
On the Gilbert-Varshamov distance of Abelian
group codes

Giacomo Como
Dip. di Matem., Politecnico di Torino, Italy
visiting Yale University, New Haven, CT

Email: giacomo.como@polito.it

Fabio Fagnani
Dipartimento di Matematica
Politecnico di Torino, Italy

Email: fabio.fagnani@polito.it

Abstract— The problem of the minimum Bhattacharyya dis-
tance of group codes over symmetric channels is addressed.
Ensembles of Zm-linear codes are introduced and their typi-
cal minimum distance characterized in terms of the Gilbert-
Varshamov distances associated to the subgroups ofZm. For the
AWGN channel with 8-PSK as input it is shown that the typical
Z8-linear code achieves the Gilbert-Varshamov bound.

I. I NTRODUCTION

The Gilbert-Varshamov (GV) bound is one of the most
famous lower bounds on the achievable minimum Hamming
distance of binary codes. Given a rateR in (0, 1) and defined
δGV (R) as the unique solution in(0, 1/2) of the equation
H(x) = 1 − R (H(x) denotes the binary entropy), it states
that there exist codes of lengthn and minimum distance at
leastnδGV (R), for every n. It was introduced in early ’50s
and since then has attracted a huge amount of attention from
researchers. In particular the asymptotic tightness of theGV
bound is one of the most famous unproved conjectures in
coding theory, as pointed out by A.Vardy in his plenary talk at
last ISIT [10]. This problem is closely related to the tightness
of the expurgated error exponent at low rates. A well known
fact is that the Gilbert-Varshamov bound is asymptotically
achieved with probability one by the binary linear coding
ensemble [6], while this is not the case for the random coding
ensemble. In [1] the relationships of this problem with the
typical distance spectra and typical error exponent of the
random coding ensemble and of the linear coding ensemble,
are explored for binary symmetric channels.

In this paper we will deal with an extension of these issues
to the non binary case. There are many different notions
of distance for non binary alphabets; the Hamming distance
and the Lee distance for instance have been widely studied.
However these distances have no direct application to the
error exponents of channels usually considered. Here we
will follow the approach of [2] considering the notion of
Bhattacharyya distance of a memoryless channel and dealing
with the corresponding Gilbert-Varshamov bound. We will
focus on symmetric memoryless channels, an important special
case of which is the AWGN channel with input restricted on
a Geometrically Uniform (GU) constellation: in this case the
Bhattacharyya distance corresponds to the squared Euclidean
distance up to a scaling factor. Group codes for such a class
of channels constitute a natural generalization of binary linear

codes for binary symmetric channels [8], [5]. In [3], [4]
Abelian group codes ensembles have been introduced and their
error probability analyzed leading to an exact characterization
of the capacity achievable by such codes.

In this paper also we will deal with Abelian codes ensem-
bles. Our main contribution is an exact characterization ofthe
minimum Bhattacharyya distance asymptotically achievable
by ensembles of codes over the cyclic groupZm: it turns
out that with probability oneZm-linear ensembles of codes
asymptotically achieve a distance which is the minimum of the
GV distances associated to the subchannels having as inputs
all the possible nontrivial subgroups ofZm. This phenomenon
closely resembles what has been shown in [3] and [4] for the
capacity of Abelian group codes. In fact, both are related to
the characterization of distance spectra for such codes. Asa
specific example we then consider the AWGN channel with
the 8 − PSK input constellation. We prove that in this case
the above minimum of the GV distances is equal to the GV
distance of the channel itself with respect to the squared
Euclidean distance: in other terms typicalZ8 group codes
always achieve the GV distance on the AWGN channel with
the 8 − PSK input constellation.

In Section II the general notion of Bhattacharyya distance
for symmetric channels is introduced and two examples are
presented where it coincides respectively with the Hamming
distance for BIOS channels and with the squared Euclidean
distance for the AWGN channel with a GU constellation as
input. In Section III we state the Gilbert-Varshamov bound
on the Bhattacharyya distance. Section IV contains the main
results consisting in an exact characterization the typical
distance spectra and minimum distance ofZm-linear coding
ensembles. In Section V we analyze the special case of the
AWGN channel with8 − PSK input constellation.

II. B HATTACHARYYA DISTANCE FOR SYMMETRIC

MEMORYLESS CHANNELS

In this section we introduce a general framework for the
minimum distance. While perhaps looking rather abstract, we
will see that this framework unifies many different definitions
and allows to formulate a general problem.

Throughout this paper the baseexp and log has to be
considered the same arbitrary fixed positive number. For
a finite setA, P(A) will denote the space of probability



measures overA. If a in A, δa in P(A) denotes the delta
probability concentrated ona. The entropy function is

H : P(A) → R
+ , H(θ) = −

∑

a

θ(a) log θ(a) .

For everyn in N, the A-type function is defined as

υA : An→P(A) , [υA(x)](a) :=
1

n
|{1 ≤ i ≤ n : xi = a}| .

We definePn(A) := υA(An) andPN(A) := ∪n∈NPn(A); the
setPN(A) is countable and dense inP(A).

For two real valued functionsf andg over A we consider
their scalar product〈f , g〉 =

∑

a∈A f(a)g(a); for a subsetB
of A, f |B : B → R denotes the restriction off to B.

For an arbitrary finite groupG we shall denote by1G its unit
element and generally use the multiplicative notation. When
G is Abelian we shall switch to the additive notation with
0 denoting the unit element. We will also use the notation
P∗(G) := P(G) \ {δ1G

}.
A memoryless channel (MC) of finite input setX and

continuous output setY = R
ν is described by a family of

transition probability densities{W (·|x)}x∈X . Our theory also
works in a more general framework including channels with
discrete outputs: this choice is only made for simplicity.

Consider two elementsx, x′ of X . Since bothW (·|x)
W (·|x′) are nonnegative measurable functions overY the
quantity

∫

Y
√

W (y|x)W (y|x′)dy is well defined in[0,+∞].
Both

√

W (·|x) and
√

W (·|x′) are inL2(Y) so that Schwartz
inequality gives

0 ≤
∫

Y
√

W (y|x)W (y|x′)dy

≤
∫

Y W (y|x)dµ(y)
∫

Y W (y|x′)dy = 1 .

The first inequality above is an equality iff the supports of
W (·|x) and W (·|x′)

)

intersects in a set of zero measure.
Instead, the second inequality is equality iffW (·|x) = W (·|x′)
almost surely, which means that actuallyx and x′ have
indistinguishable outputs. In this paper we will assume that
for everyx 6= x′

0 <

∫

Y

√

W (y|x)W (y|x′) < 1 ;

While there is no loss of generality in the latter part of this
assumption, the former excludes from our analysis the class
of channels whose 0-error capacity is strictly positive.

To any memoryless channel we can associate a function
D : X × X → R

+ defined by

D(x, x′) := − log

∫

Y

√

W (y|x)W (y|x′)dµ(y) .

This function is usually called the Bhattacharyya distance
function of the channel and satisfies

D(x, x′) = D(x′, x) , ∀x, x′ ∈ G , (1)

d(x, x′) = 0 ⇐⇒ x = x′ . (2)

As in [4] we introduce the following definition of symmetry
for memoryless channels.
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Fig. 1. Two GU constellations admitting generating groupZ8

Definition 1 A MC {W (·|x)}x∈X is G–symmetric if

(i) G acts simply and transitively onX ;
(ii) G acts isometrically onY;

(iii) W (gy|gx) = W (y|x) for every g ∈ G, x ∈ X , and
y ∈ Y.

Notice that property (i) implies that for any fixedx0 ∈ X we
have a bijectiong ∈ G 7→ gx0 ∈ X . Through such a mapping
G andX ca actually be identified and subset overGN will
naturally lead to codes of lengthN over X . From now on
we assume that the base pointx0 has been fixed andX will
be identified withG. In particular, we will writeD(g, h) for
D(gx0, hx0).

It is easy to verify that the Bhattacharyya distance function
D of a G-symmetric memoryless channel satisfies

D(g, h) = D(h−1g, 1G) = d(h−1g) ,

where we define

d : G → R
+ , d(g) = D(g, 1G) , g ∈ G .

The arguments above motivate the following definition.

Definition 2 A functiond : G → R
+ such that

d(g) = d(g−1) d(g) = 0 ⇔ g = 1G , g ∈ G ,

is called aG-Bhattacharyya weight function.

A Bhattacharyya weight function can be extended to direct
products in a natural way. Given two elementsx andy of the
direct group productGN , and a Bhattacharyya weight function
D, the D-distance betweenx andy is defined by

D(x,y)=

N
∑

i=1

D(xi, yi)=

N
∑

i=1

d(y−1
i xi)=n〈υG(y−1x),d〉

Example 1 (Binary-input symmetric-output channels)
Consider the case whenG = Z2. Z2-symmetric channels
are known in the literature as binary-input symmetric-output
(BIOS) channels. In this case

n〈d,υZ2
(x − y)〉 = d(1) |{1 ≤ i ≤ N : xi 6= yi}| ,

i.e. thed-distance is proportional to the Hamming distance.



Example 2 (Geometrically Uniform AWGN channel)
Given the n–dimensional Euclidean spaceRn, an
n–dimensional constellation is a finite subsetS ⊂ R

n

that spansRn; we denote withΓ(S) its symmetry group, i.e.
the group of those isometries ofR

n mappingS into S itself.
A constellationS is said to be geometrically uniform (GU)
if there exists a subgroupG of Γ(S) such that for every
s, r ∈ S a uniqueg ∈ G exists such thatgs = r (i.e. the
action of G on S is simply transitive). Such aG is called
a generating group forS: for every s ∈ S the mapping
µs : G → S defined byµs : g ∈ G 7→ gs ∈ S is a bijection
called isometric labelling. Two examples of GU constellations
both admittingZ8 as a generating group, are presented in
Fig. 1. Both the constellations also admit the non Abelian
dihedral groupD4 as a generating group.

It is easy to check that the AWGN channel with input
restricted on GU constellationS admitting a generating group
G is G-symmetric. Moreover, if we denote byσ2 the variance,
we have that

d(g)=− log
∫

Rn

1√
2πσ2

n e−(||y−µs(g)||2+||y−µs(1G)||2)/4σ2

dy

= ||µs(g) − µs(1G)||2 log e/(2πσ2) ,

i.e. the Bhattacharyya distance is proportional to the squared
Euclidean distance.

III. G ILBERT-VARSHAMOV BOUND ON

THE MINIMUM BHATTACHARYYA DISTANCE

Suppose a finite groupG and aG-Bhattacharyya function
d are given. ForN in N, a block-code overG of lengthN is
any subsetC of GN . It’s rate isR(C) = 1

N log |C|; we define
its complementary rate as

R(C) := 1 −
R(C)

log |G|
.

For every θ in P(G), Sθ(C) will denote the number of
codewords inC of typeθ, while Nθ(C) will denote the number
of ordered pairs of codewords ofC whose difference has type
θ:

Sθ(C) :=
∑

x∈C
1{θ}(υG(x)) ,

Nθ(C) :=
∑

(x,y)∈C2

1{θ}(υG(x−1y)) .

The normalized minimumd-distance of a codeC is

δd(C) := inf
{

〈θ,d〉
∣

∣ θ ∈ P∗(G) : Nθ(C) > 0
}

.

A G-code of lengthN is a subgroupC of the direct group
productGN . For aG-codeNθ(C) = |C|SN

θ (C), so that

δd(C) = inf
{

〈θ,d〉
∣

∣ θ ∈ P∗(G) : Sθ(C) > 0
}

.

The Gilbert-Varshamov bound is a lower bound on the
largest normalized minimumd-distance achievable by codes
over G with rate greater than or equal to some valueR. The

result can be summarized as follows. For everyR in [0, 1] and
δ in [0,d], define

δGV
d (R) := inf

{

〈θ,d〉
∣

∣ θ ∈ P∗(G) : H(θ) ≥ R log |G|
}

.

Theorem 3 For everyR ∈ [0, 1]

sup
{

δd(C)
∣

∣ C code overG ,R(C) ≤ R
}

≥ δGV
d (R)

A proof of Theorem 3 can be found for instance in [2] and is
essentially based on an estimation of the volume of discrete
d-balls in GN [9].

Note that Theorem 3 guarantees the existence of a code
over G with large enough minimumd-distance, but this code
needs not to be aG-code. Moreover it is possible to show that
in this case the random coding ensemble (notice that, since
the channel isG-symmetric, the optimal input distribution for
both capacity and error exponent is the uniform one), with
probability one does not achieve the GV bound [1].

When G is the binary fieldZ2 Theorem 3 reduces to
the classical Gilbert-Varshamov bound for binary codes. As
mentioned in the introduction, it is known that in this case the
Gilbert-Varshamov bound is achievable by binary liner codes,
and, more remarkably, it is achieved with probability one by
the binary linear coding ensemble [1]. WhenG is any finite
field Fq, the same is also known to hold true for the random
Fq-linear ensemble.

The question we want to address is how this phenomenon
generalizes to arbitrary finite groupsG. In the sequel we will
provide a complete answer for the class of cyclic groups.
While our techniques can be generalized to arbitrary finite
Abelian groups using Kronecker decomposition theorem, gen-
eralizations to nonAbelian groups seem to require completely
different algebraic tools.

IV. ENSEMBLES OF CYCLIC GROUP CODES:
DISTANCE SPECTRA AND MINIMUM d-DISTANCE

In this section we restrict ourself to the special class of finite
groups, that of cyclic groups. For every positive integerm we
denote byZm the group of integers modulom. Zm admits
ring structure andZn

m is in fact aZm-free module [7].
Let us consider a complementary design rateR. For everyN

in N defineL := ⌈NR⌉ and consider the sethom
(

Z
N
m, ZL

m

)

of all homomorphisms fromZ
N
m to Z

L
m. To every φ in

hom(ZN
m, ZL

m) a Zm-code is naturally associated, namely its
kernelCφ := ker(φ). It is easy to check that the complemen-
tary rate ofCφ is less than or equal toR.

We now introduce a probabilistic structure on the set of all
Zm-codes of complementary rate less than or equal toR.

Definition 4 For every R ∈ [0, 1] the Zm-linear ensemble
of complementary rateR is a sequence(CΦN

)N∈N
of random

variables, withΦN uniformly distributed overhom
(

Z
N
m, ZL

m

)

.
Its distance spectra will be denoted by

SN
θ := Sθ (CΦN

) , θ ∈ P(Zm) ,



and its minimum Bhattacharyya distance by

δN
d := δd(CΦN

) .

Consider a baseB of Z
N
m, i.e. a set ofN Zm-linear

independent elements ofZ
N
m. Since everyφ in hom(ZN

m, ZL
m)

can be uniquely characterized by the images of the elements of
B [7], from Def.4 it follows that

{

ΦNb
∣

∣ b ∈ B
}

is collection
of independent random variables, identically distributedwith
uniform distribution overZL

m.
We now introduce the function

lm : Zm → N , lm(θ) :=
m

gcd (supp (θ))
.

Let us fix x and y in Z
N
m such that lm(υZm

(x)) =
lm(υZm

(y)) = l. This implies thatx,y ∈ m
l Z

N
m, and that

l
mx is Zm-linear independent. It follows that there exists a
basis ofZN

m containing l
mx. Thus the r.v. l

mΦNx is uniformly
distributed overZL

m, and ΦNx is uniformly distributed over
m
l Z

L
m. The same is obviously true for the r.v.slmΦNy

and ΦNy respectively. Moreover, if l
my and l

mx are linear
independent, then there exists a basis ofZ

N
m containing both:

it follows that the r.v.s l
mΦNx and l

mΦNy are independent
and so doΦNx andΦNx.

Based on the reasonings above, standard combinatorial
and probabilistic arguments allow to characterize the typical
asymptotic distance spectra of theZm-linear ensemble. First,
both the expected value of the distance spectra of theZm-
linear ensemble and its variance can be evaluated as follows.

Theorem 5 For everyN in N and θ in PN (Zm) we have:

E
[

SN
θ

]

=

(

N

Nθ

)

lm(θ)−L , (3)

1 − mlm(θ)−L ≤
Var

[

SN
θ

]

E
[

SN
θ

] ≤ m
(

1 − lm(θ)−L
)

. (4)

For everyR ∈ [0, 1] define

GR
Zm

(θ) := H(θ) − R log lm(θ) .

From (3) and (4) it follows that for everyθ in PN(Zm)

lim
N∈N

log E
[

SN
θ

]

N
= lim

N∈N

log Var
[

SN
θ

]

N
= GR

Zm
(θ) .

The following result exactly characterizes the asymptoticdis-
tance spectra of theZm-linear ensemble.

Corollary 6 For the uniformZm-linear ensemble of rateR
we have that, with probability 1,

• lim
N∈N

SN
θ = 0 , ∀θ ∈ PN(Zm) : GR

Zm
(θ) < 0 ;

• lim
N∈N

1

N
log SN

θ = GR
Zm

(θ) , ∀θ∈PN(Zm) : GR
Zm

(θ)>0 .

Proof (sketch) In order to show the first point it is sufficient to
use a first order method and (3) and Borel Cantelli lemma. For

the second part a first order method based on (3) is sufficient
to show that

lim sup
N∈N

1

N
log SN

θ ≤ GR
Zm

(θ) ,

while a second moment method based on (4) allows to show
that

lim inf
N∈N

1

N
log SN

θ ≥ GR
Zm

(θ) .

We are now ready to evaluate the typical asymptotic mini-
mumd-distance of theZm-linear ensemble of complementary
rateR. We can rewrite

δN
d := inf

{

〈θ,d〉
∣

∣ θ ∈ P∗
N (G) : SN

θ > 0
}

.

In order to state our main result we need some more notation.
For a subsetA of Zm we define

∆A := {θ ∈ P∗(G) : supp(θ) ⊆ A} ,

δGV
d (A,R) := inf

{

〈θ,d〉
∣

∣ θ ∈ ∆A ,H(θ) ≥ R log |A|
}

.

Theorem 7 For any Zm-Bhattacharyya functiond, the uni-
form Zm-linear ensemble of complementary rateR has nor-
malized minimumd-distance satisfying

P

(

lim
N∈N

δN
d = δZm

d (R)

)

= 1 ,

where

δZm

d (R) := min
{

δGV
d (m

l Zm, R)
∣

∣ l ∈ Dm, l > 1
}

. (5)

Proof (sketch) A first observation is that the closure of the set
{lm(θ) = l} in P(Zm) is ∆m

l Zm
. Then continuity arguments

allow to show that

δZm

d (R) = inf
{

〈θ,d〉|θ ∈ P∗(Zm) : GR
Zm

(θ) ≥ 0
}

.

Define the events

AN :=
⋃

θ∈PN(Zm):GR

Zm
(θ)<0

{SN
θ > 0} , N ∈ N .

From the first point of Corollary 6, since the setPN(Zm) is
countable, we have thatP (AN i. o. ) = 0. It follows that

P

(

lim inf
N

δN
d ≥ δZm

d (R)
)

≥ 1 − P

({

δN
d ≤ δZm

d (R)
}

i. o.
)

≥ 1 − P (AN i. o. ) = 1 .

In order to show that

P

(

lim sup
N

δN
d ≤ δZm

d (R)

)

= 1 ,

one uses the second point of Corollary 6 and the density of
PN(Zm) ∩ ∆m

l Zm
in ∆m

l Zm
.

Theorem 7 characterizes the typical normalizedd-distance
achieved by ensembles ofZm-free codes in the simple form



(5). It turns out thatδZm

d (R) is the minimum of Gilbert-
Varshamovd-distances associated to all the nontrivial sub-
groups ofZm so that clearly

δZm

d (R) ≤ δGV
d (R) .

When m is a prime number the only non trivial subgroup
is Zm itself, so that always in this case we haveδZm

d (R) =
δGV
d (R) and Theorem 7 directly implies that the Gilbert-

Varshamov bound is achieved with probability one by theZm-
linear random coding ensemble.

When m is not prime, the presence of proper subgroups
of Zm may prevent this to hold true. In fact it is possible to
construct examples whenδZm

d (R) < δGV
d (R), for instance

using the AWGN channel with input restricted to the 3-
dimensional GU constellation depicted in the righthand side
of Fig. 1. In next section instead, we will analyze a simple
case whenδZm

d (R) = δGV
d (R).

V. THE 8-PSK AWGNCASE

In this section we restrict ourselves to the8-PSK AWGN
channel and prove that in this special case theZ8-linear en-
semble minimumd-distance achieves the Gilbert-Varshamov
bound asymptotically with probability one.

Theorem 8 For everyR in (0, 1)

δZ8

d (R) = δGV
d (R) .

Proof We will show that

δGV
d (R, 4Z8) = δGV

d (R, 2Z8) ≥ δGV
d (R, Z8) . (6)

Since by definition

δZ8

d (R) = min
{

δGV
d (R, 4Z8), δ

GV
d (R, 2Z8), δ

GV
d (R, Z8)

}

,

(6) clearly implies the claim.
Simple geometrical considerations based on Pythagoras

theorems allow to show that

d(4) = 2d(2) = 2d(6) ,
d(1) = d(7) , d(3) = d(5) ,

d(1) = d(4) − d(3) < 1
4 .

(7)

Using Lagrange multipliers it is possible to write

δGV
d (R, 4Z8) = 〈

e−λd|4Z8

Z2(λ)
,d〉 =

d(4)e−λd(4)

Z2(λ)
,

whereλ solvesH
(

e
−λd|4Z8

Z2(λ)

)

= R log 2, while

δGV
d (R, 2Z8) = 〈

exp(−λ′d|2Z8
)

Z4(λ) ,d|2Z8
〉

= d(4) exp(−λ′d(2))+d(4) exp(−λ′d(4))
Z4(λ)

= d(4) exp(−λ′d(4))
Z2(λ′) ,

whereλ′ solvesH
(

e
−λd|2Z8

Z4(λ)

)

= R log 4. From (7) it follows

thatH
(

e
−λd|2Z8

Z4(λ)

)

= 2H
(

e
−λd|4Z8

Z2(λ)

)

, so thatλ = λ′ and thus

the equality in (6) holds true. In order to show the inequality
in (6), we introduce theZ8-type θ defined by

θ(0) := (1 − α)3 , θ(1) := θ(2) := θ(7) := α(1 − α)2 ,
θ(4) := α3 , θ(6) := θ(5) := θ(3) := α2(1 − α) ,

whereα := exp(−λd(4))
Z2(λ) . It can be verified that

H(θ) = 3H

(

exp(− λd|4Z8
)

Z2(λ)

)

= R .

A straightforward calculation gives us

〈θ,d〉 =

(

1 −

(

2d(1) −
1

2
d(4)

)

(

2α2 − 3α + 1
)

)

α ≥ α ,

last inequality following from (7).

Corollary 9 With probability 1 minimumd distance of the
Z8-linear ensemble achieves the Gilbert-Varshamov bound of
the 8-PSK AWGN channel.

VI. CONCLUSIONS

In this paper we have analyzed the asymptotic behavior of
the minimal Bhattacharyya distance of Abelian group codes
over symmetric channels. In particular we have proven that
typical Z8-codes achieve the GV bound over the AWGN
channel with input on the8−PSK constellation. We believe
a lot more needs to be understood about this problem. As a
first goal, we are currently trying to extend our final result
to all pr − PSK constellations (wherep is a prime number).
Secondly, we would like to study the typical behavior of the
minimal Bhattacharyya distance of linear (or affine) binary
codes over non-binary symmetric channels. For the specific
case ofPSK constellations we conjecture that linear binary
codes will exhibit smaller typical distances than Abelian group
codes. We believe that this type of analysis is a first fun-
damental step to understand the behavior of more structured
ensembles of codes, for instance LDPC or turbo group codes
over non-binary symmetric channels.
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