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Abstract-We consider a family of codes which can be seen
both as a special kind of serial turbo codes and as LDPC codes
having a parity check matrix which is partly random and partly
structured. These codes are linear-time encodable, thanks to the
turbo structure, and can be decoded as LDPC codes. We provide
an ensemble analysis for the waterfall region, on the line of
classical results for serial turbo codes, and we find some design
parameters.

I. INTRODUCTION

One of the main problems related to LDPC codes is their
encoding complexity, which is in general quadratic in the
block length, as the generating matrix is not low density.
This issue has been addressed in two different ways. On one
side there are the results in [8], which allow to construct, for
given generic LDPC matrix, equivalent generating matrices
with lower encoding complexity. On the other side, there are
the constructions of parity check matrices structured in a such
a way that allows easy encoding. A successful construction is
the one using matrices with a staircase part (i.e. a sub-matrix
with ones on the diagonal and on the lower diagonal, and
zeros everywhere else), so that the encoder can be seen as
a serial concatenation of a repetition code, an interleaver and
an accumulator: this gives Repeat-Accumulate codes and their
generalization, the Irregular Repeat-Accumulate (IRA) codes,
introduced in [5].

In this paper, we follow this second approach, studying
LDPC codes which can be encoded with a serial turbo
structure. There is a wide literature on analysis and design
of IRA (see particularly [9]), but previous work focuses on
the design of the degree distribution of the variable nodes
(the time-varying number of repetitions) and of the check
nodes (the so-called grouping factor). On the contrary, here
we investigate the possibility to vary the structured part of
the matrix, which is equivalent to choosing a different inner
encoder instead of the accumulator. To do so, we focus on the
simpler case when the degrees are constant and we analyze
the performance following the classical results for serial turbo
codes in [1]. We analyze the performance of schemes with
different inner encoders in the waterfall region, showing at first
that there is an interleaver gain, i.e. for large enough SNR the
average error probability goes to zero when the interleaver
length grows to infinity. Then we look at the behavior of
the main term when the SNR goes to infinity, as was done

in [1] to underline the role of the effective free distance of the
inner encoder. The results in [1] generalize to our setting in
a non-trivial way, as the relevance of the inner encoder can
be shown only expurgating some codes from the ensemble.
Our results are theoretical and are coding theorems in the
same sense as in [6]: they hold true under ML decoding, on a
memoryless binary-input symmetric-output channel (e.g. BSC
or BIAWGN).

II. ENCODING SCHEMES AND PARITY CHECK MATRICES

Consider the family of serially concatenated turbo encoders
which have the following structure:

0- Rep,W Sum, 1- 0

ON

By Repr ZN > ZN we denote the repetition code with
rate I/r; Sums : 7LN > 7LN is defined by

Sums(x) = (xi +... +XS, Xs+1 + * +X2s ...)

i.e. it gives the modulo-2 sum of every block of s bits (s is the
grouping factor). Finally, let y(D) : -k((D))_> Zk((D)) be
a rate-I non-catastrophic and recursive convolutional encoder,

rN/s rN~sand let ON Zr2 be the truncated encoder
obtained by using the trellis of 4b(D) for rN/(sk) time steps.
We will always assume that rN is a multiple of sk, so that
the above construction can be properly made (this will be
implicitly assumed also when taking limits for N --> oc).
As a reminder of properties of convolutional encoders, notice
that 4b(D) can be seen as a k x k matrix whose entries are
fractions of polynomials, and that 4b(D) is non-catastrophic
if and only if this matrix has an inverse whose entries are
Laurent polynomials. Recursiveness of 4b(D) is equivalent to
the recursiveness of at least one entry in each column of the
matrix. In particular, if k = 1, our assumptions imply that
4b(D) = 1/p(D) for some polynomial p(D).
The encoding scheme we are considering is a particular kind

of systematic serial turbo encoder; the outer encoder is Repr,
the inner encoder is f0N = ON o Sums. The inner encoder f0N
can be considered as the truncation of a proper convolutional
encoder, which is not injective, but the transmission of the
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systematic bits ensures injectivity and non-catastrophicity of
the overall coding scheme. Also notice that F0N is recursive,
in the sense that inputs of weight one produce outputs with
weight growing to infinity when N -> oc; this will be essential
to our result about the interleaver gain.
The representation as serial turbo codes allows linear-time

encoding, and it is also useful for some performance analysis,
as stated in the next sections. The decoding can be performed
exploiting the fact that these same codes can also be seen as
LDPC codes: a parity check matrix can be constructed in the

C) e N X
rNs beogfollowing way. Notice that a pair (u, c) 2 x f belongs

to our code if and only if c = ON a Sums o 7N 0 Repr(u),
which is equivalent to Sums o 7N o Repr(u) + <N1 (c) = 0
and can be represented with matrices as [HN KNI [ C ] = 0

Notice that HN is a low-density matrix depending only on
r, s and on the permutation TN, and has at most s ones per
row and r ones per column, while KN is a matrix depending
on the choice of b, and is also low density, having a number of
ones per row and per column bounded by k(deg O'1(D) + 1),
where by 'deg' we denote the difference between the largest
and the smallest exponent of a Laurent polynomial.
We give here some examples of encoders b(D) satisfying

our assumptions, and of the corresponding matrices KN. The
properties peculiar to these encoders will be commented later.

(E1) If k = 1 and y(D) is the accumulator y(D) = 1/(1+D),
we have the so-called 'staircase' LDPC codes: KN has
ones on the diagonal and on the lower diagonal, and zeros
everywhere else.

(E2) With k= 1, 4b(D) 1+D1D3 gives

KN = 1
0

0

(E3) Let k = 3 and O (D) =

Its inverse is -l(D) =

0

KN= 0

o o 0 0 0
1 0 0 0 0
1 1 0 0 0
o 1 1 0 0
1 0 1 1 0
o 1 0 1 1 I

F1 D D21
1 'D2 1 D1+D3 [D D2 1

H

[: D which gives:

00
10
01
10
01
00

(E4) Let k =3 and b(D) [

Its inverse is 4-1(D) =

I

0
0
0
01

0
1
0
1
0
0

0
0
1
o 1 o o
1 o 1 o
o o o 1

1+D+D2 1 1

1+D2 1+D 1+D2
1 1

I+D I +D .
D DI

1+D 1+D

[1±+D- D-1
o 1 D- 1 , which

1+D- 1 D- 1 1+D- 1

gives:

KN

I o o 1 1 o
o 1 o o o 1
1 o 1 1 1 1

o 1 o
1 o 1

1
0
1
1
0

1
0
1
0
1
0

0

1

0
01

III. INTERLEAVER GAIN: AVERAGE ERROR PROBABILITY

To analyze the performance of the coding schemes we have
introduced, we will follow the analysis of serial turbo codes
in [1], [6]: we focus on the behavior in the waterfall region
and under the assumption that the decoding is Maximum
Likelihood. We build an ensemble by fixing b and letting
the interleaver II be a random variable uniformly distributed
over SrN (the set of all permutations of rN elements), and
then we study the average error probability and particularly
its behavior when N --> oc.
The coding ensemble presented here is included in the wide

class of generalized serial turbo codes studied in [4]; here we
state the results as applied to this particular case and we give
a rough idea of the proofs, referring the interested reader to
[4] for detailed proofs.
Our main result is that, for sufficiently large SNR, there

is an interleaver gain: the average bit and word error proba-
bilities go to zero when N -* oc, provided that r > 2 and
r > 3 respectively. The decay is polynomial in 1/N, with an
exponent increasing with r. More formally, denoting by Pb(e)
and P, (e) the average bit and word error probabilities:

Theorem 1: Take s > 2 and r > 2. Define , L1r+] and

r1 if r is even

d 2 ifr 3
1 + dX'tr otherwise

where d'tr is the smallest weight of a truncated error event of

ON having an input weight 1 (if k = 1, then d tr = 1).
There exist positive constants 'yo, cl and c2 (depending only

on the ensemble, i.e. on r, s, 4b(D)) such that, for all'T < -y0:

* Cpd N < Pb(e) <c2'd N + O(N It 1)

cjpd N-"+1 < Pw(e) < c2_Td*N-K+ O(N-/)
where p is the equivocation probability and 'T is the Bhat-
tacharyya noise parameter of the channel. D
We prove the upper bound for Pb(e) and the lower bound

for P,,(e); then Thm. 1 follows as Pb(e) > 1P (c)
The upper bound is based on the Union-Bhattacharyya bound:

N (r+s)Nls
Pb (e) < SE AwdANd

w=l d=w

where AW,d is the average number of codewords of a serial
ensemble with input weight w and output weight d. For d > w,

(1)AN,d rN () VrWw w
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where V"' is the set of words v C Zr1N such that WH(w) = h
and wH(QON(v)) = k.
Then we use some properties of the convolutional encoders

to estimate lV'ON_d w . First of all, we need to define V1In
to be the set of words v C rw,dw producing exactly n error
events of fN, plus possibly a final truncated error event not
counted by n. Clearly

nmax

rw,d-w rw,d-w,n
n=O

Then, for some constants a, b > U, we have the estimation:

V~ON N+n arwbdw

rw,d_w,n K )ab
n )

The recursiveness of f0N comes into the picture for bound-
ing nmax: it ensures nmax < Lrw'2i, as every error event
must have input weight at least two. When r > 4, we use the
bound nmax < Lrw/2i for all terms, except some terms with
w = 1. We do not give here the proof for r = 2 and r = 3,
which is different because more values of w contribute to the
main term of the estimations.

For r > 4, notice that we have defined d* in such a
way that d* -1 is exactly the smallest output weight of f0N
that can be obtained when the input weight is r and there
are Lr/2i error events (plus possibly a truncated one). This
comes from the fact that every pair of ones in the output of
Repr can be permuted by some interleaver in such a way
that they are summed up by Sum,, producing a zero output.
The consequence is that if w = 1 and d < d* we know that
nmax < Lrw/2i - 1.

Substituting these estimations in Eq. (1) and separating the
term with w = 1, we get:

Zr+SN/s y:;(N+ n) arbd-1 d

d=d* (r) n=O

d*-l I Lr/2 AN +nA b-

d=1 V r Jn=O

(r+s)N/s d N) Lrwl2 N ) w

+ , , ~w ) ,(w +)arwbd-w d
d=1 w=2 rw) n=O

Now we refer to [4] for a formal proof that, for sufficiently
small 'y, all these series are convergent, and the first is
bounded by c7yd N-l while the second and third are
bounded by c(y)N-/1.

Now we give a sketch of the proof of the lower bound. The
key idea is that, for all fixed d,

Pw(e) > pd(dmin < d)
where d&min is the minimum distance of the overall coding
scheme (which is a r.v. as the encoder is a r.v.).
We choose d = d* and we find a lower bound for

D(dmNi > d*); for simplicity of notation we consider here
only even r. We fix some codewords of the repetition code:

Ca = Repr(Da) for all a C A = {O, . ., N -1}. We also fix
an error event of f0N with input weight 2 and output weight
0, for example with input 1 + D and then we construct the
following inputs for ON: let B = {O,... , 2N/s i}r/2 and
for any b = (bo,. ..,br/21) C 3B define

r/2-1
Ub* Dsbj+j2N(I + D)

j=o
Clearly ca, ub C 7rN and both have weight r. Also notice that
WH (9ON(Ub)) = 0, so that if FJ(ca) = ub then dmQ'n < d*.
Define the events Ea,b ={L(Ca) = Ub} and Ea U Ea,b,

be3
so that

IP(dmin < d*) > U P(Ea)
aGA

> ID(E,)
a

5 5E PED(Ea nEa/)
a a'/za

Then LPIP(Ea) A B >cN-+.
a ~~~rNa (7r)

For the term with intersections notice that Ea,b n Ea,,b
if a :4 a' but bj = bj for some j, while

P(Ea,b n Ea',b') < P(FJ(Ca + Cat) = Ub + Ub,)

0

1
trNA
V 2r J

if a :4 a' and bj + bj for all j. So:

S P(EanEat) < A*2~132 1 < CN-2,+2
a a' 7a (2r)

If r > 3, then , > 2 and this concludes the proof.
For r = 2, the proof is slightly different: A and B must

be chosen smaller by some constant factor, ensuring that
|A B1 - >A 221A2B2 1 > 0.

(2N) (2N)

IV. A BETTER SMALLER ENSEMBLE AND A DESIGN
PARAMETER

In the result given in Thm. 1, notice that there is essentially
no dependency of the exponents ,u and d* on the choice of the
encoder b. Looking at traditional serial turbo codes [1], we
see that it is natural that ,u depends only on the free distance of
the outer encoder, but we expect a dependency of the effective
free distance d* on the inner encoder too. What happens with
our schemes is that pairs of bits which are repetition of a same
information bit can be permuted by some interleaver in such
a way that they are summed up by Sum,, producing a zero
output. The value of d* is given by this 'worse case' scenario.

This remark suggests to consider a smaller family of in-
terleavers, enforcing that ones coming from the same error
event of Repr cannot end up in positions where they would
be summed up by Sum,. More precisely, we define the set

Rrs: {17 C SrN: Li/ri = L/lri] Lw>(i)/si#/ Lw7(i)/si }
What we want to consider is an ensemble of encoders

constructed as in Section II, except that now the permutation is
uniformly distributed on R>N instead of all SrN. Additionally
to the motivation of finding a more interesting effective free
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distance, this ensemble turns out to be a natural choice
in analogy with classical results for regular LDPC codes:
restricting the permutation to RN is the same as enforcing
that the Tanner graph corresponding to the regular part of the
matrix, HN, does not have cycles of length two. This new
ensemble is also equivalent to pick HN uniformly at random
in the set of N x N binary matrices with exactly s ones per
row and r ones per column.
As RN is not a group, we cannot directly apply results from

[4] (i.e. use the same proof techniques sketched in the previous
section). However, we can slightly modify our techniques for
estimating E(Pb(e) RNY5), where E is taken in the ensemble
with II uniformly distributed in SrN; notice that E (Pb (e) R>)
is equal to the average Pb(e) when II is uniformly distributed
in RN which is what we would like to estimate; we will alsor,s
denote it Pb(e)exp.
The key remark is that the probability that a permuta-

tion uniformly extracted from SrN belongs to R N, is non-
vanishing: P(R) - e- (r- 1)(s-1)/2 when N -> oc (see e.g.
[2] Exercise 2.12 p. 59).

Notice that P(RYN) tends to a constant which is strictly
smaller than one, so even though the techniques we use are the
same usually known as expurgation, the result we will get is
not the typical behavior of the ensemble introduced in Sect. III:
we will find the average behavior of a subensemble which is
neither vanishing nor typical, but is well characterized.

Our main result is the following:
Theorem 2: Take s > 2 and r > 2. Define ,u =L1] and

02 r=2, 3
dexp + even r > 4

r-3+ dV) 2 + min{, +d,,d } odd r > 5

where dV' is defined as in Thm. 1, while d' and df are1 ,tr f,12 f,13
the smallest weight of an error event of b(D) having input
weight two and three respectively.

There exist positive constants 'yo, cl and c2 (depending only
on the ensemble, i.e. on r, s, b(D)) such that, for all'T < Tyo:

* Cip eXPN M < Pb(e)exp < c2' eXPN M + O(N Mt 1)

* CipdexpN 8 < Pw(e) p <t C.dexpN I±+O(N -i)

Now we show how the proof sketched in Section III for
Theorem 1 can be adapted to prove Theorem 2.

For the upper bound, by the union-Bhattacharyya bound:

Pb (c) < EE E(A- d (rl) RrX t
w d

where A Nd(w) is the number of codewords of the concate-
nated scheme with input Hamming weight w and output
Hamming weight d for a given permutation 7 C SrN.

For most of the terms, we will use the estimation

E(Awd(U) R5) <(A< ,d(U))W,drl~Rr S -P(RN )
Aw .dA ),d
P(RNY5 (2)

and the fact that P(RN) is bounded away from zero, so that
we can exploit all what we know about Ew Ed Aw,d Nd-
We consider separately the term with w = 1 (as in the

previous section, we are writing the proof for r > 4). First
notice that

E(ANd (U) RN ) N E3 P(rI(Repr(1))

r,Vd-1

vRRN )

Then let SN {V s.t. Li/si # Li/si Vi =j =viv=
and notice that v V SN gives P(EJ(Repr(1))= v nR0N)
so that

E (A{ d(U) RN ) N E P(rI(Repr(1))
V ,VdN 1nSN

1}
0 ,

v|RN )

d-1 n S (rN)IP(RN)

nmax

Then, rd 1 S E rdN 1n n S

n=O
The recursiveness of fN ensures nmax Lr'2], but

also notice that if WH(V) = r and v C V'PN n s,
then wH(ON(v)) > dexp, so that for d < dexp we have
the tighter bound nmax < Lr/21 -1. Finally, we estimate

r,d 1nn <-Vr'd 1,n and we end the proof as in the
previous section.

Let's see how to adapt the proof of the lower bound (again
for simplicity let r be even). We take the same A and ca
as in the previous proof. On the contrary, we have to choose
different Ub, to produce output weight d*xp. Let v C ZrNIsUb, ex2
be an input for ON with weight 2 producing an error event
of output weight df 2; let L be the length of the error event
(the number of trellis steps where it diverges from the all-
zero state); also assume that the error event starts at time
zero: v = 1 + Dt for some 1 < t < kL. Now define
13 = {° N ]_y1}rI2 and

r/2-1
U=b=E DskLbj+j2skLN(l + Dst)

j=O

so that WH(()N(Ub)) = dexp -1. Re-defining Ea with these
new ub we have

E (Pw(e) R75) > pdexpp(dmnif < d* R7)

~~~( U Fa R7)

aGA

Then we use again the union-intersection bound.
First of all, notice that P(Ea,b n RYN ) does not depend on

a and b and is non-zero. Then, to find a lower bound for
Ea P(Ea R N,), define the events

r's ~ ~ r
r-1

F {Il(ca) DlJ±iJ }
,j0
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and notice that, for any a C A, b C B, we have

P(R7N ) = SE D(R<N
lO< I1.o...1

< <rN _1 O<ij<S-1

(rN/s) s P(RATn Ea,,b)

so that P(Ea R7N5)
P(Ea nR>N)

P(RN~)
'3

(rNs

IS n FN,,

3
and finally

s) Sr

L IP(Ea RYs) = B134 1 >cN-t+ .

aCA (rN

For the term with intersections, we use the simple bound

P(EanEal iR, ) (Ea n Ea, n R <N P(EanEai)
P(RNY5) P(RNY)

Then we exploit the fact that P(R N,) is bounded away from
zero and we estimate P(Ea 0 Eat) as in the previous section,
ending the proof with

SP(EanEa/ RN ) < 1 <Ec(EanEa/)<cN-2p+2
a,a'CA PR'Y5 a,ja(EA DE)
azha/ a7Aal
V. CONCLUSION, CONJECTURES AND OPEN PROBLEMS

In this paper we have presented an analysis of the average
error probability of the ensemble of LDPC codes obtained by
a serial interconnection of a regular repetition code with a
generic recursive inner code. We have also studied the sub-
ensemble obtained by preventing the appearance of 2-cycles
in the Tanner graph. We have proved that both ensembles have
the same interleaver gain: they have average error probability
polynomially going to zero when 1/N -> 0, with the same
exponent. We have found that their behavior when the SNR
goes to infinity is not the same, and in the second ensemble
it is influenced by a parameter depending on the choice of
the inner encoder b, providing a design parameter for such
schemes.
Our results leave space for further interesting investigations.

For classical serial turbo codes, the ensemble analysis has been
done not only studying the average error probability, but also
finding the typical behavior [3], which turned out to have a
sub-exponential decay (much better than the polynomial decay
of the average code, but worse than the exponential decay of
typical error probability of LDPC regular ensemble). A careful
adaptation of the proofs in [7], [3], which is beyond the scope
of this paper and will be discussed elsewhere, allows to extend
those results to the ensemble described in Section III, in the
following way. Consider the ensemble described in Sect. III
and define the random variables XN = ogN(d) and

YN log( 1og9(P- (e))). When N -> oc, the result is that XNlog(NV)
and YN converge in probability to the constant Q (the latter
only for sufficiently high SNR), where Q = 1-2/r. Even
for classical serial turbo codes the parameter Q depends only
on the free distance of the outer encoder. However, we are

working on a more detailed analysis which can underline the
role played by df 2, the smallest output weight of the inner
encoder restricted to inputs of weight two. We conjecture that
for the ensemble of codes considered in this paper the key
parameter would not be d'2, which is always zero, but d 2
without the need to restrict the ensemble as in Section IV.

Another important further study concerns the decoding. The
simplest idea is to run the Sum-Product iterative decoding
on the Tanner graph exactly as it is done for LDPC codes.
We are currently investigating the real significance of our
distance parameter in real simulations with such decoding,
and the first results do not show the clear hierarchy we would
expect. We conjecture that this is related to the fact that some
encoders have many cycles of small length in the structured
part of their Tanner graph, and this can make their performance
significantly worse. For example, with k = 1, the accumulator
has df = 1, while the encoder in Example (E2) has df = 4^f,12 f,12
but the first one has no cycles in the structured part of the
graph, while the latter has 0(N) cycles of length six which can
explain why it does not outperform the accumulator. We are
currently exploring the possibility to overcome this problem,
either by constructing encoders with cycles of reasonably large
length, or by focusing on encoders with k > 1. This second
approach allows both to get more encoders without cycles
in the structured part (an example is (E3), which however
has only d2 = 1) and to construct encoders which do have
cycles of small length on the bitwise level, but if considered
blockwise (with symbols of k bits) have a staircase structure:
see example (E4), which has dfX = 3. We think that this lastf,12
kind of codes can provide a better performance when a proper
decoder acting on symbols is applied to them.
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