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Abstract

Iterative distributed algorithms are studied for computing arithmetic averages over networks of agents connected through
memoryless broadcast erasure channels. These algorithms do not require the agents to have any knowledge about the global
network structure or size. Almost sure convergence to state agreement is proved, and the communication and computational
complexities of the algorithms are analyzed. Both the number of transmissions and computations performed by each agent of
the network are shown to grow not faster than poly-logarithmically in the desired precision. The impact of the graph topology
on the algorithms’ performance is analyzed as well. Moreover, it is shown how, in the presence of noiseless communication
feedback, one can modify the algorithms, significantly improving their performance vs complexity tradeoff.

Key words: Distributed computation; distributed control; digital communications; control with communication constraints;
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1 Introduction

Many scenarios of current applicative interest can be
modeled as large networks of identical anonymous
agents, which have access to some partial information,
and aim at computing an application-specific function
of the global information. The main requirements are
that the network be reconfigurable and scalable, and
the computation be completely distributed, i.e., each
agent can only communicate with a restricted group of
neighbors while processing the available information.
A special instance, which has been the object of recent
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extensive work, is the average consensus problem, in
which a large number of agents aims at computing the
arithmetic average of some initial scalar measurements.
While most of the literature on consensus algorithms
has modeled communication constraints in the aver-
age consensus algorithm by a communication graph in
which a link between two nodes is assumed to support
the noise-free transmission of a real value, there is a
clear demand for more realistic communication models.
In fact, some recent work has addressed the cases of
quantized communication [2,8,13,3,15], or transmission
affected by additive noise [11,17,12]. However, to the
best of our knowledge, there is no contribution yet to-
ward the design of consensus algorithms on networks in
which the communication links are modeled as digital
noisy channels. The latter models of communication
are particularly significant as in practice bandwidth
limitations imply that the channels have finite capacity.
For such digital noisy networks, information-theoretic
bounds on the performance of distributed computation
algorithms have been established in [1,5]. Related prob-
lems of distributed computation have been considered,
for instance, in [9,18,10].

In the present paper, we study iterative distributed
averaging algorithms for networks whose nodes can
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communicate through memoryless erasure broadcast
channels. In order to compare the performance of differ-
ent algorithms, we define suitable complexity measures,
which account for the number of channel transmissions
(communication complexity), and, respectively, of in-
node computations (computational complexity) required
to achieve a desired precision. These performance mea-
sures are particularly relevant, as they allow for directly
estimating the energy consumption of such distributed
computation systems, as well as their time-complexity.
Related measures to evaluate distributed algorithms
have been proposed in various settings: see, for in-
stance, [14,16,7]. The algorithms proposed in this paper
combine the classical iterative linear consensus algo-
rithm with coding schemes for the reliable transmission
of real numbers on noisy channels, recently proposed
in [6]. They involve a sequence of transmission phases,
of increasing duration, in which the agents attempt to
broadcast their state, i.e., their current estimate of the
global average, to their neighbors, alternated to averag-
ing steps, in which the agents’ states are updated. These
algorithms are fully distributed, and they do not require
the agents to have any global knowledge of the network
structure or size. Our main result –stated as Theorem 4–
shows that such algorithms drive the agents to state
agreement –or consensus– which can be made arbitrar-
ily close to the true average. The number of channel
transmissions and in-node computations is shown to
grow at most poly-logarithmically in the desired preci-
sion. We also show how communication feedback, when
available, allows one to modify the algorithms, achiev-
ing asymptotic average consensus (i.e., state agreement
on the average of the initial observations), and reduc-
ing the computational and communication complexities
–see Theorem 5.

The remainder of this paper is organized as follows. In
Sect. 2, we formally state the problem and introduce
the relevant performance measures. In Sect. 3, we revise
some results on the transmission of continuous informa-
tion through digital noisy channels. In Sect. 4, we present
our algorithms and present the main convergence and
complexity results. In Sect. 5, we discuss how to effi-
ciently modify our algorithms in the presence of com-
munication feedback. Sect. 6 contains some concluding
remarks, and all proofs are collected in the Appendix.

Before proceeding, let us establish some notation to be
used throughout the paper. We denote by N, Z+, and R,
respectively, the sets of naturals, nonnegative integers,
and real numbers. The set of the smallest t naturals is
denoted by [t] := {1, 2, . . . , t}. The transposes of a vector
v ∈ Rn and a matrixM ∈ Rn×n, are denoted by v∗ and
M∗, respectively. Given two matrices M , M ′, we denote
by M �M ′ their entrywise product. With the symbol 1
we denote the n-dimensional vector all of whose entries
equal 1. A directed graph G = (V, E) is the pair of a finite
vertex set V and of a set E ⊆ V×V of directed edges. For a
vertex v ∈ V, we denote byN+

v := {w ∈ V : (v, w) ∈ E},

andN−v := {w ∈ V : (w, v) ∈ E}, respectively, the sets of
its out- and in-neighbors. Given a matrixM ∈ Rn×n, we
define the induced graph GM by taking V = {1, . . . , n}
and putting an edge (j, i) in E if i 6= j and Mij > 0; M
is adapted to a graph G if GM is a subgraph of G.

2 Problem setting

In this section, we present a formal statement of the
problem, and introduce the main performance measures.
We consider a finite set of agents V of cardinality n and
assume that each agent v ∈ V has access to some par-
tial information consisting in the observation of a scalar
value θv. The full vector of observations is denoted by
θ = (θv)v∈V . We consider the case when all θv’s take val-
ues in the same bounded interval Θ ⊆ R. Such an inter-
val may represent the common measurement range of the
agents, possibly dictated by technological constraints,
and assumed to be known a priori to all the agents. For
ease of exposition, we shall assume throughout that Θ
coincides with the unitary interval [0, 1]. 1 For the net-
work, the goal is to compute the average of such values,

y := f(θ) = n−1
∑

v∈V
θv

through repeated exchanges of information among
the agents and without a centralized computing sys-
tem. Communication among the agents takes place
as follows. At each time instant t = 1, 2, . . ., every
agent v broadcasts a binary signal av(t) ∈ {0, 1} to
its out-neighbourhood N+

v . Every agent w ∈ N+
v re-

ceives a possibly erased version bv→w(t) ∈ {0, 1, ?}
of av(t). Here, the symbol ? represents a lost binary
signal. We denote by bv(t) = (bw→v(t))w∈N−v , and

b′v(t) = (bv→w(t))w∈N+
v

the vector of signals received by
agent v at time t, and, respectively, the vector of signals
received from agent v by its out-neighbours. At time
t, each agent v ∈ V makes an estimate ŷv(t) of y. The
compact notation a(t) = (av(t))v∈V , b(t) = (bv(t))v∈V ,
and ŷ(t) = (ŷv(t))v∈V , is used for the full vectors of
transmitted signals, received signals, and estimates at
time t, respectively.

We assume the communication network to be memo-
ryless, i.e., that b(t) is conditionally independent from
the initial observations θ and the previous transmissions
{a(s), b(s) : 1 ≤ s < t}, given the currently broad-
casted signals a(t). Further, we assume that, given a(t),

1 This causes no loss of generality, as the case of general
bounded interval Θ can be easily reduced to the unitary one
by means of an affine transformation, with the error esti-
mates continuing to hold modulo a rescaling of the constants
by the length of Θ.
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for every v ∈ V and w ∈ N+
v ,

bv→w(t) =

{
? w.p. ε

av(t) w.p. 1− ε.

Here ε is some erasure probability which, for simplicity,
is assumed to remain constant in t, v and w. 2 Distribut-
edness of the computation algorithm is then modeled by
constraining the transmitted signal av(t) to be a func-
tion of the local information available to agent v at the
end of the (t−1)-th round of communication, and the es-
timate ŷv(t) to be a function of the information available
to agent v at the end of the t-th round of communication.
We consider two different local information structures,
corresponding to the cases when there is no communica-
tion feedback, and when there is causal communication
feedback, respectively. When there is no communication
feedback, the local information available to agent v at
the end of the t-th round of communication, consists of
its initial observation, as well as of the signals received
by v up to time t:

iv(t) := {θv, bv(s) : 1 ≤ s ≤ t} .

On the other hand, when there is causal communication
feedback, the local information available to agent v at the
end of the t-th round of communication includes also all
the signals received insofar from v by its out-neighbours:

i′v(t) := {θv, bv(s), b′v(s) : 1 ≤ s ≤ t} .

The assumption of noiseless communication feedback
may be reasonable, e.g., to describe a simple situation of
variable-rate quantized transmission, where each agent
is allowed to broadcast noiselessly one bit to its neigh-
bors with probability 1 − ε, and cannot broadcast any
bit with probability ε. Observe that the case ε = 0 re-
duces to one-bit-quantized transmission, which has been
already considered in the literature [8,15].

The communication setting outlined above can be conve-
niently described by a directed graph Gε = (V, E), whose
vertices are the agents, and such that an ordered pair
(v, w) with v 6= w belongs to E if and only if w ∈ N+

v
(or, equivalently, if v ∈ N−w ), i.e., if v transmits to w
with erasure probability ε < 1. Throughout the paper,
we assume that the graph Gε is strongly connected, i.e.,
that there exists a directed path connecting any pair
of its vertices. A distributed computation algorithm on
the communication graph Gε = (V, E) is specified by a
pair A = (Φ,Ψ) of double-indexed families of maps Φ =

{φ(t)v : v ∈ V, t ∈ N}, and Ψ = {ψ(t)
v : v ∈ V, t ∈ N}.

2 It is not necessary, for the validity of our results, to assume
mutual independence of the received signals {bv→w(t)}w
given av(t). On the other hand, the assumption that the
channel is memoryless remains crucial.

When there is no communication feedback one has

φ(t)v : Θ× {0, 1, ?}N
−
v ×[t−1] → {0, 1},

ψ(t)
v : Θ× {0, 1, ?}N

−
v ×[t] → Θ ,

and av(t) = φ
(t)
v (iv(t− 1)), ŷv(t) = ψ

(t)
v (iv(t)). On the

other hand, in the case when causal communication feed-
back is available, one has

φ(t)v : Θ× {0, 1, ?}(N
−
v ∪N

+
v )×[t−1] → {0, 1},

ψ(t)
v : Θ× {0, 1, ?}(N

−
v ∪N

+
v )×[t] → Θ ,

and av(t) = φ
(t)
v (i′v(t− 1)), ŷv(t) = ψ

(t)
v (i′v(t)).

In the sequel of this paper, we shall propose and study
some distributed computation algorithms that can be
framed in the above general setting. In order to analyze
their performance, we will study the distance of the es-
timates ŷv(t) from the average of the initial values y:

e(t) = ŷ(t)− y1 .

Namely, we define two complexity figures, the communi-
cation complexity and the computational complexity. The
communication complexity of a distributed algorithm A
on a graph Gε is measured in terms of the function

τ(δ) := inf
{
t ∈ N : n−1E

[
||e(s)||2

]
≤ δ, ∀s ≥ t

}
,

where δ ∈]0, 1]. In other words, τ(δ) denotes the mini-
mum number of binary transmissions each agent has to
perform in order to guarantee that the average mean
squared estimation error does not exceed δ. Instead, the
computational complexity of an algorithm A on a graph
Gε is measured as follows. For every t ∈ N, and v ∈ V,
we denote by κv(t) the minimum number of binary op-
erations required by agent v to evaluate the functions

φ
(t)
v (·) and ψ

(t)
v (·). Then, we define

κ(δ) := max

{∑τ(δ)

t=1
κv(t) : v ∈ V

}
, δ ∈]0, 1] .

Hence, κ(δ) denotes the maximum, over all agents v ∈ V,
of the total number of binary operations required to be
performed, in order to achieve an average mean squared
estimation error not exceeding δ.

3 Reliable transmission of continuous informa-
tion through digital noisy channels

When the communication graph is complete, with all
the agents connected through binary erasure broadcast
channels, the problem reduces to that of reliable trans-
mission of continuous information through digital noisy
channels, which has been recently addressed in [6]. While
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referring to [6] for general information-theoretical limits
and complexity vs performance tradeoffs, we revise here
some results which will be used in the sequel.

Let θ be a random variable taking values in the unitary
interval Θ = [0, 1], according to some a-priori probabil-
ity law. Consider a memoryless binary erasure channel
with erasure probability ε ∈ (0, 1). At each time t ∈ N,
the channel has input at ∈ {0, 1}, output bt ∈ {0, 1, ?},
with bt conditionally independent from x, {as, bs : 1 ≤
s ≤ t − 1}, given at, and such that bt = at with proba-
bility 1− ε, and bt =? with probability ε. The goal is to
design a sequence of encoders Υ = (Υt : Θ→ {0, 1})t∈N,
and of decoders Λ = (Λt : {0, 1, ?}t → Θ)t∈N, such that,
if at = Υt(x), bt is the corresponding channel output,

and θ̂t := Λt(b1, . . . , bt) the current estimate, the mean

squared error E[(θ − θ̂t)2] is minimized. The computa-
tional complexity of the sequential coding scheme (Υ,Λ)
is measured, for every time horizon ` ∈ N, in terms of the
total number k` of binary operations required to com-
pute Υt(x) and Λt(b1, . . . , bt) for all 1 ≤ t ≤ `.

Here, in particular, we consider two specific classes of
sequential transmission schemes described and analyzed
in [6]. The first class is that of random linear tree codes,
referred to by the superscript L. These codes have ex-
ponential convergence rates with respect to the number
of channel uses, and computational complexity propor-
tional to the the cube of the number of channel uses. The
second class is that of irregular repetition codes (super-
script R). Such codes have linear computational com-
plexity, but subexponential converge rates. The perfor-
mance of these two classes of codes is summarized in the
following lemmas.

Lemma 1 ([6], Coroll. 6.2) There exist a sequence of
linear encoders ΥL, and a sequence of decoders ΛL, such

that, if θ̂` = ΛL` (b1, . . . , b`), then, for all ` ≥ 0,

E
[
(θ − θ̂`)2

]
≤ β2`

L , kL` ≤ B`3 , (1)

where βL ∈ (0, 1), and B > 0 are constants depending
on the erasure probability ε only.

Lemma 2 ([6], Prop. 5.1) There exist a sequence of
linear encoders ΥR, and a sequence of decoders ΛR, such

that, if θ̂` = ΛR` (b1, . . . , b`), then, for all ` ≥ 0,

E
[
(θ − θ̂`)2

]
≤ β2

√
`

R , kR` ≤ 2` , (2)

where βR ∈ (0, 1) is a constant depending on the erasure
probability ε only.

4 Distributed averaging without communica-
tion feedback

In this section, we present two iterative distributed aver-
aging algorithms, working on a strongly connected graph
Gε, without explicit communication feedback. Both al-
gorithms are based on a sequence of transmission phases,
indexed by j ≥ 1, alternated to averaging steps. Each
agent v ∈ V maintains a scalar state xv(j), j ≥ 0, which
is initialized to the original observation θv. The state
xv(j) has to be thought as v’s estimate of y at the be-
ginning of the (j + 1)-th phase. During the j-th trans-
mission phase, each agent broadcasts `j binary signals
to its out-neighbors. These binary signals represent an
encoding of the state xv(j − 1). At the end of the j-
th phase, each agent estimates each of its in-neighbors’
states from the signals received from it, and it updates
its state to a convex combination of these estimates and
its own current state. The process is then iterated.

4.1 Algorithms

We provide now a formal description of the algorithms.
LetP be a doubly-stochastic, irreducible matrix adapted
to Gε, with non-zero diagonal entries. Let (`j)j∈N be a
sequence of positive integers, each `j representing the
length of the j-th transmission phase, and define hj :=∑
i≤j `i, for all j ∈ N and h0 = 0. Further, let Υ and

Λ be sequences of encoders and decoders as introduced
in Sect. 2. Then, the proposed distributed algorithms
consist of the following steps. First of all, each agent
v ∈ V initializes its state setting xv(0) = θv. Then, for
all j ∈ N and v ∈ V:

Communication phase: v broadcasts an encoded ver-
sion of its state xv(j−1) to its out-neighbours, namely,
for all hj−1 < t ≤ hj , it transmits the binary signal

at = Υk (xv(j − 1)) , k = t− hj−1 , (3)

State update: at the end of the j-th communication
phase, v estimates the state of all its in-neighbours,

based on the received signals {bv(t)}
hj

t=hj−1+1; for each

w ∈ N−v , let x̂
(v)
w (j − 1) be the estimate of xw(j − 1)

built by agent v, then

x̂(v)w (j − 1) = Λ`j (bw→v(hj−1 + 1), . . . , bw→v(hj)) .
(4)

Then, v updates its own state according to the follow-
ing consensus-like step:

xv(j) =
∑
w∈N−v

Pvwx̂
(v)
w (j − 1) + Pvvxv(j − 1) . (5)

Observe that the above-described algorithms can be
framed in the general setting described in Sect. 2. In-
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deed, for all j ≥ 1, one has

φ
(v)
hj−1+k

(iv(hj−1 + k)) = Υi (xv(j − 1)) 0 < k ≤ `j ,
ψ
(v)
hj−1+k

(iv(hj−1 + k)) = xv(j − 1) 0 ≤ k < `j .

Notice that state xv(j − 1) represents the estimate that
agent v has of y along all j-th phase, i.e.,

ŷv(t) = xv(j − 1) , ∀hj−1 ≤ t < hj . (6)

In what follows, we consider two implementations of the
algorithm. In the first implementation, referred to as
algorithm AL, we use linear tree codes Υ = ΥL, Λ =
ΛL, and phase-lengths `Lj = SLj for some SL ∈ N. In
the second implementation, referred to as algorithmAR,
we use repetition codes Υ = ΥR, Λ = ΛR, and phase-
lengths `Rj = SRj

2, for some SR ∈ N. Observe that,
thanks to (1), one has, for the algorithm AL,

E
[(
x̂(v)w (j − 1)− xw(j − 1)

)2]
≤ α2j

L , (7)

for every j ∈ N, v ∈ V, and w ∈ N−v , where αL := βSL

L .
Similarly, for the algorithmsAR, Eq. (2) guarantees that

E
[(
x̂(v)w (j − 1)− xw(j − 1)

)2]
≤ α2j

R , (8)

for every j ∈ N, v ∈ V, andw ∈ N−v , where αR := β
√
SR

R .

It should be mentioned that other choices could have
been made for the communication phase lengths, as well
as for the coding schemes used during each of them. For
instance, block codes of different lengths could have been
used during each phase. Our choice of using the same
anytime transmission scheme for every agent during each
communication phase, has the advantage of fewer mem-
ory requirements (only one transmission scheme has to
be memorized by each agent), anonymity (each agent
uses the same transmission scheme, and the state updat-
ing rules only depend on its position in the graph), and
adaptiveness with respect to the erasure probability ε.
In fact, it is not required to know the actual value of ε
in order to design Υ and Λ, see Remarks 3 and 5 in [6].

4.2 Performance analysis

We now present results characterizing the performance
of the algorithms AL, AR introduced in Sect. 4.1.
Throughout, we assume that Gε is a strongly connected
graph, and P is a doubly stochastic, irreducible matrix
which is adapted to Gε, and has positive diagonal entries.
Notice that this implies that P ∗P is doubly-stochastic
and irreducible. It then follows from Perron-Frobenius
theorem that P ∗P has the eigenvalue 1 with multiplic-
ity one and corresponding eigenvector 1, and all its

other eigenvalues have modulus strictly smaller than 1.
Hence, P has largest singular value equal to 1 and all
other singular values strictly smaller than 1. We denote
by ρ := ρ(P ) < 1 the second largest singular value of
P , and assume that ρ ≥ ρ, where ρ > 0 is some a priori

constant. 3

Observe that the vector of the estimation errors on y
made by the different agents, e(t) = ŷ(t) − y1, is con-
stant during each transmission phase, i.e.,

e(t) = e(hj) , ∀hj ≤ t < hj+1 . (9)

for any j ≥ 0. To analyze the performance of our algo-
rithms, it is useful to introduce a suitable decomposition
of e; for all j ≥ 0, we can write that

e(hj) = z(j) + ζ(j)1 ,

where
z(j) = x(j)−

(
n−11∗x(j)

)
1 (10)

represents the difference between the current estimates
and the average of the current states, whereas

ζ(j) = n−11∗x(j)− y = n−11∗ (x(j)− x(0)) (11)

accounts for the distance between the current average of
the estimates and the average of the initial conditions.
Now, observe that the state dynamics (5) may be rewrit-
ten in the following compact form

x(j + 1) = Px(j) + (P �∆(j + 1))1 , (12)

where x(0) = θ, and where ∆(j) = (∆vw(j))v,w∈V is
defined, for all j ∈ N, by

∆vw(j) :=

{
x̂
(v)
w (j − 1)− xw(j − 1) if w ∈ N−v

0 if w /∈ N−v .

Notice that, in general, ∆vw(j) has non-zero mean, and
it is not independent from xw(j), and therefore from the
errors introduced by the previous transmission phases
{∆(i) : 1 ≤ i < j}. We have the following result.

Proposition 3 Consider the stochastic system (12),
driven by a noise process {∆(j) : j ≥ 1} satisfying

E[∆vw(j)2] ≤ α2j , j ≥ 1 ,

3 This may be enforced without using global information, by
assuming Pvv ≥ (1 + ρ)/2. Note that this assumption is for
analysis’ purpose only, and the agents do not need to know
ρ to run the algorithms. The assumption entails a minimal
loss of generality in that it rules out the case ρ = 0: related
results which cover this case can be found in [4].
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for some 0 < α < ρ. Then, for all j ≥ 0,

E[ζ2(j)] ≤ α2(1− α)−2 , (13)

n−1E[‖z(j)‖2] ≤ ρ2j (1− α/ρ)
−2

. (14)

Proof: See Appendix A.

The following result characterizes the performance of
both algorithms AL and AR.

Theorem 4 (No communication feedback) For
any choice of the initial phase’s length SL (respectively,
SR), there exists a real-valued random variable ŷ such
that

E
[
(y − ŷ)2

]
≤ α2(1− α)−2 , (15)

where α = βSL

L (respectively, α = β
√
SR

R ) and that the
estimates of algorithmAL (respectively,AR) satisfy, with
probability one,

lim
t→∞

ŷv(t) = ŷ , ∀v ∈ V . (16)

Moreover, it is possible to choose the initial phase length
SL (respectively, SR) in such a way that the algorithm
AL (respectively, AR) has communication and computa-
tional complexities satisfying

τL(δ) ≤ C1+C2
log3 δ−1

log2 ρ−1
, κL(δ) ≤ C3+C4

log7 δ−1

log4 ρ−1
,

and, respectively,

τR(δ) ≤ C5+C6
log5 δ−1

log3 ρ−1
, κR(δ) ≤ C7+C8

log5 δ−1

log3 ρ−1
,

for all δ ∈]0, 1], where {Ci : i = 1, . . . , 8} are positive
constants depending on ε only.

Proof: See Appendix A.

Observe that, by (15), the mean squared distance be-
tween the asymptotic estimate ŷ and the actual value
y, is upper bounded by a constant which, quite remark-
ably, is independent of either the size of the network
or the consensus matrix P , and depends only on the
length of the first transmission phase. Moreover Theo-
rem 4 shows that both the algorithms AL and AR have
communication and computational complexities grow-
ing at most poly-logarithmically in the desired precision.
The bounds on the communication (resp. computation)
complexities suggest that for the agents it may be suf-
ficient to use fewer channel transmissions in order to
achieve a desired precision when running the algorithm
AL than when running AR, and that the opposite hap-
pens if the number of computations is considered. This
behavior has been confirmed in a number of simulations

we have run implementing the algorithms, an example
of which is reported in [4]. Furthermore, in Theorem 4
both complexities depend on ρ, the second largest sin-
gular value of the matrix P . As the matrix P is adapted
to the communication graph Gε, the dependence of the
bounds on ρ captures the effect of the network topology.

5 Distributed averaging with communication
feedback

In this section we discuss how to efficiently modify the
algorithms of Sect. 4 when there is communication feed-
back. The key point is that, in the presence of noise-
less communication feedback, it is possible to modify
the algorithms AL and AR and make them average-
preserving. These modified algorithms will be shown to
converge to average consensus with probability one, and
to have lower communication and computational com-
plexities than their feedbackless counterparts.

We consider distributed averaging algorithms with the
iterative structure described in Sect. 4. Specifically we
use the same communication phase rule (3) of Sect. 4.1,
and modify the state update step as follows. Observe
that, at the end of the j-th communication phase,
not only agent v can estimate the state of all its in-
neighbours as in (4), but it can as well use its knowl-

edge of the signals {bv→w(t)}hj

t=hj−1+1 received by its

out-neighbors w ∈ N+
v in order to compute their esti-

mates x̂
(w)
v (j − 1) of its own current state. Then, in the

presence of communication feedback, the state update
step (5) can be replaced by the following one

xv(j+1) = xv(j)−
∑
w∈N+

v

Pwvx̂
(w)
v (j)+

∑
w∈N−v

Pvwx̂
(v)
w (j) .

Notice that this requires every agent v to know not only
the entries of the v-th row of the matrix P , but also those
of the v-th column of P . Clearly, such algorithms can be
framed in the setting described in Sect. 2. Indeed, for all
j ≥ 1, one has

φ
(v)
hj−1+k

(i′v(hj−1 + k)) = Υk (xv(j − 1)) , 0 < k ≤ `j
ψ
(v)
hj−1+k

(i′v(hj−1 + k)) = xv(j − 1), 0 ≤ k < `j

The above state update equation may be written in the
compact form

x(j+1) = Px(j)+
[
(P�∆(j + 1))−(P�∆(j + 1))

∗]
1.

Observe that 1∗
[
(P �∆(j))− (P �∆(j))

∗]
1 = 0,

so that, since P is a doubly-stochastic matrix, one
has 1∗x(j + 1) = 1∗Px(j) = 1∗x(j). It follows that
n−11∗x(j) = n−11∗x(0) = y for any j. Hence,

ζ(j) = 0 , e(hj) = z(j) , ∀j ≥ 0 . (17)
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Now, we consider two implementations of the above-
described algorithms. Such implementations have in-
creasing communication phase lengths, analogously to
those introduced in Sect. 4. In the first implementation,
referred to as algorithm A′L, linear codes are used in the
communication phase, and the length of the j-th phase is
`j = SLj for some SL ∈ N. The second implementation,
named A′R, uses repetition codes in the communication
phase, and the length of the j-th phase is `j = SRj

2

for some SR ∈ N. The following result characterizes
the performance of the algorithms A′L and A′R, show-
ing that with probability one, the estimates of all the
agents converge to the actual value y, and estimating
the communication and computational complexities.

Theorem 5 (With communication feedback) For
any choice of the initial phases length SL (respectively,
SR), the estimates of the algorithm A′L and A′R satisfy,
with probability one,

lim
t→∞

ŷv(t) = y , ∀v ∈ V .

Moreover, it is possible to choose the initial phase length
SL (SR, respectively) in such a way that the algorithm
A′L (respectively, A′R) has communication and computa-
tional complexities satisfying

τ ′L(δ) ≤ C ′1+C ′2
log2 δ−1

log2 ρ−1
, κ′L(δ) ≤ C ′3+C ′4

log4 δ−1

log4 ρ−1
,

and, respectively,

τ ′R(δ) ≤ C ′5+C ′6
log3 δ−1

log3 ρ−1
, κ′R(δ) ≤ C ′7+C ′8

log3 δ−1

log3 ρ−1
,

for all δ ∈]0, 1], where {C ′i : i = 1, . . . , 8} are positive
constants depending on ε only.

Proof: See Appendix A.

The bounds in Theorem 5 exhibit a better dependence
on the desired precision δ with respect to their analogous
in Theorem 4. On the other hand, the dependence on
ρ is the same. The reason lies in the average-preserving
property which can be guaranteed when communication
feedback is available. In this case, as shown by Theo-
rem 5, it is not necessary to determine the initial phase’s
length as a function of final desired precision, since the
estimates produced by both A′L and A′R converge to y
with probability one. In contrast, when communication
feedback is not available, it is not possible to guarantee
that the average of the agents’ estimates is preserved.
This is the reason why, in Sect. 4, we had to adjust the
initial phase’s length as a function of the desired preci-
sion δ, inducing a worse dependence on δ of the bounds
on communication and computational complexities of
the algorithms AL and AR shown in Theorem 4.

6 Conclusion

In this paper, for the first time we have considered the av-
eraging problem on networks of digital links, and estab-
lished suitable performance figures to evaluate its algo-
rithmic solutions, in terms of communication and com-
putation complexities. On this ground, the main contri-
bution of the paper has consisted in proposing and an-
alyzing a family of average consensus algorithms, based
on encoding/decoding schemes with precision increasing
with time: the increase is meant to compensate the ef-
fect of errors in digital communications. Depending on
the application, one might prefer to avoid such increase,
and to compensate the accumulation of errors by ap-
plying a decreasing gain strategy, as proposed in [11,17]
for networks whose links support the transmission of
a real number affected by additive noise. Compared to
ours, these results show almost sure convergence to av-
erage consensus, with mean square error decreasing as
the inverse of time, under slightly more stringent as-
sumptions on the noise (mainly, independence of the ad-
ditive noise). This guarantees communication and com-
putation complexities growing polynomially in the de-
sired precision, as opposed to the polylogarithmic de-
pendence of our algorithms. Also, we have investigated
how to make use of communication feedback, when avail-
able, in order to make the algorithms average-preserving,
and improve their performance. The question is open
whether a logarithmic algorithm can be designed for
average consensus on digital networks, and how much
global information it would require to be run by the
agents.
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A Proofs

Proof of Proposition 3

Let us first consider the quantity ζ(j) defined in (11).
It is straightforward to verify that ζ(0) = 0, and the
recursion ζ(j + 1) = ζ(j) + ξ(j + 1) is satisfied, with
ξ(j) := n−11∗(P �∆(j))1. For j ≥ 0, ξ(j) is a random
variable whose second moment can be upper bounded

using the Cauchy-Schwarz inequality:

E
[
ξ(j)2

]
= n−2E

[(∑
v,w

Pvw∆vw(j)
)2]

= n−2
∑

v′,w′

∑
v,w

∆v′w′∆vwE [∆v′w′(j)∆vw(j)]

≤ n−2
∑

v′,w′

∑
v,w

Pv′w′Pvw

√
E
[
∆v′w′(j)2

]
E
[
∆vw(j)2

]
≤ n−2

(∑
v,w

Pvwα
j
)2

= α2j (A.1)

It follows again from the Cauchy-Schwarz inequality that

E [ξ(s)ξ(r)] ≤ E
[
ξ(s)2

]1/2 E [ξ(r)2]1/2 ≤ αs+r , for all
1 ≤ s, r ≤ j. Therefore,

E[ζ2(j)] =
∑

1≤s,r≤j

E [ξ(s)ξ(r)] ≤
∑

1≤s,r≤j

αr+s

=
( ∑

1≤s≤j

αs
)2
≤ α2

(1− α)2
.

Now, consider z(j) defined in (10). Observe that z(0) =
u(0), and the recursion z(j + 1) = Pz(j) + u(j + 1) is
satisfied withu(0) := x(0)−n−11Tx(0)1, and, for j ≥ 1,
u(j) := (P �∆(j))1− ξ(j)1. Notice that ‖Px‖ ≤ ρ‖x‖
for all x ∈ Rn such that 1∗x = 0. Since 1∗u(j) = 0, we
have

‖Pu(j)‖ ≤ ρ‖u(j)‖ . (A.2)

On the other hand, again from the Cauchy-Schwarz in-
equality, for all u, v, w ∈ V, we have that

E [∆vw(j)∆vu(j)] ≤ E
[
∆vw(j)2

] 1
2 E
[
∆vu(j)2

] 1
2 ≤ α2j ,

so that the random vector u(j), for j ≥ 1, satisfies the
following bound

E
[
‖u(j)‖2

]
= E

[
‖(P �∆(j))1‖2

]
− nE

[
ξ(j)2

]
≤
∑

v
E
[(∑

w
Pvw∆vw(j)

)2]
=
∑

v

∑
w,w′

PvwPvw′E [∆vw(j)∆vw′(j)]

≤ nα2j . (A.3)

Moreover, recall that θv ∈ Θ for any v ∈ V, where Θ is
an interval of unitary length. As a consequence, one has
|θv − y| ≤ 1 for any v ∈ V, so that

E
[
‖u(0)‖2

]
= E

[
‖z(0)‖2

]
=
∑

v
E[(θv − y)2] ≤ n .

(A.4)

Consider now E[‖z(j)‖2] = E
[
‖
∑

0≤s≤j P
j−su(s)‖2

]
.

By successively applying the Cauchy-Schwarz inequality,
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(A.2), (A.3) and (A.4), we get

E[‖z(j)‖2] ≤
∑

0≤s,r≤j

√
E [‖P j−su(s)‖2]E [‖P j−ru(r)‖2]

≤
(∑

0≤s≤j ρ
(j−s)

√
E [‖u(s)‖2]

)2
≤ n

(∑
0≤s≤j ρ

(j−s)αs
)2

≤ n
(
ρj
∑
s≥0

(
α
ρ

)s)2
= nρ2j

(
1− α

ρ

)−2
which completes the proof.

Proof of Theorem 4

We begin by estimating the difference x(j+1)−x(j), for
j ≥ 0. Toward this goal, let ξ(j) := n−11∗(P �∆(j))1.
Then, we may rewrite

x(j + 1)− x(j)

= x(j + 1)− n−11∗x(j + 1)1 + n−11∗x(j + 1)1− x(j)

= x(j + 1)− n−11∗x(j + 1)1 + n−11∗x(j)1 + ξ1− x(j)

= z(j + 1)− z(j) + ξ(j)1 .

By successively applying the triangle inequality, Propo-
sition 3, and (A.1), we get

E
[
‖x(j + 1)− x(j)‖2

]
≤ E

[
(‖z(j + 1)‖+ ‖z(j)‖+ ‖ξ(j)1‖)2

]
≤ 3

(
E
[
‖z(j + 1)‖2

]
+ E

[
‖z(j)‖2

]
+ nE

[
ξ(j)2

])
≤ 3n

(
ρ2(j+1) + ρ2j

)
(1− α/ρ)

−2
+ 3nα2j

≤ 9n (1− α/ρ)
−2

(max {ρ, α})2j = 9n (1− α/ρ)
−2
ρ2j .

Hence, one can estimate the probability of the event
Ej :=

{
‖x(j + 1)− x(j)‖2 ≥ ρ2j

}
by Markov’s inequal-

ity, obtaining P (Ej) ≤ 9n (1− α/ρ)
−2
ρ2j . Therefore,∑

j≥0 P (Ej) is finite, and the Borel-Cantelli lemma im-
plies that, with probability one, the event Ej occurs for
finitely many j ∈ Z+. This implies that, with probability
one, the sequence {x(j)} is Cauchy, and henceforth con-
vergent. Hence, there exists a Rn-valued random vari-
able x∞ such that limj x(j) = x∞ with probability one.
On the other hand, define g(x) = x−n−11∗x1. Then, it
can be deduced from (14), again using Markov’s inequal-
ity and the Borel-Cantelli lemma, that g(x(j)) = z(j)
converges to 0 with probability one. Then, from the con-
tinuity of g, it follows that g(x∞) = 0, i.e., x∞ = ŷ1 for
some scalar random variable ŷ. In order to verify that
(15) holds, observe that ζ(j) = n−11∗x(j)−y is bounded
and convergent to ŷ − y with probability one. Hence,
limj E[ζ(j)2] = E

[
(ŷ − y)2

]
. Then, from (14) we have

α2(1− α)−2 ≥ limj E[ζ(j)2] = E
[
(ŷ − y)2

]
. Therefore,

(16) follows by simply recalling that ŷv(t) = xv(j), for
hj < t ≤ hj+1.

In order to prove the second part of the claim, first recall
that αL = βSL

L , with βL depending on ε only. Hence,

αL ≤ ρ/2 for all SL ≥ (log ρ−1 + log 2)/ log β−1L . Then,

for δ ∈]0, 1], let u :=
√
δ/2. It follows from (9), (7), and

Proposition 3, that, for

n−1||e(t)||2 ≤ δ , ∀t ≥ hj (A.5)

to hold, it is sufficient that

αL(1− αL)−1 ≤ u , ρj ≤ u/2 . (A.6)

The leftmost inequality in (A.6) is satisfied provided that
SL ≥ log(2u−1)/ log(β−1L ), and the right inequality is
satisfied if j ≥ log(2u−1)/ log(ρ−1). Now, recall that
hj =

∑
1≤i≤j `i = SL

∑
1≤i≤j i ≥ 1/2SLj

2. It follows
that

hj ≥
SL
2

log2 u

log2 ρ
≥ 1

2 log βL

log3 u

log2 ρ
,

implies (A.5). Then, the upper bound on τL(δ) easily
follows. In order to prove the bound on κL(δ), observe
that (1) implies that, for every v ∈ V,∑

1≤t≤hj

κv(t) ≤
∑

1≤i≤j

B`3i = BS3
L

∑
1≤i≤j

i3 ≤ BS3
Lj

4 .

Finally, the bounds on τL(δ) and κL(δ) follow from anal-
ogous arguments.

Proof of Theorem 5

From (17) one has ζ(j) = 0 for all j. On the other hand,
in the same way as in the proof of Theorem 4, one can
argue that limj z(j) = 0 with probability one. Hence
limt e(t) = 0 with probability one, which is equivalent
to the first part of the claim.

Now, let us consider algorithm A′L, and notice that the
same proof of Prop. 3 allows to obtain for the case with
feedback the following bound, analogous to (14),

n−1E[‖z(j)‖2] ≤ 2ρ2j (1− α/ρ)
−2

.

Also recall that one has αL ≤ ρ/2 for all SL ≥
log(2ρ−1)/ log β−1L . Hence, for any such SL,

n−1E[‖e(t)‖2] = n−1E[‖z(j)‖2] ≤ 2ρ2j (1− α/ρ)
−2 ≤ δ

for all t ≥ hj , if j ≥ log(8/δ)/ log(ρ−2). The upper
bound on τ ′L(δ) then follows in view of `j = SLj. The
upper bound on κ′L(δ) follows using (1). The bounds on
τ ′R(δ) and κ′R(δ) follow from similar arguments.
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