. Then, there exists a unique
f∗(λ) ∈ cl(Fv) such that, for every initial conditionρv(0) ∈ Rv, the solution of the dynamical system (22) with
constant inputλ(t) ≡ λ satisfies

lim
t→+∞

fe(t) = f∗
e (λ) , ∀e ∈ E+

v .

Moreover, if λ < λmax, thenf∗
e (λ) < λmax

e , andλGv
e(µ

−1(f∗(λ))) = f∗
e , for everye ∈ E+

v ; if λ ≥ λmax, then
f∗

e = fmax
e , for everye ∈ E+

v . Finally, f∗(λ) is continuous as a map fromR+ to cl(Fv).
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Proof: Let us fix someλ ∈ R+. For every initial conditionσ ∈ Rv, and timet ≥ 0, let Φt(σ) := ρv(t) be the
value of the solution of (22) with constant inputλ(t) ≡ λ and initial conditionρ(0) = σ, at time t ≥ 0. Also, let
Ψt(σ) ∈ Rv be defined byΨt

e(σ) = µe(Φ
t
e(σ)), for everye ∈ E+

v . Now, fix two initial conditionsσ, ς ∈ Rv, and
defineχ(t) := ||Φt(σ)−Φt(ς)||1 andξ(t) := ||Ψt(σ)−Ψt(ς)||1. Sinceµe(ρe) satisfies Assumption 2, one has that

sgn(Φt
e(σ) − Φt

e(ς)) = sgn(Ψt
e(σ) − Ψt

e(ς)) . (26)

On the other hand, using Lemma 1, one gets
∑

e∈E+
v

sgn(Φt
e(σ) − Φt

e(ς))
(

Gv
e(Φ

t(σ)) − Gv
e(Φ

t(ς))
)

≤ 0 , ∀ t ≥ 0 . (27)

From (26) and (27), it follows that, for allt ≥ 0,

χ(t) = ||Φt(ς) − Φt(σ)||1

= χ(0) +

∫ t

0

∑

e∈E+
v

sgn(Φs
e(σ) − Φs

e(ς))
(

Gv
e(Φ

s(σ)) − Gv
e(Φ

s(ς)) − Ψs
e(σ) + Ψs

e(ς)
)

ds

≤ χ(0) −

∫ t

0
||Ψs(σ) − Ψs(ς)||1ds

= χ(0) −

∫ t

0
ξ(s)ds .

(28)

Since χ(t) ≥ 0, (28) implies that
∫ t

0 ξ(s)ds ≤ χ(0) for all t ≥ 0. Passing to the limit of larget, one gets
∫ +∞
0 ξ(s)ds ≤ χ(0) < +∞. This, and the fact thatξ(s) ≥ 0 for all s ≥ 0, readily imply thatξ(t) converges to0,

as t grows large. That is,
lim

t→+∞
||Ψt(σ) − Ψt(ς)||1 = 0 , ∀σ, ς ∈ Rv . (29)

Now, for anyσ ∈ Rv, one can apply (29) withς := Φτ (σ), and get that

lim
t→+∞

||Ψt(σ) − Ψt+τ (σ)||1 = lim
t→+∞

||Ψt(σ) − Ψt(Φτ (σ))||1 = 0 , ∀τ ≥ 0 .

The above implies that, for any initial conditionρv(0) = σ ∈ Rv, the flowΨt(σ) is Cauchy, and hence convergent
to somef∗(λ, σ) ∈ cl(Fv). Defineρ∗(λ, σ) = ρ∗ ∈ Rv by

ρ∗e :=

{

µ−1
e (f∗

e (λ, σ)) if f∗
e (λ, σ) < fmax

e

+∞ if f∗
e (λ, σ) = fmax

e .

Now, by contradiction, assume that there exists a nonempty proper subsetJ ⊂ E+
v such thatρ∗j < +∞ for every

j ∈ J , andρ∗e = +∞ for everyk ∈ K := E+
v \ J . Thanks to Property (c) of Definition 8, one would have that

lim
t→+∞

∑

k∈K
λGv

k(ρ
v(t)) − fk(t) = −

∑

k∈K
fmax

k < 0 ,

so that there exists someτ ≥ 0 such that
∑

k∈K(λGv
k(ρ

v(t)) − fk(t)) ≤ 0 for all t ≥ τ . Hence,

∑

k
ρk(t) =

∑

k
ρk(τ) +

∫ t

τ

∑

k
(λGv

k(ρ
v(s)) − fk(s))) ds ≤

∑

k
ρk(τ) < +∞ , ∀t ≥ τ,

which would contradict the assumption thatρ∗k = +∞ for every k ∈ K. Therefore, eitherρ∗e is finite for every
e ∈ E+

v , or ρ∗e is infinite for everye ∈ E+
v .

In order to distinguish between the two cases, letζ(t) :=
∑

e∈E+
v

ρe(t), ϑ(t) :=
∑

e∈E+
v

fe(t). Observe that, for
all t ≥ τ ≥ 0,

ζ(t) = ζ(τ) +

∫ t

τ

(λ − ϑ(s)) ds . (30)

First, consider the case whenλ < λmax, and assume by contradiction thatρ∗e = +∞, and hencef∗
e = fmax

e , for
everye ∈ E+

v . This would imply that
lim
t→∞

ϑ(t) = λmax > λ ,
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so that there would exist someτ ≥ 0 such thatλ − ϑ(t) ≤ 0 for every t ≥ τ , and hence (30) would imply
that ζ(t) ≤ ζ(τ) < +∞ for all t ≥ τ , thus contradicting the assumption thatρe(t) converges toρ∗e = +∞
as t grows large. Hence, for everyσ ∈ Rv, f∗(λ, σ) ∈ Fv, and hence it is necessarily an equilibrium flow for
the local dynamical system (22). It follows that, for everyσ, ς ∈ Rv, and t ≥ 0, Ψt(ρ∗(λ, σ)) = f∗(λ, σ), and
Ψt(ρ∗(λ, ζ)) = f∗(λ, ζ). Then, taking the limit of larget in (29) readily implies thatf∗(λ, σ) = f∗(λ, ς), so that
the limit flow f∗(λ) ∈ F∗(λ0) does not depend on the initial condition.

On the other hand, whenλ ≥ λmax, (30) shows thatζ(t) is non-decreasing, hence convergent to someζ(∞) ∈
[0,+∞] at t grows large. Assume, by contradiction, thatζ(∞) is finite. Then, passing to the limit of larget in
(30), one would get

∫ +∞

τ

(λ − ϑ(s))ds = ζ(∞) − ζ(τ) ≤ ζ(∞) < +∞ .

This, and the fact thatϑ(t) < λmax ≤ λ for all t ≥ 0, would imply that

lim
t→+∞

ϑ(t) = λ . (31)

Sincefe(t) < fmax
e , (31) is impossible ifλ > λmax. On the other hand, ifλ = λmax, then (31) implies that, for

everye ∈ E+
v , fe(t) converges tofmax

e , and henceρe(t) grows unbounded ast grows large, so thatζ(∞) would be
infinite. Hence, ifλ ≥ λmax, then necessarilyζ(∞) is infinite, and thanks to the previous arguments this implies
that ρ∗e(λ, σ) = ρ∗e(λ) = +∞, and hencef∗

e (λ, σ) < fmax
e for all σ ∈ Rv, e ∈ E+

v .
Finally, it remains to prove continuity off∗(λ) as a function ofλ. For this, consider the functionH : (0,+∞)E

+
v ×

(0, λmax) → RE+
v defined by

He(ρ
v , λ) := λGv

e(ρ
v) − µe(ρe) , ∀e ∈ E+

v .

Clearly, H is differentiable and such that

∂

∂ρe

He(ρ
v, λ) = λ

∂

∂ρe

Gv
e(ρ

v) − µ′
e(ρe) = −

∑

j 6=e

λ
∂

∂ρe

Gv
j (ρ

v) − µ′
e(ρe) < −

∑

j 6=e

∂

∂ρe

Hj(ρ
v, λ) , (32)

where the inequality follows from the strict monotonicity of the flow function (see Assumption 2). Property (a)
in Definition 8 implies that∂Hj(ρ

v , λ)/∂ρe ≥ 0 for all j 6= e ∈ E+
v . Hence, from (32), we also have that

∂He(ρ
v, λ)/∂ρe < 0 for all e ∈ E+

v . Therefore, for allρv ∈ (0,+∞)E
+
v , andλ ∈ (0, λmax), the Jacobian matrix

∇ρvH(ρv, λ) is strictly diagonally dominant, and hence invertible by a standard application of the Gershgorin Circle
Theorem, e.g., see Theorem 6.1.10 in [29]. It then follows from the implicit function theorem thatρ∗(λ), which is
the unique zero ofH( · , λ), is continuous on the interval(0, λmax). Hence, alsof∗(λ) = µ(ρ∗(λ)) is continuous
on (0, λmax), since it is the composition of two continuous functions. Moreover, since

∑

e∈E+
v

f∗
e (λ) = λ , 0 ≤ f∗

e (λ) ≤ fmax
e , ∀e ∈ E+

v , ∀λ ∈ (0, λmax) ,

one gets thatlimλ↓0 f∗
e (λ) = 0, andlimλ↑λmax f∗

e (λ) = fmax
e , for all e ∈ E+

v . Now, one has that
∑

e∈E+
v

f∗
e (0) = 0,

so that0 = f∗
e (0) = limλ↓0 f∗

e (λ) for all e ∈ E+
v . Moreover, as previously shown,f∗

e (λ) = fmax
e = limλ↑λmax f∗

e (λ)
for all λ ≥ λmax. This completes the proof of continuity off∗(λ) on [0,+∞).

While Lemma 2 ensures existence of a unique limit point for the local system (22) with constant inputλ(t) ≡ λ,
the following lemma establishes a monotonicity property with respect to a time-varying inputλ(t).

Lemma 3 (Monotonicity of the local system):Let 0 ≤ v < n be a nondestination node,Gv : Rv → Sv a
continuously differentiable map, satisfying Properties (a) and (c) of Definition 8, andλ−(t), and λ+(t) be two
nonnegative-real valued Lipschitz-continuous functionssuch thatλ−(t) ≤ λ+(t) for all t ≥ 0. Let ρ−(t) andρ+(t)
be the solutions of the local dynamical system (22) corresponding to the inputsλ−(t), and λ+(t), respectively,
with the same initial conditionρ−(0) = ρ+(0). Then

ρ−e (t) ≤ ρ+
e (t) , ∀e ∈ E+

v , ∀t ≥ 0 . (33)

Proof: For e ∈ E+
v , defineτe := inf{t ≥ 0 : ρ+

e (t) > ρ−e (t)}, and letτ := min{τe : e ∈ E+
v }. Assume by

contradiction thatρ−e (t) > ρ+
e (t) for somet ≥ 0, ande ∈ E+

v . Then,τ < +∞, andI := argmin{τe : e ∈ E+
v } is

a well defined nonempty subset ofE+
v . Moreover, by continuity, one has that there exists someε > 0 such that,
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ρ−i (τ) = ρ+
i (τ), ρ−i (t) > ρ+

i (t), andρ−j (t) < ρ+
j (t) for all i ∈ I, j ∈ J , andt ∈ (τ, τ + ε), whereJ := E+

v \ I.
Using Lemma 1, one gets, for everyt ∈ (τ, τ + ε),

0 ≥ 1
2

∑

e sgn(ρ−e (t) − ρ+
e (t)) (Gv

e(ρ
−(t)) − Gv

e(ρ
+(t)))

= 1
2

(

∑

i Gv
i (ρ

−(t)) −
∑

i Gv
i (ρ

+(t)) −
∑

j Gv
j (ρ

−(t)) +
∑

j Gv
j (ρ

+(t))
)

=
∑

i G
v
i (ρ

−(t)) −
∑

i G
v
i (ρ

+(t)) ,

where the summation indicese, i, and j run overE+
v , I, andJ , respectively. On the other hand, Assumption 2

implies thatµi(ρ
−
i (t)) ≥ µi(ρ

+
i (t)) for all i ∈ I, t ∈ [τ, τ + ε). Now, let χ(t) :=

∑

i∈I

(

ρ−i (t) − ρ+
i (t)

)

. Then, for
every t ∈ (τ, τ + ε), one has

0 < χ(t) − χ(τ)

=

∫ t

τ

λ−(s)
∑

i∈I

(

Gv
i (ρ

−(s)) − Gv
i (ρ

−(s))
)

ds

−

∫ t

τ

(λ+(s) − λ−(s))
∑

i∈I
Gv

i (ρ
+(s))ds −

∫ t

τ

∑

i∈I

(

µi(ρ
−
i (s)) − µi(ρ

+
i (s))

)

ds ≤ 0 ,

which is a contradiction. Then, necessarily (33) has to holdtrue.

The following lemma establishes that the output of the localsystem (22) is convergent, provided that the input
is convergent.

Lemma 4 (Attractivity of the local dynamical system):Let 0 ≤ v < n be a nondestination node,Gv : Rv → Sv a
continuously differentiable map, satisfying Properties (a) and (c) of Definition 8, andλ(t) a nonnegative-real-valued
Lipschitz function such that

lim
t→+∞

λ(t) = λ . (34)

Then, for every initial conditionρ(0) ∈ R, the solution of the local dynamical system (22) satisfies

lim
t→+∞

fe(t) = f∗
e (λ) , ∀e ∈ E+

v , (35)

wheref∗(λ) is as defined in Lemma 2.
Proof: Fix someε > 0, and letτ ≥ 0 be such that|λ(t)−λ| ≤ ε for all t ≥ τ . For t ≥ τ , let f−(t) andf+(t) be

the flow associated to the solutions of the local dynamical system (22) with initial conditionρ−(τ) = ρ+(τ) = ρv(τ),
and constant inputsλ−(t) ≡ λ− := max{λ− ε, 0}, andλ+(t) ≡ λ + ε, respectively. From Lemma 3, one gets that

f−
e (t) ≤ fe(t) ≤ f+

e (t) , ∀t ≥ τ , ∀e ∈ E+
v . (36)

On the other hand, Lemma 2 implies thatf−(t) converges tof∗(λ−), andf+(t) converges tof∗(λ+), ast grows
large. Hence, passing to the limit of larget in (36) yields

f∗
e (λ−) ≤ lim inf

t→+∞
fe(t) ≤ lim sup

t→+∞
fe(t) ≤ f∗

e (λ + ε) , ∀e ∈ E+
v .

Form the arbitrariness ofε > 0, and the continuity off∗(λ) as a function ofλ, it follows thatlimt→∞ f(t) = f∗(λ),
which proves the claim.

We are now ready to prove Theorem 1 by showing that, for any initial conditionρ(0) ∈ R, the solution of the
dynamical flow network (5) satisfies

lim
t→+∞

fe(t) = f∗
e , (37)

for all e ∈ E . We shall prove this by showing via induction onv = 0, 1, . . . , n − 1 that, for all e ∈ E+
v , there

existsf∗
e ∈ [0, fmax

e ] such that (37) holds true. First, observe that, thanks to Lemma 2, this statement is true for
v = 0, since the inflow at the origin is constant. Now, assume that the statement is true for all0 ≤ v < w, where
w ∈ {1, . . . , n − 2} is some intermediate node. Then, sinceE−

w ⊆ ∪w−1
v=0 E

+
v , one has that

lim
t→+∞

λ−
w(t) = lim

t→+∞

∑

e∈E−
w

fe(t) =
∑

e∈E−
w

f∗
e = λ∗

w .

Then, Lemma 4 implies that, for alle ∈ E+
w , (37) holds true withf∗

e = f∗
e (λ∗

w), thus proving the statement for
v = w. This completes the proof of Theorem 1.
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VII. PROOF OFTHEOREM 2

In this section, we shall prove Theorem 2 on the strong resilience of dynamical flow networks. Throughout the
section, we shall consider a given flow networkN , satisfying Assumptions 1 and 2, a distributed routing policy
G, and a constant inflowλ0 ≥ 0, and assume that there exists an equilibrium flowf∗ ∈ F∗(λ0) for the dynamical
flow network. First, we shall show thatγ1(f

* ,G) ≤ R(N , f∗). This will follow mainly from the assumption of
acyclicity of the network topology, and the locality constraint on the information used by the distributed routing
policy, as per Definition 2. Then, we shall prove that, if the distributed routing policy is locally responsive (as per
Definition 8), thenγ1(f

* ,G) = R(N , f∗). The proof of this second result will heavily rely on Properties (a) and
(c) of Definition 8.3 In particular, these properties will allow us to prove some key diffusivity properties for the
solution of the perturbed dynamical flow network.

A. Upper bound on the strong resilience

The second part of Theorem 2 is restated and proved below.
Lemma 5 (Upper bound on the strong resilience):Let N be a flow network satisfying Assumptions 1 and 2,

λ0 ≥ 0 a constant inflow, andG any distributed routing policy. Assume that the associateddynamical flow network
has an equilibrium flowf∗ ∈ F∗(λ0). Then,γ1(f

* ,G) ≤ R(N , f∗) .
Proof: In order to prove the result it is sufficient to exhibit a family of admissible perturbations, with magnitude

δ arbitrarily close toR(N , f∗), under which the network is not fully transferring. Let us fixsome non-destination
node0 ≤ v < n minimizing the right-hand side of (15), and putκ :=

∑

e∈E+
v

fmax
e . For anyR(N , f∗) < δ < κ,

consider the admissible perturbation defined by

µ̃e(ρe) :=
κ − δ

κ
µe(ρe) , ∀e ∈ E+

v , µ̃e(ρe) := µe(ρe) , ∀e ∈ E \ E+
v . (38)

Clearly, the magnitude of such perturbation equalsδ, while its stretching coefficient is1.
Let us consider the origin-destination cut-setU := {0, 1, . . . , v}, and putE+

U := {(u,w) ∈ E : 0 ≤ u ≤ v, v <
w ≤ n}. Observe that the associated perturbed dynamical flow network satisfies, for every0 ≤ u < v,

µ̃e(ρ̃e(t)) = f *
e , ∀t ≥ 0 , ∀e ∈ E+

u .

In particular, this implies that̃µe(ρ̃e(t)) = f *
e for all t ≥ 0, and for every linke ∈ E+

U \ E+
v . On the other hand,

one has that
µ̃e(ρ̃e(t)) < f̃max

e =
κ − δ

κ
fmax

e , ∀e ∈ E+
v , ∀t ≥ 0 .

Therefore, for allt ≥ 0, one has that
∑

e∈E+

U

µ̃e(ρ̃e(t)) <
∑

e∈E+
v

f̃max
e +

∑

e∈E+

U
\E+

v

f *
e

=
κ − δ

κ

∑

e∈E+
v

fmax
e +

∑

e∈E+

U
\E+

v

f *
e

=
∑

e∈E+
v

fmax
e − δ −

∑

e∈E+
v

f∗
e +

∑

e∈E+

U

f∗
e

= R(N , f∗) − δ + λ0 .

(39)

Define the edge setsA :=
⋃n−1

w=v+1 E
+
w and B :=

⋃n
w=v+1 E

−
w , and observe thatA ∪ E+

U = B. For t ≥ 0, put
ζ(t) :=

∑

e∈A ρe(t). Now, since

d

dt

(

∑

e∈E+
w

ρ̃e(t)
)

=
∑

e∈E+
w

(

∑

e∈E−
w

f̃e(t)
)

Gv
e(ρ̃

w(t)) −
∑

e∈E+
w

f̃e(t)

=
∑

e∈E−
w

f̃e(t) −
∑

e∈E+
w

f̃e(t) ,

3Property (b) is in fact irrelevant for maximal robustness inthe strong resilience sense, while it will be used in the nextsection to prove
maximal robustness in the weak resilience sense of locally responsive distributed routing policies.
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for everyv < w < n, one gets, using (39), that

d

dt
ζ(t) =

∑

e∈B
f̃e(t) −

∑

e∈E−
n

f̃e(t) −
∑

e∈A
f̃e(t)

=
∑

e∈E+

U

f̃e(t) −
∑

e∈E−
n

f̃e(t)

< R(N , f∗) − δ + λ0 − λ̃n(t) .

(40)

Now assume, by contradiction, that

lim inf
t→+∞

λ̃n(t) > R(N , f∗) − δ + λ0 .

Then, there would exist someε > 0 and τ ≥ 0 such thatλ̃n(t) ≥ R(N , f∗) − δ + λ0 + ε for all t ≥ τ . It
would then follow from (40) and Gronwall’s inequality thatζ(t) ≤ ζ(τ) − (t − τ)ε for all t ≥ τ , so thatζ(t)
would converge to−∞ as t grows large, contradicting the fact thatζ(t) ≥ 0 for all t ≥ 0. Hence, necessarily
lim inft↑∞ λ̃n(t) ≤ R(N , f∗)−δ+λ0 < λ0 , so that the perturbed dynamical flow network is not fully transferring.
Then, from the arbitrariness of the perturbation’s magnitudeδ ∈ (R(N , f∗), κ), it follows that the network’s strong
resilience is upper bounded byR(N , f∗).

B. Lower bound on the strong resilience

We shall now prove the second part of Theorem 2. Hence, throughout this subsection,G will be a locally
responsive distributed routing policy.

First observe that, for any admissible perturbation, regardless of its magnitude, the perturbed dynamical flow
network (11) satisfies all the assumptions of Theorem 1, which can therefore be applied to show the existence of a
globally attractive perturbed limit flow̃f∗ ∈ cl(F). This in particular implies that̃λn(t) =

∑

e∈E−
n

f̃e(t) converges
to λ̃∗

n =
∑

e∈E−
n

f̃∗
e as t grows large. However, this is not sufficient in order to provestrong resilience of the

perturbed dynamical flow network (11), as it might be the casethat λ̃∗
n < λ0.

In fact, it turns out that, provided that the magnitude of theadmissible perturbation is smaller thanR(N , f∗),
the perturbed limit flowf̃∗ is an equilibrium flow for the perturbed dynamical flow network, so thatλ̃∗

n = λ0 and
(11) is fully transferring. In order to show this, we need to study theperturbed local system

d

dt
ρ̃e(t) = λ̃(t)Gv

e(ρ̃
v(t)) − f̃e(t) , f̃e(t) = µ̃e(ρ̃e(t)) , ∀e ∈ E+

v , (41)

for every non-destination node0 ≤ v < n, and nonnegative-real-valued, Lipschitz local inputλ̃(t). Indeed, Lemma
4 can be applied to the perturbed local system (41) establishing convergence of the perturbed local flowsf̃ v(t) to a
local equilibrium flowf̃∗(λ) ∈ Fv , provided that the input flow̃λ(t) converges to a valueλ which is strictly smaller
than the sum of the perturbed flow capacities of the outgoing links. However, such local result is not sufficient to
prove strong resilience of the entire perturbed dynamical flow network. The key property in order to prove such a
global result is stated in Lemma 6, which describes how the flow redistributes upon the network perturbation. In
particular, it ensures that the increase in flow on all the links downstream from a node whose outgoing links are
affected by a given perturbation, is less than the magnitudeof the disturbance itself. We shall refer to this property
as to thediffusivity of the local perturbed system.

Lemma 6 (Diffusivity of the local perturbed system):Let N be a flow network satisfying Assumptions 1 and 2,
G be a locally responsive distributed routing policy,λ0 ≥ 0 a constant inflow. Assume thatf∗ ∈ F∗(λ0) is an
equilibrium flow for the dynamical flow network (5). Let̃N be an admissible perturbation ofN , 0 ≤ v < n be a
nondestination node,λ∗

v :=
∑

e∈E+
v

f∗
e , andλ ∈ [0,

∑

e∈E+
v

f̃max
e ). Then, for everyJ ⊆ E+

v ,
∑

e∈J

(

f̃∗
e (λ) − f *

e

)

≤ [λ − λ∗
v]+ +

∑

e∈E+
v

δe , (42)

where f̃∗(λ) is the local equilibrium flow of the perturbed local system (11) with constant local input̃λ(t) ≡ λ,
andδe := ||µe( · ) − µ̃e( · )||∞.

Proof: Define λ∗
v :=

∑

e∈E+
v

f *
e , and λ̂ := max{λ, λ∗

v}. Let ρ̂v(t) be the solution of the perturbed local
system (41) with constant input̃λ(t) ≡ λ̂, and initial conditionρ̂e(0) = ρ∗e := µ−1

e (f∗
e ), for all e ∈ E+

v , and let
f̂e(e) := µ̃e(ρ̂e(t)). We shall first prove that

f̂e(t) ≥ f∗
e , ∀ t ≥ 0 ∀ e ∈ E+

v . (43)
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0 v + 1 n
λ0

Dv+1

Bv+1

J

J1

J2

Fig. 4. Illustration of the sets used in proving the induction step.

For this, consider a point̂ρv ∈ Rv, such that̂ρv 6= ρ* , and there exists somei ∈ E+
v such thatρ̂i = ρ*

i and ρ̂e ≥ ρ*
e

for all e 6= i ∈ E+
v . For such aρ̂v and i, Lemma 1 implies thatGv

i (ρ̂
v) ≥ Gv

i (ρ
* ). This, combined with the fact

that λ̂ ≥ λ∗
v and µ̃i(ρ̂i) ≤ µi(ρ̂i) = µi(ρ

*
i ), yields

λ̂vG
v
i (ρ̂

v) − µ̃i(ρ̂i) ≥ λ∗
vG

v
i (ρ

* ) − µi(ρ
*
i ) = 0 . (44)

Considering the regionΩ := {ρ̂v ∈ Rv : ρ̂j ≥ ρ*
j , ∀j ∈ E+

v }, and denoting byω ∈ RE+
v the unit outward-pointing

normal vector to the boundary ofΩ at ρ̂v, (44) shows that

d

dt
ρ̂v · ω =

(

λ̂vG
v(ρ̂v) − µ̃v(ρ̂

v)
)

· ω ≤ 0 , ∀ρ̂v ∈ ∂Ω , t ≥ 0 .

Therefore,Ω is invariant under (41). Sincêρv(0) = ρ* ∈ Ω, this proves (43).
Lemma 2 implies that there exists a unique local equilibriumflow f̂∗ := f̃∗(λ̂). Then, for anyJ ⊆ E+

v , (43)
implies that

∑

j f̂∗
j = λ̂∗

v −
∑

k f̂∗
k

≤ λ̂∗
v −

∑

k µ̃k(ρ
*
k)

= λ̂∗
v − λ∗

v +
∑

j f *
j +

∑

k µk(ρ
*
k) −

∑

k µ̃k(ρ
*
k)

≤ [λ̂∗
v − λ∗

v]+ +
∑

j f *
j +

∑

k δk

≤ [λ̂∗
v − λ∗

v]+ +
∑

j f *
j +

∑

e∈E+
v

δe ,

(45)

where the summation indicesj andk run overJ , andE+
v \ J , respectively. Moreover, sinceλ ≤ λ̂ from Lemma

3, one gets that̃f∗
e (λ) ≤ f̃∗

e (λ̂) = f̂∗
e for all e ∈ E+

v . In particular, this implies that
∑

j∈J f̃∗
j (λ) ≤

∑

j∈J f̂∗
j , for

all J ⊂ E+
v . This, combined with (45), proves (42).

The following lemma exploits the diffusivity property fromLemma 6 along with an induction argument on the
topological ordering of the node set to prove thatR(N , f∗) is indeed a lower bound on the strong resilience of the
network under the locally responsive distributed routing policies.

Lemma 7:Consider a flow networkN satisfying Assumptions 1 and 2, a locally responsive distributed routing
policy G, and a constant inflowλ0 ≥ 0. Assume thatf∗ ∈ F∗(λ0) is an equilibrium flow for the associated
dynamical flow network. LetÑ be an admissible perturbation ofN , of magnitudeδ < R(N , f∗). Then, the
perturbed dynamical flow network (11) has a globally attractive equilibrium flow and hence it is fully transferring.

Proof: First recall that Theorem 1 can be applied to the perturbed dynamical network (11) in order to prove
existence of a globally attractive limit flow̃f∗ ∈ cl(F) for the perturbed dynamical network flow (11). For brevity
in notation, for every1 ≤ v < n, put λ∗

v :=
∑

e∈E+
v

f *
e , λ̃∗

v :=
∑

e∈E−
v

f̃e, andλmax
v :=

∑

e∈E+
v

f̃max
e . Also, for

every nodev ∈ V, let Dv :=
⋃v

u=0 E
+
u andBv := {(u,w) ∈ E : 0 ≤ u ≤ v, v < w ≤ n} be, respectively, the set

of all outgoing links, and the link-boundary of the node set{0, 1, . . . , v}.
We shall prove the following through induction onu = 0, 1, . . . , n − 1:

∑

e∈J

(

f̃∗
e − f *

e

)

≤
∑

e∈Du

δe , ∀J ⊆ Bu . (46)
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First, notice thatB0 = D0 = E+
0 . Since

∑

e∈E+

0
δe ≤ δ < R(N , f∗) ≤

∑

e∈E+

0
(fmax

e − f *
e ), we also have that

λ0 < λ̃max
v . Therefore, by using (42) of Lemma 6, one can verify that (46)holds true forv = 0.

Now, for somev ≤ n − 2, assume that (46) holds true for everyu ≤ v. Consider a subsetJ ⊆ Bv+1 and let
J1 := J ∩ E+

v+1 andJ2 := J \ J1 (e.g., see Figure 4). By applying Lemma 6 to the setJ1, one gets that
∑

e∈J1

(

f̃∗
e − f *

e

)

≤
[

λ̃∗
v+1 − λ∗

v+1

]

+
+

∑

e∈E+

v+1

δe, ∀ t ≥ 0. (47)

It is easy to check thatJ2 ⊆ Bv andE−
v+1 ⊆ Bv. Therefore, using (46) for the setsJ2 andJ2 ∪ E−

v+1, one gets the
following inequalities respectively:

∑

e∈J2

(

f̃∗
e − f *

e

)

≤
∑

e∈Dv

δe, (48)
∑

e∈J2

(

f̃∗
e − f *

e

)

+
∑

e∈E−

v+1

(

f̃∗
e − f *

e

)

≤
∑

e∈Dv

δe. (49)

Consider the two cases:λ̃∗
v+1 ≤ λ∗

v+1, or λ̃∗
v+1 > λ∗

v+1. By adding up (47) and (48), in the first case, or (47) and
(49) in the second case, one gets that

∑

e∈J

(

f̃∗
e − f *

e

)

=
∑

e∈J1

(

f̃∗
e − f *

e

)

+
∑

e∈J2

(

f̃∗
e − f *

e

)

≤
∑

e∈E+

v+1

δe +
∑

e∈Dv

δe ≤
∑

e∈Dv+1

δe .

This proves (46) for nodev + 1 and hence the induction step.
Fix 1 ≤ v < n. SinceE−

v ⊆ Bv−1, (46) with u = v − 1 implies that

λ̃∗
v =

∑

e∈E−
v

f̃∗
e ≤

∑

e∈E−
v

f *
e +

∑

e∈Dv−1

δe =
∑

e∈E+
v

f *
e +

∑

e∈E

δe −
∑

e∈E\Dv−1

δe ,

where the third step follows from the fact that
∑

e∈E−
v

f *
e =

∑

e∈E+
v

f *
e by conservation of mass. Then, since

E+
v ⊆ E \ Dv−1, one gets that

λ̃∗
v ≤

∑

e∈E+
v

f *
e + δ −

∑

e∈E+
v

δe

<
∑

e∈E+
v

f *
e + R(N , f∗) −

∑

e∈E+
v

δe

≤
∑

e∈E+
v

f *
e +

∑

e∈E+
v

(

fmax
e − f *

e

)

−
∑

e∈E+
v

δe

=
∑

e∈E+
v

(fmax
e − δe)

=
∑

e∈E+
v

f̃max
e .

Hence, it follows from Lemma 2 applied to the perturbed localsystem (41) that

f̃∗
e = f̃∗

e (λ̃∗
v) < f̃max

e , ∀e ∈ E+
v , (50)

for all 1 ≤ v < n− 1. Moreover, sinceλ0 =
∑

e∈E+
v

f∗
e <

∑

e∈E+
v

fmax
e , applying Lemma 2 again to the perturbed

local system (41) shows that (50) holds true forv = 0 as well. Hencef̃∗
e < fmax

e for all e ∈ E , so that the limit
flow f̃∗ ∈ F , and hence it is necessarily an equilibrium flow of the perturbed dynamical flow network (11), as
argued in Remark 1. Therefore, (11) is fully transferring.

The second part of Theorem 2 now immediately follows from 7, and the arbitrariness of the admissible pertur-
bation of magnitude smaller thanR(N , f∗).

VIII. P ROOF OFTHEOREM 3

This section is devoted to the proof of Theorem 3 on the weak resilience of dynamical flow networks. Throughout
this section, we shall consider a given flow networkN satisfying Assumptions 1 and 2, a distributed routing policy
G, a constant inflowλ0 ≥ 0. First, we shall prove that, ifG is an arbitrary distributed routing policy such that the
associated dynamical flow network has an equilibrium flowf∗ ∈ F∗(λ0), then the min-cut capacity of the network,
C(N ), provides an upper bound on the weak resilienceγ0(f

∗,G). This will follow from a basic conservation of mass
argument. Then, we shall show that, when the distributed routing policy G is locally responsive, as per Definition
8, then the weak resilience of the associated dynamical flow network coincides withC(N ). This will follow from
some arguments in part close to those developed in Section VII-B, and in part exploiting the additional Property (b)
of Definition 8, which was not necessary for showing maximal robustness of locally responsive distributed routing
policies in the strong resilience sense.
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A. Upper bound on the weak resilience

We start by proving thatC(N ) is indeed an upper bound on the weak resilience. Recall that,if f∗ ∈ F∗(λ0) is
an equilibrium flow of the associated dynamical flow network,then its weak resilience is defined as the double limit
limθ↑∞ limα↓0 γα,θ(f

∗), whereγα,θ(f
∗) is the infimum magnitude of all the admissible perturbationsof stretching

coefficient less than or equal toθ for which the associated perturbed dynamical flow network isnot α-transferring
with respect tof∗. The following result will readily imply the first part of Theorem 3.

Lemma 8 (Upper bound on the weak resilience):Let N be a flow network satisfying Assumptions 1 and 2,G
a distributed routing policy, andλ0 ≥ 0 a constant inflow. Assume thatf∗ ∈ F(λ0) is an equilibrium for the
dynamical flow network (5). Then, for everyα ∈ (0, 1], and everyθ ≥ 1,

γα,θ(f
* ,G) ≤ C(N ) −

α

2
λ0 .

Proof: Consider a minimal origin-destination cut, i.e., someU ⊆ V such that0 ∈ U , n /∈ U , and
∑

e∈E+

U

fmax
e =

C(N ). Defineε := αλ0/(2C(N )), and consider an admissible perturbation such thatµ̃e(ρe) = εµe(ρe) for every
e ∈ E+

U , and µ̃e(ρe) = µe(ρe) for all e ∈ E \ E+
U . It is readily verified that the magnitude of such perturbation

satisfies
δ = (1 − ε)

∑

e∈E+

U

fmax
e = (1 − ε)C(N ) = C(N ) −

α

2
λ0 ,

while its stretching coefficient is1. Moreover,
∑

e∈E+

U

f̃max
e = ε

∑

e∈E+

U

fmax
e = αλ0/2 . Then, arguing in the same

way as in the proof of Lemma 5, one shows thatlim inft↑∞ λ̃n(t) < αλ0, so that the perturbed dynamical network
is not α-transferring. This implies the claim.

Observe now that it immediately follows from Lemma 8 that

γ0(f
* ,G) = lim

θ↑∞
lim
α↓0

γα,θ(f
* ,G) ≤ lim

θ↑∞
lim
α↓0

(C(N ) − αλ0/2) = C(N ) ,

which proves the first part of Theorem 3.

B. Lower bound on the weak resilience

We now prove the lower bound on the weak resilience of a dynamical flow network when the distributed routing
policy G is locally responsive. To start with, let us recall that in this case Theorem 1 implies the existence of a
globally attractive limit flowf̃∗ ∈ cl(F) for the perturbed dynamical flow network associated to any admissible
perturbationÑ . Define λ̃∗

0 = λ0, andλ̃∗
v =

∑

e∈E−
v

f̃∗
e , for 0 < v ≤ n.

Lemma 9:Consider a dynamical flow networkN satisfying Assumptions 1 and 2, with locally responsive
distributed routing policyG. For everyθ ≥ 1, there existsβθ ∈ (0, 1) such that, ifÑ is an admissible perturbation
of N with stretching coefficient less than or equal toθ, andf̃∗ ∈ cl(F̃) is the limit flow vector of the corresponding
perturbed dynamical flow network (11), then

f̃∗
e ≥ βθλ̃

∗
v ,

for every non-destination node0 ≤ v < n, and every linke ∈ E+
v for which f̃∗

e ≤ f̃max
e /2.

Proof: Fix some linke ∈ E for which f̃∗
e ≤ f̃max

e /2. Defineρθ ∈ Rv by ρθ
j = 0 for all j ∈ E+

v , j 6= e, and
ρθ

e = θρµ
e , where recall thatρµ

e is the median density of the flow functionµe. Since the stretching coefficient of̃N
is less than or equal toθ, one has that the median densities of the perturbed and the unperturbed flow functions
satisfy ρ̃µ

e ≤ θρµ
e . This and the fact that̃f∗

e ≤ f̃max
e /2 imply that ρ̃∗e ≤ ρ̃µ

e ≤ ρθ
e, while clearly ρ̃∗j ≥ 0 = ρθ

j for all
j ∈ E+

v , j 6= e. Now, let βθ := Gv
e(ρ

θ), and observe that, thanks to Property (b) of Definition 8, onehasβθ > 0.
Then, from Lemma 1 one gets that

Gv
e(ρ̃

∗) =
1

2

(

Gv
e(ρ̃

∗) + 1 −
∑

j 6=e
Gv

j (ρ̃
∗)

)

≥
1

2

(

Gv
e(ρ

θ) + 1 −
∑

j 6=e
Gv

j (ρ
θ)

)

= Gv
e(ρ

θ) = βθ . (51)

On the other hand, sincẽf∗
e ≤ f̃max

e /2 < f̃max
e , Lemma 2 implies that necessarilỹλ∗

vG
v
e(ρ̃

∗) = f̃∗
e . The claim now

follows by combining this and (51).
We are now ready to prove the following lower bound on the resilience.
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Lemma 10:Let N be a flow network satisfying Assumptions 1 and 2,λ0 ∈ [0, C(N )) a constant inflow, andG
a locally responsive distributed routing policy. Letf∗ ∈ F(λ0) be an equilibrium for the dynamical flow network
(5). Then, for everyθ ≥ 1, and everyα ∈ (0, βn

θ ], the resilience of the associated dynamical flow network satisfies

γα,θ(f
* ,G) ≥ C(N ) − 2|E|λ0β

1−n
θ α ,

whereβθ ∈ (0, 1) is as in Lemma 9.
Proof: Consider an arbitrary admissible perturbationÑ of stretching coefficient less than or equal toθ, and

of magnitude
δ ≤ C(N ) − 2|E|λ0β

1−n
θ α . (52)

We shall iteratively select a sequence of nodes0 =: v0, v1, . . . , vk := n ∈ V such that, for every1 ≤ j ≤ k,

∃i ∈ {0, . . . , j − 1} such that (vi, vj) ∈ E , f̃∗
(vi,vj)

≥ λ0αβj−n
θ . (53)

Sincevk = n, andβk−n
θ ≥ 1, the above withj = k ≤ n will immediately imply that

lim
t→+∞

λ̃n(t) = λ̃∗
n =

∑

e∈E−
n

f̃∗
e ≥ αλ0β

k−n
θ ≥ αλ0 ,

so that the perturbed dynamical flow network isα-transferring. The claim will then readily follow from the
arbitrariness of the considered admissible perturbation.

First, let us consider the casej = 1. Assume by contradiction that̃f∗
e < λ0αβ1−n

θ , for every link e ∈ E+
0 . Since

α ≤ βn
θ , this would imply thatf̃∗

e < βθλ0 and hence, by Lemma 9, that̃fmax
e ≤ 2f̃∗

e for all e ∈ E+
0 , so that

∑

e∈E+

0

f̃max
e ≤ 2

∑

e∈E+

0

f̃∗
e < 2α|E+

0 |β1−n
θ λ0 ≤ 2α|E|β1−n

θ λ0 .

Combining the above with the inequalityC(N ) ≤
∑

e∈E+

0
fmax

e , one would get

δ ≥
∑

e∈E+

0

(

fmax
e − f̃max

e

)

> C(N ) − 2α|E|β1−n
θ λ0 ,

thus contradicting the assumption (52). Hence, necessarily there existse ∈ E+
0 such thatf̃∗

e ≥ λ0αβ1−n
θ , and

choosingv1 to be the unique node inV such thate ∈ E−
v1

, one sees that (53) holds true withj = 1.
Now, fix some1 < j∗ ≤ k, and assume that (53) holds true for every1 ≤ j < j∗. Then, by choosingi as in

(53), one gets that

λ̃∗
vj

=
∑

e∈E+
vj

f̃∗
e ≥ f̃∗

(vi,vj)
≥ λ0αβj−n

θ ≥ λ0αβj∗−1−n
θ , ∀1 ≤ j < j∗ . (54)

Moreover,
λ̃∗

v0
= λ0 > λ0αβ−n

θ ≥ λ0αβj∗−1−n
θ . (55)

Let U := {v0, v1, . . . , vj∗−1} andE+
U ⊆ E be the set of links with tail node inU and head node inV \U . Assume by

contradiction thatf̃∗
e < λ0αβj∗−n

θ for all e ∈ E+
U . Thanks to (54) and (55), this would imply that,f̃∗

e < βθλ̃
∗
j , for

every0 ≤ j < j∗ ande ∈ E+
vj
∩E+

U . Then, Lemma 9 would imply that̃fmax
e ≤ 2f̃∗

e for all e ∈ E+
U = ∪j∗−1

j=0 (E+
vj
∩E+

U ).
This would yield

∑

e∈E+

U

f̃max
e ≤

∑

e∈E+

U

2f̃∗
e < 2

∑

e∈E+

U

λ0αβj∗−n
θ ≤ 2|E|λ0αβ1−n

θ .

From the above and the inequalityC(N ) ≤
∑

e∈E+

U

fmax
e , one would get

δ ≥
∑

e∈E+

U

(

fmax
e − f̃max

e

)

> C(N ) − 2α|E|β1−n
θ λ0 ,

thus contradicting the assumption (52). Hence, necessarily there existse ∈ E+
U such thatf̃∗

e ≥ λ0αβ1−n
θ , and

choosingvj∗ to be the unique node inV such thate ∈ E−
vj∗

one sees that (53) holds true withj = j∗. Iterating this
argument untilvj∗ = n proves the claim.

It is now easy to see that Lemma 10 implies thatlimα↓0 γα,θ ≥ C(N ) for every θ ≥ 1, thus showing that
γ0 ≥ C(N ).
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IX. CONCLUSION

In this paper, we studied robustness properties of dynamical flow networks, where the dynamics on every link
is driven by the difference between the inflow, which dependson the upstream routing decisions, and the outflow,
which depends on the particle density, on that link. We considered distributed routing policies that depend only
on the local information about the particle densities in thenetwork. We proposed a class of locally responsive
distributed routing policies that yield the maximum resilience under local information constraint, with respect to
malicious disturbances that reduce the flow functions of thelinks of the network. We also established the relationship
between the resilience and the topology as well as the initial equilibrium flow of the network. The findings of this
paper stand to provide important guidelines for managementof several large scale critical infrastructures both from
planning as well as real-time operation point of view.

In future, we plan to extend the research in several directions. We plan to rigorously study the robustness properties
of the network with finite link-wise capacity for the densities, and formally establish the results on the resilience as
suggested in Section V. We plan to study the scaling of the resilience with respect to the amount of information,
e.g., multi-hop as opposed to just single-hop, available tothe routing policies. We also plan to perform robustness
analysis in a probabilistic framework to complement the adversarial framework of this paper, possibly considering
other general models for disturbances. In particular, it would be interesting to study robustness with respect to
sequential disturbances than just one-shot disturbance considered in this paper. We plan to consider a setting with
buffer capacities on the nodes and study the scaling of the resilience with such buffer capacities. We also plan to
consider more general graph topologies, e.g., graphs having cycles and multiple origin-destination pairs.
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