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Abstract

In this paper, we study robustness properties of transportation net-
works with respect to its pre-disturbance equilibrium operating condi-
tion and the agents’ response to disturbances under information con-
straints. We perform the analysis within a dynamical system frame-
work over a directed acyclic graph between a single origin-destination
pair. The dynamical system consists of a system of ordinary differen-
tial equations (ODEs), one for every edge of the graph. Every ODE is
a mass balance equation for the corresponding edge, where the inflow
term is a function of the agents’ route choice behavior and the arrival
rate at the base node of that edge, and the outflow term is related
to the congestion properties of the edge. We consider disturbances
that affect the congestion properties of the network by reducing the
maximum flow carrying capacity of the edges and define the margin
of stability of the network as the minimum capacity that needs to be
removed from the network so that the traffic density on some of the
edges grows unbounded in time. For a given pre-disturbance equi-
librium operating condition, we derive upper bounds on the margin of
stability under local information constraint on the agents’ behavior and
characterize the route choice behaviors that match this bound exactly.
We also setup a simple optimization problem to find the most robust
pre-disturbance equilibrium operating condition for the network and
determine a set of edge-wise tolls that yield such a desired equilibrium
operating condition.
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1 Introduction

Social planning for efficient usage of transportation networks (TNs) is at-
tracting renewed research interest as transportation demand is fast ap-
proaching its infrastructure capacity. While there exists an abundant litera-
ture on socially optimal traffic assignments, e.g., see [2], robustness analysis
of TNs has received very little attention. In this paper, we study the relation-
ship of the robustness properties of a large-scale TN to its pre-disturbance
equilibrium operating condition and the agents’ response to the disturbance
under information constraints.

We abstract the topology of the transportation network by a directed
acyclic graph between a single origin-destination pair. For the analysis,
we adopt a dynamical system framework that is composed of a system of
ordinary differential equations (ODEs), one for every edge of the graph.
Every ODE represents a mass balance equation for the corresponding edge,
where the inflow term is a function of the agents’ route choice behavior
and the arrival rate at the base node of that edge, and the outflow term is
function of the congestion properties of the edge. We consider a setup where,
before the disturbance, the network is operating at an equilibrium operating
condition and information about this equilibrium condition is shared by
all the agents. Such an equilibrium condition might be thought of as the
outcome of a slower time-scale learning process, e.g., see [3, 4, 5], in presence
of incentive mechanisms such as tolls, e.g., see [6, 7]. After the disturbance,
we assume that the global knowledge of the agents remains fixed and that
the agents act by complementing the fixed global knowledge with real-time
instantaneous local information. Such a setup is meant is give insight into
the evolution of the network in the immediate aftermath of a disruption when
the availability of accurate global information about the whole network is
sparse or it is too time-consuming for the agents to incorporate the real-time
information about the whole network because of the huge computational
burden involved.

We consider disturbances that reduce the maximum flow carrying ca-
pacities of the edges by affecting their congestion properties. We define the
margin of stability of the TN to be the maximum sum of capacity losses,
under which the traffic densities on some of the edges grows unbounded in
time. We then prove that, irrespective of the route choice behavior of the
agents, the margin of stability is upper-bounded by the minimum of all the
node cuts of the residual capacities of the TN. We then characterize the
route choice behaviors that match this upper bound. Finally, we study the
dependence of the margin of stability on the equilibrium, and formulate a
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simple optimization problem for finding the most robust equilibria. This is,
in general, different from the classical socially optimal equilibrium, as well
as from the user-optimal equilibrium. We also discuss the utility of tolls
in yielding a desired equilibrium operating condition. Our results provide
important guidelines for social planners in terms of determining robust equi-
librium operating conditions and route choice behaviors for TNs. Alternate
notions of robustness for networks have been proposed in [8, 9, 10].

The contributions of the paper are as follows: (i) we formulate a novel
dynamical system framework for robustness analysis of transportation net-
works with respect to agents’ response to disturbances under information
constraints, (ii) we derive an upper bound on the margin of stability of
the network under local information constraint and characterize the class of
route choice behaviors under which this bound is tight, and (iii) we postulate
the notion of robustness price of anarchy to quantify the loss in robustness
due to sub-optimal equilibrium operating condition of a network and deter-
mine the set of edge-wise tolls that reduce this gap to zero.

The technical results of this paper rely on tools from several disciplines.
The upper bounds on the margin of stability for a given equilibrium oper-
ating condition uses graph theory notions from flow networks, e.g., see [11].
The properties of the route choice functions that give maximum margin of
stability are reminiscent of cooperative dynamics, e.g., see [12]. The problem
of determining tolls for a desired equilibrium condition exploits the fact that
the associated congestion game is a potential game and that the extremum
of the potential function corresponds to the equilibrium.

The rest of the paper is organized as follows. In Section ??, we de-
scribe basic notations and concepts useful for the paper and formulate the
robustness analysis problem. In Sections ?? and ??, we derive bounds on
the margin of stability of the network. Section 4 discusses the problem of
selection of the most robust equilibrium operating point of the network. In
Section 5, we report simulation results. Finally, we conclude in Section 6
with remarks on future research directions.

Before proceeding, we introduce some basic notation to be used through-
out the paper. ........ DIRECTED GRAPH For each node v ∈ V, E+

v (re-
spectively, Ev−) will denote the sets of its outgoing (incoming) edges, while

Rv := RE
+
v

+ , and Sv := {p ∈ R :
∑

e pe = 1}, will stay for the set of non-
negative vectors, and, respectively, of probability vectors over E+

v . VECTOR
LABELING
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2 Transportation networks and their margin of sta-
bility

In this section, we introduce our model of a dynamic transportation net-
work. Then, we define its margin of stability, and present our main result
characterizing it.

2.1 Dynamic transportation networks

We shall model a transportation network by:

(i) a topology, described as a finite directed graph G = (V, E), where
V := {0, 1, . . . , n} is the node set, E is the link set, and 0 and n are
respectively a source (i.e. a node without incoming edges) and a sink
(i.e. a node without outgoing edges);

(ii) a family of flow functions µe : R+ → R+, describing the functional
dependence fe = µe(ρe) of the current flow fe on the current density
ρe on every link e ∈ E ;

(iii) a family of myopic route-choice functions Gv : Rv → Sv describing
the relative frequency with which agents passing through some in-
termediate node v ∈ V \ {d}, and observing a current local density
ρv := (ρe)e∈E+v ∈ Rv choose the different outgoing links.

We shall assume that there is a constant incoming flow λ0 at node 0. MORE
EXPLANATION COMES HERE Then, an application of mass conservation
laws both on the links and at the nodes of G leads one to consider the
following dynamical system

d
dt
ρe(t) = λv(t)Gve(ρ

v(t))− fe(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+
v ,

fe(t) := µe(ρe(t)) ,

λv(t) :=
{ ∑

e∈E−v fe(t) if 0 < v < n

λ0 if v = 0

(1)

to any transportation network as above.
The main feature of the above-proposed model of a dynamic transporta-

tion network resides in the fact that the myopic route choice Gv at the inter-
mediate nodes v = 0, 1, . . . , n− 1 is a function only of the local information
on the current traffic density available to the agents passing through node v.
On the other hand, the structural form of such a dependence may depend on
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some global information on the traffic network which has been accumulated
through a slower time-scale process. While such a two time-scale process
has been analyzed in our related work [] through a singular perturbation
approach, the focus of this paper is on the fast scale dynamics described by
the dynamic system (1), and on its behavior in the presence of perturbations
of the system. For this reason, the route choice is approximated by a static
function of the local information.

2.2 Main structural assumptions

Throughout the paper, we shall make the following assumption on the graph
topology:

Assumption 1 The graph G is acyclic.

It follows from the Assumption 1 (see Appendix ??? OR DO WE HAVE
AN EXPLICIT REFERENCE?) that the nodes of G can be labeled in such
a way that

E−v+1 ⊆
⋃

0≤u≤v
E+
u , ∀0 ≤ v < n . (2)

We shall assume such an ordering to have been chosen once for all, and stick
to it throughout the paper.

We shall make the following assumption on the flow functions:

Assumption 2 For every link e ∈ E, the map µe : R+ → R+ is Lips-
chitz continuous, strictly increasing, and such that µe(0) = 0, and the flow
capacity

fmax
e := sup{µe(ρe) : ρe ∈ R+} (3)

is finite.

It is important to observe that the typical flow functions analyzed in the
transportation literature are not strictly increasing on all R+, but rather
have a ∩-shaped graph. While we shall perform our analysis under the
simplifying Assumption 2 for the clarity of exposition, as we shall clarify
later on (see Sect. ???), our results will allow us to analyze these more
realistic models as well.

We now proceed to describe the structural assumptions on the myopic
route-choice function. The first one is:

Assumption 3 For all intermediate node v = 0, 1, . . . , n− 1, the map Gv :
Rv → Sv is differentiable and such that

∂

∂ρj
Ge(ρv) > 0 , ∀j 6= e ∈ E+

v , ∀ρv ∈ Rv . (4)
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Assumption 3 captures a fundamental feature of the myopic behavior of
the agents in response to their current available local information: as the
current density on some link is increased, the probability of choosing each
of the other links increases. This assumption is reminiscent of the notion of
cooperative dynamic system [?, ?]. As we shall see, it will prove fundamental
for the validity of our main results. We shall further assume that:

Assumption 4 For all 0 ≤ v < n, and every sequence {ρv(m) : m ∈ N}
such that

lim
m→+∞

ρj(m) = +∞ , lim sup
m→+∞

ρe(m) < +∞ ,

for some j, e ∈ E+
v , one has that

lim
m→+∞

Gvj (ρ
v(m)) = 0 . (5)

Assumption 4 guarantees that, if the density is exploding on one but not on
all the outgoing links from a given node, then the frequency with which that
link is chosen drops down to zero..... ADD SOME EXPLANATION: THAT
SHOULD NOT BE HARD TO JUSTIFY Observe that Assumptions 3 and
4 are completely local, for they do not involve any global knowledge of the
network topology or flow functions.

Finally, we shall need the following structural assumption of global na-
ture:

Assumption 5 There exists an equilibrium density ρeq ∈ RE+ for the dy-
namical system (1).

NEED TO PUT JUSTIFICATION HERE
The following result guarantees uniqueness of the equilibrium, and is proved
in the Appendix.

Lemma 2.1 Let Assumptions 1, 2, 3, and 5 hold. Then, ρeq is the unique,
globally attractive equilibrium of the dynamical system (1).

2.3 Perturbed systems and margin of stability

We shall consider perturbations of the dynamical system (1), described as a
reduction of the flow functions on the links. Specifically, for each link e ∈ E ,
we shall consider a perturbed flow function µ̃e( · ), satisfying Assumption 2,
and such that

µ̃e(ρe) ≤ µe(ρe) , ∀ρe ≥ 0 .
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Such a modification of the flow functions will be referred to as an admissible
perturbation. We shall consider the perturbed dynamical system

d
dt
ρ̃e(t) = λ̃v(t)Gve(ρ̃

v(t))− f̃e(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+
v ,

f̃e(t) := µ̃e(ρ̃e(t)) ,

λ̃v(t) :=
{ ∑

e∈E−v f̃e(t) if 0 < v < n

λ0 if v = 0 ,

(6)

and call it stable if its solution starting from the equilibrium ρ∗ of the
unperturbed system remains bounded in time.

We shall measure the magnitude of an admissible perturbation by the
total reduction of the maximum flow capacity:

δ :=
∑
e∈E

δe , δe := sup {µ̃e(ρe)− µe(ρe) : ρe ≥ 0} . (7)

Finally, we shall define the margin of stability of the transportation network
as the infimum of the magnitudes of the admissible perturbations which
make the perturbed system (6) unstable. The following is our main result,
characterizing the margin of stability of a transportation network:

Theorem 2.2 The margin of stability of a transportation network satisfying
Assumptions 1-5 is given by

γ := min
{∑

e∈E+v

(
fmax
e − f*

e

)
: v = 0, 1, . . . , n− 1

}
. (8)

Remark 2.3 It is worth comparing the quantity γ defined in (8) with

Γ := min
{∑

e∈E+S
fmax
e : S ⊆ V, 0 ∈ S, n /∈ S

}
− λ0 , (9)

where E+
S := {(u, v) ∈ E : u ∈ S, v /∈ S} is set of outgoing edges from a

node subset S ⊆ V. The quantity Γ defined in (9) is the difference between
the minimum capacity of all cut-set of the transportation network separating
the origin node 0 from the destination node n, and the incoming flow λ0. It
is not hard to verify that, in general, γ ≤ Γ: to see this, it is sufficient to
consider, for every S ⊆ V with 0 ∈ S and n /∈ S, the node vS := maxS, and
observe that, thanks to (2), E+

vS ⊆ E
+
S , and then∑

e∈E+S
fmax
e − λ0 =

∑
e∈E+S

(fmax
e − f*

e ) ≥
∑

e∈E+vS
(fmax

e − f*
e ) .
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(DOES THIS DESERVE TO BE CLARIFIED FURTHER?)
While in some particular cases, such as the parallel link topology of Example
???, one may have Γ = γ, the gap Γ − γ can be arbitrarily large, as the
example proposed in Fig.??? shows.
SHOULD WE PUT AN EXAMPLE HERE OR IN A SEPARATE ENVI-
RONMENT SHOWING THE GAP CAN BE ARBITRARILY LARGE??
Using arguments along the lines of those employed in Sect. 3.1, is not hard
to show that Γ provides an upper bound on the margin of stability even if
the locality constraint on the information used for the agents’ myopic route
choice is removed. In fact, one may exhibit agents’ route choice which are
functions of the global current traffic density, for which the margin of stabil-
ity is exactly Γ [?]. Hence, one may interpret the gap Γ − γ as the margin
of stability loss due to the locality constraint on the information available to
the agents.

In fact, it is possible to consider intermediate levels of information avail-
able to the agents, which interpolate between the one-hop information of our
current modeling of the transportation network, and the global information
described above. EXPAND ON THIS??

3 Proof of the main result

In this section, we shall prove Theorem 2.2. First, we shall show that γ
is indeed an upper bound on the margin of stability of the transportation
network. This will follow only from the assumption of acyclicity of the
network topology, and locality of the information available to the agents, and
will be independent from Assumptions 3 and 4 on the route choice function.
In contrast, these assumptions will prove fundamental when showing that
γ is also a lower bound on the margin of stability of the transportation
network. In particular, Assumption 3 on the cooperative nature of the local
route choice function will allow us to prove some key monotonicity properties
for the solution of the perturbed dynamical system. Our arguments will also
lead to a proof of Lemma 2.1.

3.1 Upper bound on the margin of stability

We start by proving that γ is indeed an upper bound on the margin of
stability. To see this, it is sufficient to exhibit a family of perturbations,
with magnitude δ arbitrarily close to γ, which make the system unstable.
Let us fix some v ∈ {0, 1, . . . , n − 1} minimizing the right-hand side of (8),
put β :=

∑
e∈E+v f

max
e and for any δ ∈ (γ, β), consider the perturbed flow
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functions
µ̃e(ρe) := β−δ

β µe(ρe) , ∀e ∈ E+
v ,

µ̃e(ρe) := µe(ρe) , ∀e ∈ E \ E+
v .

(10)

Clearly this is an admissible pertubation, and has magnitude δ. Thanks to
(2), an inductive argument easily shows that the solution of the perturbed
system (6) satisfies ρ̃e(t) = ρ∗e, for all t ≥ 0, u ≤ v, and e ∈ E+

u . Hence, in
particular λv(t) = β − γ, so that

d
dt

∑
e∈E+v

ρ̃e(t) = λv(t)−
∑
e∈E+v

f̃e(t) ≥ β − γ −
∑
e∈E+v

f̃max
e = δ − γ > 0 .

It then follows from Gronwall’s inequality that∑
e∈E+v

ρ̃e(t) ≥
∑
e∈E+v

ρ∗e + (δ − γ)t , (11)

which shows that the traffic network is unstable. Then, from the arbitrari-
ness of the perturbation’s magnitude δ ∈ (γ, β), it follows that the traffic
network’s margin of stability is upper-bounded by γ. As remarked at the
beginning of this section, notice that this upper bound on the margin of sta-
bility does not depend on Assumptions 3, and 4, but only on the acyclicity
of the network, and locality of the route choice.

3.2 Lower bound on the margin of stability

We shall now prove that γ is also a lower bound on the margin of stabil-
ity of the transportation network. We shall prove this through a series of
intermediate results.

We start with the following result ensuring existence of a local equilib-
rium for the perturbed system. (IN THE FOLLOWING LEMMA POSSI-
BLY SWITCH TILDE TO HAT)

Lemma 3.1 For every intermediate node v ∈ {0, 1, . . . , n − 1}, and every
constant local input flow λ̃v ∈ (0,

∑
e∈E+v f̃

max
e ), there exists a unique local

equilibrium density vector ρ∗ ∈ Rv, and corresponding local equilibrium flow
f̃∗ := µ̃(ρ̃∗) such that

λ̃vG
v
e(ρ̃
∗) = f̃∗e , ∀e ∈ E+

v .

Proof Consider the set F := {f ∈ Rv :
∑

j fj = λ̃v , fj < f̃max
j , ∀j ∈ E+

v }
of feasible equilibrium flows, and let F be its closure in Rv. Let µ̃−1 : F →

9



Rv be the component-wise inverse of the perturbed flow function on the
outgoing edges. For j ∈ E+

v , consider the real-valued function

hj(f) := λ̃vG
v
j

(
µ̃−1(f)

)
− fj , ∀f ∈ F ,

and extend it by continuity to F . First observe that, for all f ∈ F ,∑
j hj(f) = λ̃v −

∑
j fj = 0. Moreover, hj(f) = λ̃vG

v
j (f) ≥ 0 for all

f ∈ F is such that fj = 0. Finally, thanks to Assumption 4, one has that,
if f ∈ F is such that fj = f̃max

j , then hj(f) = −f̃max
j ≤ 0. It follows that,

if Φt
j(f) = fj(t) for t ≥ 0, where f(t) is the solution of the initial value

problem
d
dt
fj(t) = hj(f(t)) , fj(0) = fj , j ∈ E+

v , (12)

then Φt(f) ∈ F for all f ∈ F . Now, fix some f, g ∈ F , and, for t ≥ 0, put
δ(t) := ||Φt(f)−Φt(g)||1, and let J ,K ⊆ E+

v be such that Φt
j(f) > Φt

j(g) iff
j ∈ J , and Φt

k(f) < Φt
k(g) iff k ∈ K. Thanks to Assumption 3, one has that∑

j∈J
Gvj (µ

−1(Φt(f))) ≤
∑

j∈J
Gvj (µ

−1(Φt(g))) ,

and, similarly,∑
k∈K

Gvk(µ
−1(Φt(f))) ≥

∑
k∈K

Gk(µ−1(Φt(g)) .

As a consequence∑
e∈E+v

sgn(Φt
e(f)− Φt

e(g))
(
Gve(Φ

t(f))−Gve(Φt(g))
)
≤ 0 , t ≥ 0 .

It follows that

χ(t) := ||Φt(f)− Φt(g)||1

=
∫ t

0

∑
e

sgn(Φs
e(f)− Φs

e(g)) (he(Φs(f))− he(Φs(g))) ds

≤
∫ t

0

∑
e

sgn(Φs
e(f)− Φs

e(g)) (Φs
e(g)− Φs

e(f)) ds

=
∫ t

0
−χ(s)ds ,

and then Gronwall’s inequality implies that

||Φt(f)− Φt(g)||1 = χ(t) ≤ χ(0)e−t = ||f − g||1e−t , ∀f, g ∈ F . (13)
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Therefore, for all t > 0, Φt : F → F is a contraction, and it admits a unique
fixed point f̃∗ ∈ F by Banach’s contraction mapping principle. Applying
(13) with g = f̃∗ and arbitrary f(0) = f ∈ F shows that f̃∗ is a (globally
attractive) fixed point for the system (12), so that he(f̃∗) = 0 for all e ∈ E+

v .
In particular, this implies that necessarily f̃∗e < f̃max

e for all e such that
f̃max
e > 0. Therefore, for all e ∈ E+

v , one has that ρ̃∗e := µ̃−1
e (f̃∗e ) < +∞, and

satisfies
λ̃vG

v
e(ρ
∗) = he(f̃∗) + f̃∗e = µ̃e(ρ∗e) , e ∈ E+

v ,

which concludes the proof.
The following result establishes some local stability and diffusivity prop-

erties of the perturbed system, which mainly rely on Assumption 3 on the
route choice function. More specifically, it shows that the increase in flow
on all the edges downstream from a node whose outgoing edges are affected
by a given perturbation, is less than the magnitude of the disturbance itself.

Lemma 3.2 Consider some admissible perturbation, of magnitude as in
(7), and some intermediate node v ∈ {0, 1, , . . . , n − 1}. Let λ̃v(t) be a
continuous local input flow satisfying

sup{λ̃v(t) : t ≥ 0} = λ̃∗v ≤
∑

e∈E+v
f̃max
e , t ≥ 0 , (14)

and consider the local perturbed system
d
dt
ρ̃e = λ̃v(t)Gve(ρ̃

v)− µ̃e(ρ̃e) ,
ρ̃e(0) = ρ∗e , e ∈ E+

v .

Then, for all t ≥ 0, and every subset of outgoing links J ⊆ E+
v ,∑

e∈J
(µ̃e(ρ̃e(t))− f∗e ) ≤

[
λ̃∗v − λ∗v

]
+

+
∑

e∈E+v
δe . (15)

Proof Let λ̂∗v := max{λ̃∗v, λ∗v}, and ρ̂v(t) be the solution of the initial value
problem {

d
dt ρ̂j = λ̂∗vG

v
j (ρ̂

v)− µ̃j(ρ̂j)
ρ̂j = ρ∗j .

Observe that, thanks to Assumption 3, for every ρv 6= ρ∗ ∈ Rv such that

ρj = ρ∗j for some j ∈ E+
v , ρe ≥ ρ∗e, ∀e 6= j ∈ E+

v ,

one has Gvj (ρ
v) > Gvj (ρ

∗), and then,

λ̂∗Gvj (ρ
v)− µ̃j(ρj) > (

∑
e
f∗e )Gvj (ρ

∗)− µj(ρ∗j ) = 0 .
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Therefore, if we consider the region R∗ := {ρv : ρj ≥ ρ∗j , ∀j ∈ E}, and
denote by n the outward-pointing normal vector to its boundary, one has
that (

λ̂∗Gvj (ρ
v)− µ̃j(ρj)

)
· n < 0 , ∀ρv ∈ ∂R∗ , t ≥ 0 .

It follows that
ρ̂e(t) ≥ ρ∗e , ∀e ∈ E , ∀t ≥ 0 . (16)

On the other hand, thanks to Lemma 3.1, there exists a perturbed equi-
librium point ρ̂∗ such that

λ̂∗vG
v
j (ρ̂
∗) = µ̃j(ρ̂∗j ) , ∀j ∈ E+

v .

Then, for all ρv 6= ρ̂∗ such that

ρj = ρ̂∗j for some j ∈ E , ρe ≤ ρ̂∗e, ∀e 6= j ∈ E .

Assumption 3 implies that Gvj (ρ
v) < Gvj (ρ̂

∗), and then

λ̂∗Gvj (ρ
v)− µ̃j(ρj) < λ̂∗Gvj (ρ̂

∗)− µ̃j(ρ̂∗j ) = 0 .

Therefore, (
λ̂∗Gvj (ρ

v)− µ̃j(ρj)
)
· n̂ < 0 , ∀ρv ∈ ∂R∗ ,

where
R̂∗ := {ρv : ρj ≤ ρ̂∗j , ∀j ∈ E+

v } ,

and n̂ is the outward-pointing normal vector to its boundary. This implies
that

ρ̂e(t) ≤ ρ̂∗e , ∀e ∈ E , ∀t ≥ 0 ,

from which, in particular, it follows that∑
e∈E

µ̃e(ρ̂e(t)) ≤
∑
e∈E

µ̃e(ρ̂∗e) = λ̂∗ . (17)

Now, combining (17) with (16), one gets that, for all t ≥ 0∑
j∈J µ̃j(ρ̂j(t)) ≤ λ̂∗ −

∑
j /∈J

µ̃j(ρ̂j(t))

≤ λ̂∗ −
∑
j /∈J

µ̃j(ρ∗j )

=
[
λ̃∗v − λ∗v

]
+

+
∑
j∈J

f∗j +
∑
j /∈J

µj(ρ∗j )−
∑
j /∈J

µ̃j(ρ∗j )

≤
[
λ̃∗v − λ∗v

]
+

+
∑
j∈J

f∗j +
∑

e∈E+v δe .
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To complete the proof, it remains to show that

ρ̂j(t) ≥ ρj(t) , t ≥ 0 . (18)

for all j ∈ E+
v . In order to see this, first observe that ρ̂j(0) = ρj(0). More-

over, if ρ̂j(t) = ρj(t) for some j, and ρ̂e(t) ≥ ρe(t) for all other e, then
Assumption (A4) guarantees that Gvj (ρ̂

v) ≥ Gvj (ρv), and, as a consequence,

d
dt
ρ̂j = λ̂∗Gvj (ρ̂

v)− µ̃j(ρ̂j) ≥ λ(t)Gvj (ρ
v)− µ̃j(ρj) =

d
dt
ρj ,

which in turn can be shown to imply (18).

One can exploit the local stability and diffusivity properties from Lemma 3.2
along with an induction argument on the depth of an acyclic graph to prove
that γ is indeed a lower bound to the margin of stability of the traffic net-
work. For v = 0, 1, . . . , n, define

Dv :=
⋃v

u=0
E+
u , Bv := Dv \ {(u,w) ∈ E | u,w ∈ {0, . . . , v}} .

Lemma 3.3 Consider an admissible perturbation of magnitude δ =
∑

e δe
as in (7). Then, for any v = 0, . . . , n− 1, and for every J ⊆ Bv∑

e∈J

(
µ̃e(t)− f*

e

)
≤
∑
e∈Dv

δe, ∀t ≥ 0 . (19)

Proof We shall proceed by induction on v = 0, 1, . . . , n.
First, notice that B0 = D0 = E+

o . Therefore, by applying Lemma 3.2,
with λ̃(t) = λ0, one can verify that Equation (19) is true for v = 0.

Now, assume that (19) be true for some v ≤ n − 2. Consider a set
J ⊆ Bv+1 and let J1 := J ∩E+

v+1 and J2 := J \J1. It is easy to check that
J2 ⊆ Bv. By applying Lemma 3.2 to the set J1, one gets that∑

e∈J1

(µ̃e(ρ̃e(t))− f∗e ) ≤
[
λ̃∗v+1 − λ∗v+1

]
+

+
∑

e∈E+v+1

δe, (20)

where λ̃∗v+1 = sup{
∑

e∈E−v+1
µ̃e(ρe(t)) : t ≥ 0}. By applying the induction

step on J2 and J2 ∪ E−w+1, one gets the following inequalities:∑
e∈J2

(
µ̃e(ρ̃e(t))− f*

e

)
≤
∑
e∈Dv

δe, (21)

∑
e∈J2

(
µ̃e(ρ̃e(t))− f*

e

)
+
∑

e∈E−v+1

(
µ̃e(ρ̃e(t))− f*

e

)
≤
∑
e∈Dv

δe. (22)
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Consider the two cases: λ̃∗v+1 ≤ λ∗v+1, or λ̃∗v+1 > λ∗v+1. By adding up
equations (20) and (21), in the first case, or (20) and (22) in the second
case, one gets that∑

e∈J (µ̃e(ρe(t))− f∗e ) =
∑

e∈J1
(µ̃e(ρe(t))− f∗e ) +

∑
e∈J2

(µ̃e(ρe(t))− f∗e )

≤
∑

e∈E+v+1
δe +

∑
e∈Dv

δe

≤
∑

e∈Dv+1
δe .

Since J ⊆ Bv+1, this proves Equation (19).

In particular, Lemma 3.3 implies that

λ̃∗v ≤ λ∗v +
∑

e∈Dv−1

δe, ∀v = 1, . . . , n− 1 . (23)

Now consider an admissible perturbation of magnitude δ < γ. From (23),
and the inequality ∑

e∈Dv

δe ≤ δ < γ ≤
∑
e∈E+v

(fmax
e − f∗e ) ,

one finds that, for all v = 0, 1, . . . , n− 1,

λ̃∗v ≤ λ∗v +
∑

e∈Dv−1
δe

= λ∗v +
∑

e∈Dv
δe −

∑
e∈E+v δe

< λ∗v +
∑

e∈E+v

(
fmax
e − f*

e − δe
)

=
∑

e∈E+k
(fmax

e − δe)
=

∑
e∈E+k

f̃max
e .

Then, an iterated application of Lemma 3.2, for all intermediate nodes v =
0, 1, . . . , n−1, proves that γ is indeed a lower bound to the margin of stability
of the transportation network, thus completing the proof of Theprem 2.2.

4 Robust equilibrium selection and optimal toll
selection

In the previous sections, we studied robustness properties of a transportation
network around a given equilibrium point. We now return to our secondary
objective of identifying the most robust equilibrium operating point for the
network. For this, we shall assume that initial equilibrium point of the
transportation network is of Wardrop type. Such an assumption is justified
by ..... EXPLAIN AND REFER TO OUR WORK ON STABILITY
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4.1 Wardrop equilibria

We shall strengthen Assumption 2 to the following:

Assumption 6 For every e ∈ E, µe : R+ → R+ is continuously differ-
entiable, strictly increasing, strictly concave, and is such that µe(0) = 0,
µ′e(0) < +∞ and lim supρe→+∞ µe(ρe) < +∞, where µ′e(0) := limρe→0+ µ′e(ρe).

For a µ(ρ) satisfying (A2), there exists a continuous inverse µ−1
e ( · ) for all e ∈

E . Therefore, with flow on an edge being the product of speed and density
on that edge, one can define the edge-wise delay functions Te : R+ → R>0

representing the flow-dependent time taken to traverse an edge as

Te(fe) :=
{
µ−1
e (fe)/fe if fe > 0,
1

µ′e(0) if fe = 0, ∀e ∈ E . (24)

For a µ(ρ) satisfying (A2), let fmax
e := lim supρe→+∞ µe(ρe) be the maximum

flow carrying capacity of edge e. Let fmax � 0 be the vector of maximum
flow carrying capacities of the edges in E . For a given G and fmax � 0,
define the set of admissible flows through G as

F(G, fmax) := {f � 0 | f � fmax,
∑
e∈E+u

fe =
∑
e∈E−u

fe+1o(u) ∀u ∈ V\{d}}.

Throughout this paper, we will assume that G and fmax are such that
F(G, fmax) 6= ∅.

Let Υ � 0 be the edge-wise vector of tolls, with Υe denoting the toll
on edge e. We now describe the game-theoretic framework for the trans-
portation network that is relevant to describe the appropriate notion of an
equilibrium operating condition from the agents point of view. We briefly
describe the standard congestion game setup for the transportation network
under consideration in this paper. Assuming that one unit of toll corre-
sponds to a unit amount of delay, the utility of a driver associated with edge
e when the flow on it is fe is − (Te(fe) + Υe) and hence the utility associated
with a path p ∈ P is −

∑
e∈p (Te (fe) + Υe).

We shall assume that the network is initially operating at a Wardrop
equilibrium condition. We refer the reader to [13] for sufficient conditions
for the stability of Wardrop equilibria under settings similar to the one con-
sidered in this paper. We now recall the notion of a Wardrop equilibrium [2]
that also includes the effect of tolls.
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Definition 4.1 A Wardrop equilibrium is a vector f∗ ∈ F(G, fmax) that
satisfies the following for all p, q ∈ P:

fe > 0 ∀e ∈ p ∪ q =⇒
∑
e∈p

(Te (fe) + Υe) =
∑
e∈q

(Te (fe) + Υe) ,

fe > 0 ∀e ∈ p, ∃e′ ∈ q s.t. fe′ = 0 =⇒
∑
e∈p

(Te (fe) + Υe) ≤
∑
e∈q

(Te (fe) + Υe) .

The following result guarantees the existence and uniqueness of Wardrop
equilibrium in our setting.

Proposition 4.2 Given a G satisfying (A1), µ(ρ) satisfying (A2) and Υ �
0, there exists a unique Wardrop equilibrium f∗ ∈ F(G, fmax).

Proof It follows from assumption (A2) that, for all e ∈ E , the delay
function Te(fe) is continuous, strictly increasing, and such that Te(0) > 0.
The proposition then follows by applying Theorems 2.4 and 2.5 from [2].

4.2 Robust equilibrium selection as an optimization problem

The robust equilibrium selection problem can be posed as an optimization
problem as follows:

maximize Γ (G,Π1, f
∗) ,

subj. to f∗ ∈ F(G, fmax).
(25)

The solution to this optimization problem can help a system planner evaluate
the distribution of traffic flow that is most robust to disruptions and can
implement this distribution using, for example, using tolls Υ, e.g., see [6].
Similar optimization problems and their solution methodologies have been
widely studied in context of traffic assignment in [2].

Equation (??) shows that, under these conditions, Γ∗ is a minimum of
a set of functions linear in f∗ and hence is concave in f∗. Therefore the
optimization problem stated in Equation (25) is equivalent to minimizing
a convex function over a convex polytope. However, note that the objec-
tive function, Γ (G,Π1, f

∗) is non-smooth and one needs to use non-smooth
convex optimization techniques, e.g., see [14], to solve this problem.

4.3 The robustness price of anarchy

Conventionally, transportation networks have been viewed as static flow net-
works, where a given equilibrium traffic flow is an outcome of driver’s selfish
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behavior in response to the delays associated with various paths and the in-
centive mechanisms in place. The price of anarchy [15] has been suggested as
a metric to measure how sub-optimal a given equilibrium is with respect to
the societal optimal equilibrium, where the societal optimality is related to
the average delay faced by the agents. In the context of robustness analysis
of transportation networks, it is natural to consider societal optimality from
the robustness point of view, thereby motivating a notion of the robustness
price of anarchy. Formally, it can be defined as

P (G,Π, f∗) = Γ∗ (G,Π)− Γ (G,Π, f∗) .

It is worth noting that, for a parallel topology, we have that Γ∗ (G,Π1, f
∗) =

Γ∗ (G,Π, f∗) =
∑

e∈E f
max
e − 1 for all f∗. That is, the margin of stability is

independent of the equilibrium operating condition and hence, for a parallel
topology, P (G,Π, f∗) = 0 for all f∗. However, for a general topology and a
general equilibrium, this quantity is non-zero. In the next section, we discuss
the use of tolls to yield a robust equilibrium point for a given topology, i.e.,
the one for which the robustness price of anarchy is zero.

4.4 Tolls for the robust equilibrium point

In this section, we determine the set of edge-wise tolls Υ that yield a desired
equilibrium operating condition for the network.

Proposition 4.3 Given a graph G satisfying (A1), flow functions µ satisfy-
ing (A2), the set of tolls that yield a desired equilibrium operating condition
f∗ ∈ F(G, fmax) ∩ R|E|>0 is given by

Υeq =

(
max
e∈E

Te(1)
Te(f

eq,0
e )

)
T (feq,0)− T (f∗),

where feq,0 ∈ F(G, fmax) is the Wardrop equilibrium for tolls set to zero.

Proof Let S be a simplex of dimension |P|, i.e., number of paths in
G between o and d. Consider the function V : S → R that serves as a
potential function for the congestion game at hand [16]:

V (π) =
∑
e∈E

∫ fe

0
(Υe + Te(z)) dz

=ΥT f +
∑
e∈E

∫ fe

0
Te(z)dz, (26)
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where f = ATπ, with A ∈ {0, 1}|P|×|E| being the path-edge incidence ma-
trix, i.e., for all e ∈ E and p ∈ P, Ap,e = 1 if e ∈ p and zero otherwise.
Equation (26) can be rewritten as

V (π) = (AΥ)Tπ +
∑
e∈E

∫ (AT π)e

0
Te(z)dz,

Following assumption (A2) and the discussion thereafter, it is easy to see
that V (π) is convex in π. It is known, e.g., see Theorem 2.1 in [2], that the
unique Wardrop equilibrium corresponding to a given set of tolls is equiv-
alent to the first order optimality condition of the following optimization
problem:

minimize V (π),
subj. to π ∈ S.

(27)

Let ζ ∈ R be the Lagrange multiplier corresponding to the constraint in
(27). The Lagrangian function can then be written as L(π, ζ) := (AΥ)Tπ+∑

e∈E
∫ (AT π)e

0 Te(z)dz + ζ
(
1− 1Tπ

)
.

Considering the first order optimality conditions, the necessary and suf-
ficient condition for f∗ ∈ F(G, fmax) ∩ R|E|>0 to be a Wardrop equilibrium is
the existence of Υeq � 0 and ζ∗ ∈ R that satisfy the following condition:

A (Υeq + T (f∗)) = ζ∗1. (28)

Since feq,0 is a Wardrop equilibrium for τ = 0, the first order optimality
conditions imply that there exists ζ̂ ∈ R such that

AT (feq,0) = ζ̂1. (29)

Using Equation (29) and simple algebra, one can verify that Equation (28) is
satisfied for Υeq =

(
maxe∈E

Te(1)

Te(f
eq,0
e )

)
T (feq,0)−T (f∗) and ζ∗ =

(
maxe∈E

Te(1)

Te(f
eq,0
e )

)
ζ̂.

Remark 4.4 The set of tolls that yield a desired equilibrium operating con-
dition is not unique. In fact, any toll of the form Υeq = ηT (feq,0)− T (f∗),
with η ≥ maxe∈E

Te(f*
e )

Te(f
eq,0
e )

would yield f∗ as the equilibrium condition. Propo-
sition 4.3 gives just one such set of tolls.
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Figure 1: The graph topology used in simulations.

5 Simulations

In this section, through numerical experiments, we show the implications of
the results when the flow functions are set to the ones commonly accepted in
the transportation literature, e.g., see [17]. In transportation literature, the
flow functions are defined over a final interval of the form [0, ρmax

e ], where
ρmax
e is the maximum traffic density that link e can handle. Additionally,
µe is assumed to be strictly concave and achieves its maximum in (0, ρmax

e ).
For example, consider the following:

µe(ρe) =
4fmax

e ρe(ρmax
e − ρe)

(ρmax
e )2

, ρe ∈ [0, ρmax
e ]. (30)

Note that the most important difference from (A2) is that in this case
µe is not strictly increasing. However, we illustrate via simulations that one
can exploit the flexibility in choosing β in the i-logit function to use the
results on the margin of stability.

For the simulations, we selected the following parameters:

• The graph topology G is shown in Figure 1.

• The link-wise flow functions were selected to be a modified version of
Equation (30):

µe(ρe) =
4fmax

e ρe(ρmax
e − ρe)

(ρmax
e )2

1ρj≤ρmax
j ∀j∈E+v , ρe ∈ [0, ρmax

e ], ∀e ∈ E ,

with the maximum flow carrying capacity and the maximum traffic
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density given by fmax = [25
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1
2 ]T and ρmax =

115 respectively.
[KS]: need to be a
bit more careful in
writing the indi-
cator function in
the equation for
flow functions

• The equilibrium flow distribution was selected to be f∗ = [13
1
3

1
3

2
9

1
6

1
6

2
9

1
9

1
9

7
54

7
54

7
27

7
27

13
54

13
54 ]T .

• For the route choice function, a modified version of Equation (??)
is used. The modification is done to respect the finite traffic density
constraint on the links. The modified route choice function is as follows

Gve(ρ
v) =

f*
e exp(−β(ρe − ρ*

e))1ρe≤ρ*e∑
j∈E+v f

∗
j exp(−β(ρj − ρ∗j ))1ρj≤ρ∗j

,

where β will be an independent parameter for the simulations.

5.1 Effect of β on the margin of stability

In this section, we study the effect of β on the margin of stability. One can
verify using Theorem ?? that the margin of stability for the network with
the given parameters is upper bounded by 11/45. Consider the disturbance
vector δ such that δ12 = 0.1 and δi = 0 for all i ∈ {1, . . . , 15} \ {12}. Note
that the one-norm of this disturbance vector is strictly less than 11/45.
Figures 2 and 3 illustrate the role of β in stability.

5.2 Cascaded instability

Figure 4 illustrates the cascading effect in the instability of the network.

6 Conclusion

In this paper, we studied robustness properties of transportation networks
with respect to its pre-disturbance equilibrium operating condition and the
agents’ response to the disturbance. We considered disturbances that reduce
the maximum flow carrying capacities of the edges by affecting their conges-
tion properties. We define the margin of stability of the network to be the
maximum sum of capacity losses, under which the traffic densities on all the
edges remain bounded over time. We characterized the class of route choice
functions that yield the maximum margin of stability for a given equilibrium
operating condition and also the formulated an optimization problem to find
the most robust equilibrium point. Finally, we discussed the use of tolls in
yielding a desired equilibrium operating condition.
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Figure 2: Plot of densities of links 10 and 12 for β = 1.
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Figure 3: Plot of densities of links 10 and 12 for β = 5.
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Figure 4: Plot of densities of all the links for β = 1.

In future, we plan to extend the research in several directions. First,
we plan to study the dependence of the margin on stability on the amount
of information available to the agents. We also plan to perform robustness
analysis in a probabilistic framework versus the min-max framework of this
paper, possibly considering other general models for disturbances. Finally,
we also plan to consider more general graph topologies, e.g., graphs have
cycles, multiple origin-destination pairs etc.
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