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Upper bounds are derived on the total variation distance between
the invariant distributions of two stochastic matrices differing on a
subset W of rows. Such bounds depend on three parameters: the mix-
ing time and the minimal expected hitting time on W for the Markov
chain associated to one of the matrices; and the escape time from W
for the Markov chain associated to the other matrix. These results,
obtained through coupling techniques, prove particularly useful in
scenarios where W is a small subset of the state space, even if the
difference between the two matrices is not small in any norm. Several
applications to large-scale network problems are discussed, including
robustness of Google’s PageRank algorithm, distributed averaging
and consensus algorithms, and interacting particle systems.

1. Introduction. How much can the invariant probability distribution
π of an irreducible row-stochastic matrix P be affected by perturbations
localized on a relatively small subset W of its state space V? Such a question
arises in an increasing number of applications, most notably in the emerging
field of large-scale networks.

As an example, many notions of network centrality can be formulated
in terms of invariant probability distributions of suitably defined stochastic
matrices. In particular, Google’s PageRank algorithm [6] assigns to webpages
values corresponding to the entries of the invariant probability distribution
π of the matrix P obtained as a convex combination of the normalized
adjacency matrix of the directed graph describing the hyperlink structure of
the World Wide Web (WWW), and of a matrix whose all entries equal the
inverse of the total number of webpages [23, 10]. A well-known problem in
this context is rank-manipulation, i.e., the intentional addition or removal of
hyperlinks from some webpages (hence, the alteration of the corresponding
rows of P ) with the goal of modifying the PageRank vector [4, 22, 13]. A
natural question is then, to what extent a small subset W of webpages can
alter the PageRank vector π. Similar robustness issues have been raised
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for accidental variations of the WWW topology occurring, e.g., because of
server failures or network congestion problems [20].

More generally, the problem is of central interest in the context of dis-
tributed averaging and consensus algorithms [35]. There, linear systems of
the form x(t+ 1) = Px(t), or their continuous-time analogous, are studied,
e.g., as algorithms for distributed optimization [41, 42, 5], control [21, 34, 7],
synchronization in sensor networks [36], or reputation management in ad-hoc
networks [27], as well as behavioral models for flocking phenomena [43, 14]or
opinion dynamics in social networks [15, 16, 18, 1]. Equilibria of such systems
are consensus vectors, i.e., multiples of the all-one vector, and standard re-
sults following from Perron-Frobenious theory guarantee convergence (with
the additional assumption of aperiodicity of P , in the discrete time case)
to a consensus vector with all entries equal to π′x(0). Depending on the
specific applicative context, the natural question is to what extent the con-
sensus value π′x(0) is affected by perturbations of P corresponding, e.g., to
malfunctioning of a small fraction of the sensors, or conservative/influential
minorities in social networks [2].

Other applications can be found in the context of interacting particle
systems [25, 26]. In particular, in the voter model on a finite graph [11, 12],
[3, Ch. 14], [17, Ch. 6.9], the probability distribution of the final consensus
value is determined by the invariant distribution of the stochastic matrix
associated to the simple random walk on the graph. Perturbations in this
case may model the presence of inhomogeneities or ‘zealots’ [31, 32].

The above-described problems all boil down to estimating the distance
between the invariant probability distribution π of an irreducible stochastic
matrix P and an invariant probability distribution π̃ = P̃ ′π̃ of another
stochastic matrix P̃ , to be interpreted as a perturbed version of P . In some
applications, P may be reversible, i.e., coincide with the normalization of
a symmetric positive matrix, so that π can be easily computed in terms of
the latter. However, even in these cases, the considered perturbations will
typically be such that P̃ is not reversible and thus π̃ does not allow for a
tractable explicit expression.

Remarkably, standard perturbation results based on sensitivity analysis
[37, 38, 39, 28, 8, 9, 29, 30, 2] do not provide a satisfactory answer to this
problem. Indeed, they provide upper bounds of the form

(1) ||π̃ − π||p ≤ κP ||P̃ − P ||q ,

for some p, q ∈ [1,∞], where κP is a condition number depending on the
original stochastic matrix P only. Such condition numbers are lower bounded
by an absolute positive constant (e.g., 1/4 for the smallest of those surveyed
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in [9]) and typically blow up as the state space V grows large. Therefore,
such results do not allow one to prove that the distance ||π̃ − π||p vanishes
in the limit of large network size, even if P and P̃ differ only in a single row,
unless ||P̃ − P ||q itself vanishes.

In this paper, we obtain upper bounds on the total variation distance
||π̃ − π|| := 1

2 ||π̃ − π||1 of the form

(2) ||π̃ − π|| ≤ θ(τ χ̃/τ∗W) ,

(see Theorem 3) where: θ : [0,+∞) → [0, 1] is a continuous, nondecreasing
function such that θ(0) = 0 (see (6) for its definition);

(3) τ := inf
{

t ≥ 1 : ||P t
u,· − P t

v,·|| ≤ 1/e ,∀u, v ∈ V
}

is the mixing time of the original stochastic matrix P ; τ∗W denotes the min-
imal expected hitting time on the set W for a Markov chain with transition
probability matrix P (see (7)); and χ̃ stands for the escape time from W for
a Markov chain with transition probability matrix P̃ (see (8) for the exact
definition). As opposed to the aforementioned sensitivity results, all derived
from algebraic arguments, our proofs rely on coupling techniques, combined
with an argument similar to the one developed in [1] for ‘highly fluid’ net-
works. Clearly, (2) implies that ||π̃−π|| vanishes provided that τ χ̃/τ∗W does.
As we will show, this finds immediate application in the PageRank manip-
ulation problem. More in general, our results prove useful in many of those
aforementioned large-scale network applications where classical sensitivity-
based results fail to provide a satisfactory answer.

Mixing properties of stochastic matrices have been the object of extensive
recent research [3, 33, 24], and several results are available allowing one to
estimate the mixing time τ of a stochastic matrix P , e.g., in terms of the
conductance or other geometrical properties of the graph associated to P .
It is worth pointing out that a connection between mixing properties and
robustness of stochastic matrices is already unveiled by the perturbation
results of [29, 30], where (1) is proven for p = 1, q = ∞, and condition
number κP proportional to τ . Of a similar flavor are Seneta’s results [38, 39]
estimating the condition number κP in terms of ergodicity coefficients. Also
the estimates proposed in [2] for symmetric P , which can be rewritten as
(1) with for p = q = 2 and κP equal to the inverse of the spectral gap of P .
As compared to these references, the fundamental novelty of our bound (2)
consists in measuring the size of the perturbation in terms of the ratio χ̃/τ∗W
instead of the distance ||P̃ − P ||q, thus enabling one to obtain significant
results in scenarios where W is small but P̃ − P is not necessarily small in
any norm.
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In fact, of the last two parameters appearing in the righthand side of (2),
the escape time χ̃ is the only one truly depending on the perturbation P̃−P ,
and is indeed easily estimated in typical cases when W is a small subset of
V. On the other hand, the minimal hitting time τ∗W , which depends on P
and W only, turns out to be the hardest to get upper bounds on in typical
applications where P is sparse and W remains small but not necessary lo-
calized as the state space grows large. While Kac’s formula readily implies
the upper bound τ∗W ≤ 1/π(W), lower bounds on τ∗W typically involve finer
details of P than just π(W). In the last section of this paper, we will pro-
pose an analysis of τ∗W for networks with high local connectivity, which finds
natural application when the graph associated to P is a d-dimensional grid,
and the size of W remains bounded (or grows very slowly) as the network
size grows large. Results for random, locally tree-like networks will be the
object of a forthcoming work.

The rest of this paper is organized as follows. Section 2 introduces three
motivating examples formalizing some of the applications mentioned at the
beginning of this Introduction. In Section 3, we present our main result
which is stated Theorem 3. Section 4 focuses on stochastic matrices whose
support graph has high local connectivity and discusses lower bounds of the
minimal hitting time τ∗W . This allows for efficient application of Theorem 3
to grid-like graphs. Explicit examples on toroidal grid graphs are presented.

Before proceeding, let us collect here some notational conventions to be
used throughout the paper. Vectors and matrices will be considered with
entries from a set V of finite cardinality n := |V|. The all-one column vector
will be denoted by 1. For a matrix A, A′ will stand for its transpose and
supp(A) := {v : Av,· 6= 0} for the set of its nonzero rows. Then, a probability
distribution µ (i.e., a nonnegative-valued vector such that µ′

1 = 1) will be
said invariant for a stochastic matrix A (i.e., a nonnegative-valued matrix
such that A1 = 1) if A′µ = µ. The total variation distance between two
probability distributions will be denoted by ||µ−π|| := 1

2

∑

v |µv−πv|. For a
probability distribution µ and a subset A ⊆ V such that µ(A) > 0, µA will
stand for the conditional probability distribution on A, i.e., µA

a = µa/µ(A)
for a ∈ A, and µA

v = 0 for v ∈ V \A. For a graph G = (V, E) we shall use the
convention that E ⊆ V × V, so that G undirected means that if (u, v) ∈ E
then (v, u) ∈ E as well. To every stochastic matrix P we shall associate the
support graph GP = (V, EP ) where (u, v) ∈ EP if and only if Puv > 0. For
stochastic matrices P, P̃ , we will consider discrete-time Markov chains V (t)
and Ṽ (t), t = 0, 1, . . ., with state space V and transition probability matrix
P , and P̃ , respectively. For v ∈ V, Pv and Ev will stand for the probability
and expectation conditioned on V (0) = Ṽ (0) = v, while for a probability
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distribution µ, Pµ :=
∑

v µvPv and Eµ :=
∑

v µvEv. We will denote the
corresponding hitting times on a subset U ⊆ V by TU := inf{t ≥ 0 : V (t) ∈
U}, and T̃U := inf{t ≥ 0 : Ṽ (t) ∈ U}, and their expectations by τvU := Ev[TU ]
and τ̃vU := Ev[T̃U ], respectively.

2. Three motivating examples. In this section we present three mo-
tivating examples formalizing some of the application problems discussed in
the Introduction.

2.1. PageRank manipulation. Let Q be a stochastic matrix, µ a prob-
ability distribution, and β a parameter in the interval (0, 1). Let P :=
(1 − β)Q + β1µ′, and observe that, irrespective of whether Q is reducible
or not, the matrix W := (I − (1 − β)Q′) is strictly diagonally dominant,
hence nonsingular, so that P has a unique invariant probability distribution
π = βW−1µ.

Now, let G = (V, E) be the directed graph describing the WWW, whose
nodes v ∈ V correspond to webpages and where there is a directed edge
(u, v) ∈ E whenever page u has a hyperlink directed to page v. Let du := |Eu|
and Eu := {v : (u, v) ∈ E} are the number of hyperlinks and, respectively,
the set of linked pages, from page u. Define the stochastic matrix Q by
Quv = 1/n for all v if du = 0, and, if du ≥ 1, let Quv = 0 if (u, v) /∈ E
and Quv = 1/du if (u, v) ∈ E . Also, let µ be the uniform distribution over
the set of webpages. Then, π = (1 − β)Q′π + βµ is the PageRank vector,
first introduced by Brin and Page [6] to measure the relative importance of
webpages. Typical values of β used in practice are about 0.15. For general
probability distribution µ, the vector π is referred to as the personalized
PageRank [19], and is used in context-sensitive searches.

Now, let W ⊆ V be a (relatively small) set of webpages, and assume that
the hyperlinks ∪w∈WE+

w can be modified arbitrarily in order to change π. Let
G̃ = (V, Ẽ) be the modified WWW graph, Q̃ the corresponding stochastic
matrix. Then, the unique invariant probability distribution π̃ of P̃ := (1 −
β)Q̃+ β1µ′ satisfies

||π̃ − π|| = max
U⊆V

π̃(U)− π(U) .

Hence, estimating the impact that the arbitrary change of the hyperlinks
from a set of webpages W has on the aggregate PageRank of an arbitrary set
of webpages U boils down to bounding the total variation distance between
the invariant probability distributions π and π̃. Observe that the matrices Q
and Q̃, and therefore P and P̃ , differ only on the rows indexed by elements
of W. A solution to this problem will be discussed in Example 2.1 of Section
3.
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6 GIACOMO COMO AND FABIO FAGNANI

2.2. Faulty communication links in distributed averaging algorithms. Con-
sider a sensor network described as a connected undirected graph G = (V, E),
whose nodes and edges represent sensors and two-way communication links,
respectively. Assume that each sensor v initially measures a scalar yv and
the goal is to design a distributed algorithm for the computation of the
arithmetic average y := n−1

∑

v yv.
A possible solution [35] is as follows. Let d ∈ R

V be the degree vector in
G, and, for all v ∈ V, put

(4) xv(0) =
yv
dv

, zv(0) =
1

dv
,

(5) [xv(t+ 1), zv(t+ 1)] =
1

2
[xv(t), zv(t)] +

1

2dv

∑

u:(u,v)∈E

[xu(t), zu(t)] .

What makes the above particularly appealing in large-scale network appli-
cations is the fact that it requires sensors to exchange information with their
neighbors in G only, and that each sensor v needs to know its degree dv only
with no need for global knowledge about the network structure or size.

In order to analyze the algorithm let us rewrite (4) and (5) in matrix
notation. Let P be the stochastic matrix associated to the lazy random
walk on G, i.e., P = (I + Q)/2, where I denotes the identity matrix and
Quv = 1/du if (u, v) ∈ E . Let x(0) = y/d, z(0) = 1/d (where division
between two vectors is meant componentwise) and consider the iteration

x(t+ 1) = Px(t) , z(t+ 1) = Pz(t) .

Observe that the unique invariant probability distribution π = P ′π is given
by πu = du/(nd) where d := n−1

∑

v dv is the average degree. Moreover,
irreducibility and acyclicity of P imply that

x(t) = P t y

d

t→∞−→ 1π′y

d
= 1

y

d
, z(t) = P t

1/d
t→∞−→ 1π′1

d
= 1

1

d
,

so that
xv(t)

zv(t)

t→∞−→ y , ∀v ∈ V ,

i.e., (4)-(5) effectively describe an iterative distributed algorithm for the
computation of y. The example can be easily generalized starting from an
undirected weighted graph, thus preserving reversibility of P and an explicit
form of the invariant distribution π.
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ROBUSTNESS OF LARGE-SCALE STOCHASTIC MATRICES 7

Let F ⊆ E be a subset of directed communication links which stop work-
ing. Let Ẽ := E \ F , G̃ := (V, Ẽ), and d̃ be the vector of in-degrees in G̃. Let
P̃ = (I+Q̃)/2, where Q̃ is a stochastic matrix with Q̃uv = 1/d̃u if (v, u) ∈ Ẽ .
Consider the analogous of (4) and (5) with dv and E replaced by d̃v and Ẽ ,
i.e., x̃(0) = y/d̃, z̃(0) = 1/d̃, x̃(t+ 1) = P̃ x(t), and z̃(t+ 1) = P̃ z̃(t). Then,
provided that G̃ remains strongly connected, arguing as before shows that

xv(t)

zv(t)

t→∞−→ π̃′y/d̃

π̃′1/d̃
=

y + ε1 + ε2
1 + ε3 + ε4

, ∀v ∈ V ,

where π̃ = P̃ ′π̃ is the unique invariant probability distribution of P̃ and

ε1 :=
1

n

∑

v

(

dv

d̃v
− 1

)

yv , ε2 := d
∑

v

(π̃v − πv)
yv

d̃v
,

ε3 :=
1

n

∑

v

(

dv

d̃v
− 1

)

, ε4 := d
∑

v

(π̃v − πv)
1

d̃v
.

Observe that

|ε1| ≤
|F|
n

||y||∞ , |ε2| ≤ d||y||∞||π̃ − π|| , |ε3| ≤
|F|
n

, |ε4| ≤ d||π̃ − π|| .

Hence, provided that |F| = o(n), and that the average degree d and ||y||∞
remain bounded as n grows large, a sufficient condition for ỹ = y + o(1) is
that ||π̃ − π|| = o(1).

2.3. Voter model with influential agents. Let G = (V, E) be a connected
undirected graph (with no self-loops). For u 6= v ∈ V, let E(u,v) ∈ R

V×V have

all entries equal to zero but for E
(u,v)
u,v = −E

(u,v)
u,u = 1. Consider the following

Markov chain X(t) over {0, 1}V : given X(t), X(t+1) = (I+E(u,v))X(t) with
probability 1/|E|, for all (v, u) ∈ E . This is an instance of the voter model [].
In a social network interpretation, this may be thought of modeling a society
where every pair of individuals whose corresponding nodes are neighbors in
G have the same chance to influence each other.

It is standard result that with probability one Xv(t)
t→∞−→ Y for all v,

where Y is a {0, 1}-valued random variable. Moreover, it is not hard to see
that

P := I +
1

|E|
∑

(u,v)∈E

E(u,v)

is primitive and symmetric, so that E[X(t)|X(0)] = P tX(0)
t→∞−→ 1π′X(0),

where π = P ′π is the uniform distribution over V. In particular, this implies
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that

y := P(Y = 1|X(0)) =
1

n

∑

v

Xv(0) .

In the statistical physics jargon, the fact that the uniform distribution is
invariant for P , so that

∑

v E[Xv(t)|X(0)] remains constant in t, is referred
to as conservation of the average magnetization [40].

Now, let us consider the following variant to the model. Let F ⊆ E be
such that the directed graph G̃ = (V, Ẽ), where Ẽ := E \ F remains strongly
connected, and consider the Markov chain X̃(t) over {0, 1}V such that given
X̃(t), X̃(t+ 1) = (I + E(u,v))X̃(t) with probability |E|−1, for all (u, v) ∈ Ẽ ,
and X̃(t + 1) = X̃(t) with probability |F|/|E|. The social network inter-
pretation is that W := {u : (v, u) ∈ H for some v} is a set of influential
individuals, whose interactions with some of their neighbors in G are asym-
metric, as they influence such neighbors without being influenced in turn
from them. A similar model is discussed in [2] in the framework of contin-
uous opinion dynamics. Observe that strong connectivity of G̃ implies that,

with probability one X̃v(t)
t→∞−→ Ỹ for all v, where Y ∈ {0, 1} is a random

variable such that

ỹ := P(Ỹ = 1|X̃(0)) = π̃′X̃(0) ,

where π̃ = P̃ ′π̃ is the unique invariant probability distribution of

P̃ := I +
1

|E|
∑

(u,v)∈Ẽ

E(u,v) .

Clearly, if the initial conditions of the two processes coincide, i.e., if X̃(0) =
X(0), then

|ỹ − y| ≤ ||π̃ − π|| ,
with equality for at least one value of X̃(0) = X(0) ∈ {0, 1}V . Will |ỹ − y|
vanish as n grows large if the set of influential agents W (and hence F)
remains small?

3. Perturbation results. Let P be an irreducible stochastic matrix on
the finite state space V and let π = P ′π be its unique invariant probability
distribution. Let P̃ be another stochastic matrix (not necessarily irreducible)
on the same state space V, to be interpreted as a perturbation of P , and let
π̃ be an invariant probability distribution of P̃ (not necessarily the unique
one).

The following result provides an upper bound on the total variation dis-
tance between π and π̃. It is stated in terms of the function
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1

0 x
∗

x

Fig 1. Graph of the function θ(x) defined in (6).

(6) θ : [0,+∞) → [0, 1] , θ(x) :=

{

x ln
(

e2/x
)

x ≤ x∗

1 x ≥ x∗ ,

where x∗ = 0.31784 . . . is the smallest positive solution of e2/x = exp(1/x).

Lemma 1. Let P and P̃ be stochastic matrices on a finite set V. Let P
be irreducible with invariant probability measure π and mixing time τ (3),
and π̃ be an invariant probability measure for P̃ . Then,

||π̃ − π|| ≤ θ(τ π̃(W)) ,

for all W ⊆ V such that W ⊇ supp(P − P̃ ).

Proof. Let V (t), Ṽ (t) be two Markov chains on V which start and move
together with transition probabilities Puv until the first time TW = T̃W they
hit W, and move independently with transition probabilities Puv and P̃uv,
respectively, ever since. Since P and P̃ coincide on V \W, one has that V (t)
and Ṽ (t) are Markov chains with transition probability matrix P and P̃ ,
respectively. Then, for all A ⊆ V, and t ≥ 0, one has that

π̃(A) = Pπ̃(Ṽ (t) ∈ A)

= Pπ̃(V (t) ∈ A, T̃W ≥ t) + Pπ̃(Ṽ (t) ∈ A, T̃W < t)

≤ Pπ̃(V (t) ∈ A) + Pπ̃(T̃W < t)

≤ π(A) + exp(−⌊t/τ⌋) + tπ̃(W) ,

where the first identity uses the invariance of π̃, and the last inequality
follows from ||(µ′P t)′ − π|| ≤ exp(−⌊t/τ⌋) (which is a standard conse-
quence of the submultiplicativity of the maximal total variation distance,
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10 GIACOMO COMO AND FABIO FAGNANI

see, e.g., (4.31) in [24]) and a straightforward union bound Pπ̃(T̃W < t) ≤
∑t−1

i=0 Pπ̃(Ṽ (i) ∈ W) = tπ̃(W). Therefore,

||π̃ − π|| = max
A⊆V

{π̃(A)− π(A)} ≤ exp(−⌊t/τ⌋) + tπ̃(W) , ∀t ≥ 0 .

The claim now follows by choosing t = max{⌊τ log
(

(τ π̃(W))−1e
)

⌋, 0}, such
a choice being suggest by the minimization of x 7→ exp(−x/τ − 1) + xπ̃(W)
over continuous nonnegative values of x.

Lemma 1 shows that it is sufficient to have an upper bound on the product
τ π̃(W) in order to obtain an upper bound on ||π̃−π||. In particular, assuming
that an upper bound on the mixing time τ is available, e.g., from an estimate
of the conductance of P , one is left with estimating π̃(W). Observe that
π̃(W) is typically unknown in the applications. Below, we derive an upper
bound on π̃(W) in terms of two quantities.

The first quantity we need to introduce is the minimal hitting time

(7) τ∗W := min{τvW : v ∈ V \W} .

Observe that the minimal hitting time τ∗W only depends on the choice of the
subset W ⊇ supp(P̃ −P ) and on the original matrix P (in particular, on the
rows of P indexed by v /∈ W), but not on finer details of the perturbation
P̃ − P .

The second quantity we shall need is the escape time from W with respect
to P̃ and π̃, defined as

(8) χ̃ := max
π̃w>0

inf
t≥1

t

Pw(T̃V\W ≤ t)
.

Notice that the escape time χ̃ depends only on the rows of the perturbed
matrix P̃ whose index lies in the set W (because so does the distribution of
T̃V\W) and, when P̃ is not irreducible, on the choice of the invariant measure
π̃. In particular, χ̃ = +∞ if and only if the set V \W is not accessible under
P̃ from some state w ∈ W in the support of π̃. Observe that Markov’s
inequality implies that

χ̃ ≤ max
π̃w>0

2τ̃V\W

1− Pw(T̃V\W > 2τ̃wV\W)
≤ 4 max

π̃w>0
τ̃wV\W ,

which justifies the choice of the name escape time. The reason for introducing
κ̃ instead of using max{τ̃wV\W : π̃w > 0} directly is that in some cases the
former is more easily estimated than the latter.

We are now in a position to prove the following result.

imsart-aap ver. 2010/08/03 file: "perturbation rapid mixing 5".tex date: August 30, 2013



ROBUSTNESS OF LARGE-SCALE STOCHASTIC MATRICES 11

Lemma 2. Let P̃ be a stochastic matrix on a finite set V, and π̃ an
invariant probability measure. Then,

(9) π̃(W) ≤ χ̃

τ∗W
,

for all W ⊆ V .

Proof. For k ≥ 1, let φw(k) := Pw(T̃V\W = k). From Kac’s formula, it
follows that

(10)
1

π̃(W)
− 1 =

1

π̃(W)

∑

w

∑

v

π̃wP̃wvτ
v
W ≥ 1

π̃(W)
τ∗W
∑

w

π̃wφw(1) .

Now, observe that for all w ∈ W, it holds
∑

w′∈W π̃w′P̃w′w ≤ π̃w. Then, for
all k ≥ 1, one gets that

∑

w′

π̃w′φw′(k + 1) =
∑

w′

∑

w

π̃w′P̃w′wφw(k) ≤
∑

w

π̃wφw(k) .

It follows that, for all t > 0,

(11)
∑

w

π̃wφw(1) ≥
1

t

∑

1≤k≤t

∑

w

π̃wφw(k) ≥
1

t

∑

w

π̃wPw

(

T̃V\W ≤ t
)

.

The claim now follows from (10), (11), and (8).

Lemmas 1 and 2 immediately imply the following result:

Theorem 3. Let P and P̃ be stochastic matrices on a finite set V. Let
P be irreducible with invariant probability measure π and mixing time τ , and
π̃ be an invariant probability measure for P̃ . Then,

||π̃ − π|| ≤ θ

(

τ
χ̃

τ∗W

)

,

for all W ⊆ V such that supp(P̃ − P ) ⊆ W.

Theorem 3 implies that, in order for the total variation distance ||π̃−π|| to
vanish as the network size grows large, it is sufficient that τ χ̃/τ∗W vanishes.

Example 1. For integers m ≥ 2 and d ≥ 1, let P be the transition
probability matrix of the lazy random walk on a d-dimensional toroidal grid of
size n = md, i.e., V = Z

d
m, Puu = 1/2, Puv = 1/(4d) if

∑

1≤i≤d |ui− vi| = 1,
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12 GIACOMO COMO AND FABIO FAGNANI

and Puv = 0 if
∑

1≤i≤d |ui−vi| ≥ 2. For some w ∈ V and α ∈ (0, 1), consider

a perturbed stochastic matrix P̃ coinciding with P outside w, and such that
P̃ww < 1. Put W = {w}. It is immediate to verify that

τ̃V\W = (1− P̃ww)
−1 .

On the other hand, Kac’s formula [24, Lemma 21.3] implies that

n =
1

πw
= 1 +

1

4d

∑

v:|v−w|=1

τvw = 1 +
1

2
τ∗W ,

where last equality follows from a basic symmetry argument. Moreover, stan-
dard results [24, Theorem 5.5] imply that

τ ≤ Cdn
2/d

for some constant Cd depending on d but not on n. Then, Theorem 3 implies
that

||π − π̃|| ≤ θ

(

2Cd

1− P̃ww

n2/d

n− 1

)

.

The above guarantees that ||π − π̃|| vanishes as n grows large provided that
d ≥ 3. More general examples involving toroidal grids will be discussed in
Section 4.

Example 2. For a stochastic matrix Q, a probability distribution µ, and
some β ∈ (0, 1), let P and π be as in Section 2.1. Let Q̃ be a perturbation of
Q, and P̃ = (1 − β)Q̃ + β1µ′. Clearly W := supp(Q̃ − Q) ⊇ supp(P̃ − P ).
Moreover,

(12) χ̃ ≤ 1

maxw Pw(Ṽ (1) ∈ V \W)
≤ 1

β(1 − µ(W))
.

On the other hand, the mixing time can be easily bounded by considering
a coupling of two Markov chains, U(t) and V (t) defined as follows. Before
meeting, U(t) and V (t) move independently according to the transition prob-
ability matrix Q with probability (1 − β) and jump to a common new state
chosen according to µ with probability β. From the first time they meet, i.e.,
for t ≥ Tc := inf{t ≥ 0 : U(t) = V (t)}, U(t) = V (t) move together with
transition probability matrix P . Since

||P t
u,· − P t

v,·|| ≤ P(Tc > t|U(0) = u, V (0) = v) ≤ (1− β)t
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ROBUSTNESS OF LARGE-SCALE STOCHASTIC MATRICES 13

for every t ≥ 0 and u, v ∈ V, one gets that

(13) τ ≤
⌈ −1

log(1− β)

⌉

≤ 1

β
+ 1 .

Finally, let τµW :=
∑

v µvτ
v
W be the expected hitting time of the Markov

chain with initial distribution µ and transition probability matrix P . For all
v, one has that

τvW ≤
∑

t≥0

(1− β)tβ(t+ τµW) =
1− β

β
+ τµW .

Using Kac’s formula, the above implies that

1

π(W)
= 1 +

∑

w

∑

v

πw
π(W)

Pwvτ
v
W ≤ 1

β
+ τµW .

It follows that

(14) τ∗W ≥ βτµW ≥ β

π(W)
− 1 .

By combining (12), (13), and (14) with Theorem 3, one gets that

||π̃ − π|| ≤ θ

(

(1 + β)π(W)

β2(1− µ(W))

)

.

In particular, the above implies that the alteration of a set of rows W of
vanishing aggregate PageRank π(W), and µ(W) bounded away from 1, has a
negligible effect on the whole PageRank vector π (in total variation distance).

We conclude this section with the following two simple examples, showing
that having control of each of the terms χ̃ and τ is necessary in order to
estimate ||π̃ − π||.

Example 3. Consider the stochastic matrix P with all entries equal
to 1/n, and perturb it in a single node w by putting P̃ww = 1 − α, and
P̃wv = α/(n − 1) for all v 6= w, for some α ∈ (0, 1 − 1/n). Then, τ = 1,
τ∗W = n, and τ̃V\W = 1/α, so that Theorem 3 guarantees that αn → ∞
is a sufficient condition for ||π̃ − π|| → 0 as n grows large. On the other
hand, it is easily verified that πv = 1/n for all v, while π̃w = 1/(nα + 1),
and π̃v = nα/((n − 1)(nα + 1)), for all v 6= w. Hence, ||π̃ − π|| = (1 − α−
1/n)(nα+1) which shows that αn → ∞ is indeed also a necessary condition
for ||π̃ − π|| → 0 as n grows large.
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14 GIACOMO COMO AND FABIO FAGNANI

Fig 2. The graph of Example 4, for m = 7. The perturbation set W = {0} is shaded in
gray.

Example 4. For m > 1, let V := {−m,−m+1, . . . ,m−1,m} and Puv =
1/m if u 6= v and uv ≥ 0, Puv = 0 if uv < 0 or u = v, and P0v = 1/(2m)
for all v 6= 0. Then, one has π0 = 2/(2m + 1) while πv = 1/(2m + 1) for
all v 6= 0. Now perturb P on W = {0} only, by putting P0v = (1/2 − α)/m
if v < 0 and P0v = (1/2 + α)/m if v > 0, for some α ∈ (0, 1/2). Observe
that τ∗W = m, while τ̃V\W = 1. On the other hand, the bottleneck bound [24,
Theorem 7.3] implies that τ ≥ 1/(4π0) ≥ m/2, so that Theorem 3 is useless
as it only provides the trivial conclusion that ||π̃−π|| ≤ 1. However, observe
that π̃v − πv = 2α/(2m+1)sgn(v), which is arbitrarily close to 1 for large n
and α close to 1/2.

4. Networks with high local connectivity. The minimal hitting
time τ∗W can be, in general, the most difficult quantity to estimate in typical
applications when P is sparse andW is a small subset of V. In this section, we
propose some results for graphs with high local connectivity where removing
W does not drastically alter distances in the remaining part of the graph.
We start with a result which turns out to be useful for localized perturba-
tions, and we then propose a result for reversible stochastic matrices but
with perturbations not necessarily localized. Such results find natural appli-
cations in structured graphs like d-dimensional toroidal grids (with d ≥ 3)
in contexts when W remains of bounded cardinality (or increases in a sub
logarithmic way) with respect to the size of the graph approaching infinity.

4.1. A simple bound for localized perturbations. We start by considering
a relatively simple case when W is localized and its boundary is sufficiently
well connected in V \W. Define the external boundaries of W as
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∂
+

W

∂
−
W

W

u

v

Fig 3. The external boundaries ∂+

W
and ∂

−

W
of a node set W. A simple path in V \W from

u ∈ ∂
+

W
to v ∈ ∂

−

W
is shaded in gray.

∂+
W := {v ∈ V \W : Pwv > 0 for some w ∈ W} ,

∂−
W := {v ∈ V \W : Pvw > 0 for some w ∈ W} .

(See Figure 3.) Clearly,

(15) τ∗W = min{τvW : v ∈ ∂−
W} .

On the the other hand, let

(16) τ◦W := max{τvW : v ∈ ∂+
W} ,

and observe that, from Kac’s formula,

(17) τ◦W ≥
∑

w

∑

v

πw
π(W)

Pwvτ
v
W =

1

π(W)
− 1 .

Now, for all u ∈ ∂−
W and v ∈ ∂+

W , let Γu,v be the (possibly empty) set of
simple paths in V \ W starting in u and ending in v. For all γ = (u =
v0, v1, . . . , vl = v) ∈ Γu,v, let Pγ :=

∏

1≤i≤l Pvi−1vi . Define

(18) λW := min
u,v

max
γ∈Γu,v

Pγ ,

where the minimization is intended to run over all u ∈ ∂+
W and v ∈ ∂−

W such
that u 6= v, and we use the convention that the minimum over an empty set
equals 1, and the maximum over an empty set equals 0. The following holds
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16 GIACOMO COMO AND FABIO FAGNANI

Lemma 4. Let P be an irreducible stochastic matrix on a finite set V,
and π its invariant probability distribution. Then, for all W ⊆ V,

τ∗W ≥ λW

(

1

π(W)
− 1

)

,

where λW is defined as in (18).

Proof. Let u ∈ ∂−
W and v ∈ ∂+

W be such that τuW = τ∗W and τvW = τ◦W .
For every γ = (u = v0, v1, . . . , vl−1, vl = v) ∈ Γu,v, let 1γ be the indicator
function of the event ∩l

t=0{V (t) = vt}. Then,

(19) τ∗W = τuW ≥ Eu[TW1γ ] = Pγ(τ
v
W + l) ≥ Pγτ

◦
W .

The claim now follows from (17), (19), and the arbitrariness of γ.

The above result turns out to be useful in those contexts where the set
W is sufficiently localized so that its boundary is tightly connected outside
of W and λW remains bounded away from 0.

Example 5. Let P be the lazy simple random walk on a d-toroidal grid
as in Example 1 and let W =

∏d
i=1[αi, αi + s − 1] be a hypercube. It is

immediate to check that any pair of nodes in ∂+
W = ∂−

W can be connected by
a path of length s + d outside W, so that λW ≥ (4d)−(s+d). On the other
hand, nπ(W) = |W| = sd, so that Lemma 4 implies that

τ∗W ≥ 1

(4d)(s+d)

(

1

π(W)
− 1

)

=
1

(4d)(s+d)

( n

sd
− 1
)

.

Since, by [24, Theorem 5.5], τ ≤ Cdn
2/d for some positive constant Cd

independent from n, we have that

τ

τ∗W
≤ C ′

d

(4d)ssd

1− sd/n
n2/d−1 ,

with C ′
d := Cd(4d)

d.
We now consider the escape time from W which is the (only) term de-

pending on the perturbation. Assume that P̃ is irreducible, and put

δ = min
{

P̃wv : w ∈ W , P̃wv > 0
}

.

Since from every w ∈ W there is a path leading to ∂W of length at most
|W| = sd, one gets that

χ̃ ≤ sdδ−sd .
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ROBUSTNESS OF LARGE-SCALE STOCHASTIC MATRICES 17

Multiplying the two estimations and noting that the dominating term in
the size of the perturbation is given by δ−sd , we immediately obtain from
Theorem 3 that, if

lim sup
n

|W|
log n

<
d− 2

d log δ−1

then ||π̃ − π|| → 0 as n grows large.

4.2. Estimations through the effective resistance for reversible matrices.
We now extend Lemma 4 to sets W which are not necessary localized.
Throughout this subsection, we shall restrict to the case when the stochastic
matrix P is reversible, i.e., when πuPuv = πvPvu for all u, v ∈ V. Observe
that reversibility implies that ∂+

W = ∂−
W =: ∂W . Consider the following mod-

ification of (18):

(20) ρW = min
w∈W

min
u 6=v∈∂W :
PwuPwv>0

max
γ∈Γu,v

Pγ ,

and observe that ρW ≥ λW .
For u ∈ V, let T+

u := inf{t ≥ 1 : V (t) = u} be the return time, and let

Reff(u ↔ v) :=
1

nπuPu(Tv < T+
u )

,

be the effective resistance between u and v. Let

Rmax
eff (P ) := max{Reff (u ↔ v) : u 6= v ∈ V}

denote the maximal effective resistance. Then, the following result holds.

Lemma 5. Let P be an irreducible reversible stochastic matrix over a
finite set V, and let π be its invariant probability distribution. Then,

τ∗W ≥ min

{

ρW ,
1

nπ(W)Rmax
eff (P )

}|∂W |+1( 1

π(W)
− 1

)

,

for every W ⊆ V.

Proof. Let τ∗W and τ◦W be as defined by (7) and (16), respectively, and

θ := (τ◦W/τ∗W)1/(|∂W |+1) .

Observe that (15) implies that there exists at least one k ∈ {0, . . . , |∂W |}
such that τvW /∈ (τ∗Wθk, τ∗Wθk+1) for all v ∈ ∂W . Fix any such k, and define

∂1 :=
{

v ∈ ∂W : τvW ≥ τ∗Wθk+1
}

, ∂2 :=
{

v ∈ ∂W : τvW ≤ τ∗Wθk
}

,
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18 GIACOMO COMO AND FABIO FAGNANI

W2 := {w ∈ W |Pwv > 0 for some v ∈ ∂2} .
If there exists w ∈ W2 such that Pwv1 > 0 for some v1 ∈ ∂1, then arguing as
in the proof of Lemma 4 one gets that 1/θ ≥ ρ, which in turn yields

(21) τ∗W ≥ τ◦Wρ
|∂W |+1
W .

If, instead, Pwv = 0 for every w ∈ W2 and v ∈ ∂1, then, for every v2 ∈ ∂2,
one has that

(22)

τv2W ≥ ∑

v1∈∂1

Ev2 [TW |T∂1 = Tv1 < TW2
]Pv2(T∂1 = Tv1 < TW2

)

≥ ∑

v1∈∂1

τv1WPv2(T∂1 = Tv1 < TW2
)

≥ τ∗Wθk+1
Pv2(T∂1 < TW2

) .

Let now πW2 be π conditioned on W2Since

PπW2 (T∂1 < T+
W2

) =
∑

v2∈∂2

∑

w∈W2

πw
π(W2)

Pwv2Pv2(T∂1 < T+
W2

)

there exists some v2 ∈ ∂2 such that Pv2(T∂1 < T+
W2

) ≥ PπW2 (T∂1 < T+
W2

).

Using (22), one gets τ∗Wθk ≥ τ∗Wθk+1
PπW2

(τ∂W1
< τ+W2

), so that

(23) τ∗W ≥ τ◦WPπW2
(T∂1 < T+

W2
)|∂W |+1 .

Using techniques of electrical networks (essentially Thompson’s principle
[24, Theorem 9.10]), one can prove that

(24) PπW2
(T∂1 < T+

W2
) ≥ 1

nπ(W2)Rmax
eff (P )

.

(For the sake of completeness, a proof is sketched in Sect. ??.) The claim now
follows by applying the above to the righthand side of (23), and combining
that with (21).

It worth pointing out that reversibility of P was used only for proving
(24). A critical look at the proof of Lemma 5 also reveals that the choose
θ = (τ◦/τ∗)1/|∂W |, sufficient to guarantee there exists in interval (A,Aθ) to
which no τvW belongs, could result quite conservative, and be improved upon
if more information is available.

Example 6. For two integers d ≥ 3 and m ≥ 2, let P be the lazy simple
random walk on a d-toroidal grid of size n = md as in Examples 1 and 5

imsart-aap ver. 2010/08/03 file: "perturbation rapid mixing 5".tex date: August 30, 2013
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and let W ⊆ Z
d
m be any subset. We say that R =

∏d
i=1[αi, βi] ⊆ Z

d
m is

a separating rectangle for W if the augmented rectangle R′ :=
∏d

i=1[αi −
1, βi + 1] ⊆ Z

d
m is such that (R′ \ R) ∩W = ∅. A separating rectangle R is

said minimal if no strictly included rectangle is separating. It is immediate
to verify that there exists a family {Rk =

∏d
i=1[α

k
i , β

k
i ]}1≤k≤r of minimal

separating rectangles such that W ⊆ W ′ := ∪kRk. As a consequence of
minimality one gets that

max
i,k

{

|βk
i − αk

i |
}

+ 1 ≤ max
k

|W ∩Rk| ≤ |W|

It then follows that

ρW ′ ≥ 1

(4d)d|W|

Similarly, one gets that nπ(W ′) = |W ′| ≤ |W|d and |∂W ′ | ≤ (|W| + 1)2d.
On the other hand, it is known (see, e.g., [24, Proposition 10.13]) that, in
dimension d ≥ 3,

Rmax
eff (P ) ≤ kd ,

for some constant kd independent of n. Then, Lemma 5 implies that, for
large enough n,

τ∗W ′ ≥ 1

(4d)2d2 |W|(|W|+1)

(

n

|W|d − 1

)

.

Then, arguing as in Example 5, one gets that if

lim sup
n

|W|
(log n)1/2

<

(

d− 2

4d3 log(4d)

)1/2

then ||π̃ − π|| → 0 as n grows large. As compared to Example 5, where W
was assumed to be a rectangle, the admissible growth rate of W has of factor√
log n.

4.3. Proof of (24).

Lemma 6. Let P be an irreducible reversible stochastic matrix over a
finite set V, and let π be its invariant probability distribution. Then, for
every nonempty A,B ⊆ V,

(25) PπB

(

TA < T+
B

)

≥ 1

nπ(B)Rmax
eff (P )

,

where T+
B := inf{t ≥ 1 : V (t) ∈ B} be the return time.
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20 GIACOMO COMO AND FABIO FAGNANI

Proof. Fix a ∈ A and b ∈ B. Put V̄ := (V \ B) ∪ {b} and consider the
map ϕ : V → V̄ which is the identity on V \B and maps B in b. For a matrix

M ∈ R
V×V, let ϕ#M ∈ R

V̄×V be the matrix with entries defined by

(ϕ#M)v̄v̄′ =
∑

ϕ(v)=v̄,ϕ(v′)=v̄′

Mvv′ .

Let C ∈ R
V×V be the conductance matrix with entries Cuv = πuPuvn,

and C̄ := ϕ#C. Let P̄ be the stochastic matrix on V̄ defined by P uv =
Cuv/Cu, where Cu :=

∑

v∈V Cuv. Use P̄ to denote probabilities with respect
to the Markov chain with transition probability matrix P̄ . A straightforward
computation shows that

(26) P̄b(Ta < T+
b ) = PπB

(Ta < T+
B ) ≤ PπB

(

TA < T+
B

)

.

Using the electrical interpretation we can write

(27) P̄b(Ta < T+
b ) =

1

C̄bR̄eff(b ↔ a)
,

where R̄eff(b ↔ a) is the effective resistance between b and a on the electrical
network induced by C̄. Let λ ∈ R

V×V be a unit flow for P from b to a (as

defined in [24, Section 9.3]), and λ = ϕ#λ ∈ R
V×V . It is immediate to check

that λ is a unitary flow for P from b to a. Moreover,

|λ| =
1

2

∑

v,v′

1

Cv,v′
λ
2
v,v′

=
1

2

∑

v,v′

1

Cv,v′





∑

v,v′:ϕ(v)=v,ϕ(v′)=v′

C
1/2
vv′

λvv′

C
1/2
vv′





2

≤ 1

2

∑

v,v′

1

Cv,v′

∑

v,v′:ϕ(v)=v,ϕ(v′)=v′

Cvv′
∑

v,v′:ϕ(v)=v,ϕ(v′)=v′

λ2
vv′

Cvv′
= |λ|

Using Thompson’s principle [24, Theorem 9.10], this yields R̄eff(b ↔ a) ≤
Reff(b ↔ a), thus completing the proof.
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