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Abstract— The problem of the minimum Bhattacharyya dis- codes for binary symmetric channels [8], [5]. In [3], [4]
tance of group codes over symmetric channels is addressed.Abelian group codes ensembles have been introduced amd thei

Ensembles ofZ,-linear codes are introduced and their typi- g..qp probability analyzed leading to an exact characion
cal minimum distance characterized in terms of the Gilbert- . .
of the capacity achievable by such codes.

Varshamov distances associated to the subgroups @f,,. For the : . . .
AWGN channel with 8-PSK as input it is shown that the typical In this paper also we will deal with Abelian codes ensem-
Zsg-linear code achieves the Gilbert-Varshamov bound. bles. Our main contribution is an exact characterizatiothef
minimum Bhattacharyya distance asymptotically achievabl
by ensembles of codes over the cyclic grop,: it turns
The Gilbert-Varshamov (GV) bound is one of the mostut that with probability on€eZ,,-linear ensembles of codes
famous lower bounds on the achievable minimum Hammirggymptotically achieve a distance which is the minimum ef th
distance of binary codes. Given a rdten (0,1) and defined GV distances associated to the subchannels having as inputs
§¢V(R) as the unique solution if0,1/2) of the equation all the possible nontrivial subgroups @f,,. This phenomenon
H(z) = 1 — R (H(x) denotes the binary entropy), it stateglosely resembles what has been shown in [3] and [4] for the
that there exist codes of length and minimum distance at capacity of Abelian group codes. In fact, both are related to
leastné“Y (R), for everyn. It was introduced in early '50s the characterization of distance spectra for such codesa As
and since then has attracted a huge amount of attention frepecific example we then consider the AWGN channel with
researchers. In particular the asymptotic tightness ofGke the 8 — PSK input constellation. We prove that in this case
bound is one of the most famous unproved conjectures the above minimum of the GV distances is equal to the GV
coding theory, as pointed out by A.Vardy in his plenary tdlk alistance of the channel itself with respect to the squared
last ISIT [10]. This problem is closely related to the tigkgs Euclidean distance: in other terms typicdf group codes
of the expurgated error exponent at low rates. A well knowsiways achieve the GV distance on the AWGN channel with
fact is that the Gilbert-Varshamov bound is asymptoticallthe 8 — PSK input constellation.
achieved with probability one by the binary linear coding In Section Il the general notion of Bhattacharyya distance
ensemble [6], while this is not the case for the random codifigr symmetric channels is introduced and two examples are
ensemble. In [1] the relationships of this problem with thpresented where it coincides respectively with the Hamming
typical distance spectra and typical error exponent of thlistance for BIOS channels and with the squared Euclidean
random coding ensemble and of the linear coding ensemhdéstance for the AWGN channel with a GU constellation as
are explored for binary symmetric channels. input. In Section Il we state the Gilbert-Varshamov bound
In this paper we will deal with an extension of these issuem the Bhattacharyya distance. Section IV contains the main
to the non binary case. There are many different notionssults consisting in an exact characterization the typica
of distance for non binary alphabets; the Hamming distandéstance spectra and minimum distanceZgf-linear coding
and the Lee distance for instance have been widely studiedisembles. In Section V we analyze the special case of the
However these distances have no direct application to tA&/GN channel with8 — PSK input constellation.
error exponents of channels usually considered. Here we
will follow the approach of [2] considering the notion of  !l- BHATTACHARYYA DISTANCE FOR SYMMETRIC
Bhattacharyya distance of a memoryless channel and dealing MEMORYLESS CHANNELS
with the corresponding Gilbert-Varshamov bound. We will In this section we introduce a general framework for the
focus on symmetric memoryless channels, an importantapecninimum distance. While perhaps looking rather abstract, we
case of which is the AWGN channel with input restricted owill see that this framework unifies many different definitio
a Geometrically Uniform (GU) constellation: in this case thand allows to formulate a general problem.
Bhattacharyya distance corresponds to the squared Eaglide Throughout this paper the bassp and log has to be
distance up to a scaling factor. Group codes for such a classsidered the same arbitrary fixed positive number. For
of channels constitute a natural generalization of binewgar a finite set A, P(A) will denote the space of probability
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measures oved. If a in A, ¢, in P(A) denotes the delta
probability concentrated oa. The entropy function is

H:P(A) -R",  H(@)=-> 0(a)loga).

For everyn in N, the A-type function is defined as

va: A" —P(4), [UA(w)](a)::%\{l <i<n:z=a}l .

We defineP,,(A) := va(A™) andPn(A) := UpenPn(A); the
setPn(A) is countable and dense 7A(A).
For two real valued functiong andg over A we consider

their scalar productf,g) = >_.c 4 f(a)g(a); for a subset3  pefinition 1 A MC {W(-|z)}scx is G-symmetric if
of A, f|s : B — R denotes the restriction of to B. () G acts simply and transitively oft’;
For an arbitrary finite group we shall denote by its unit éii) G acts isometrically or; ;

element and generally use the multiplicative notation. Whep..

G is Abelian ?Ne shal)ll switch to thepadditive notation with ) W(ggmx) = Wi(ylz) for everyg € G, x € &, and

0 denoting the unit element. We will also use the notation €

PH(G) = P(G)\ {10} . Lo |
A memoryless channel (MC) of finite input set and Notice that property (i) implies that for any fixed) € X' we

continuous output seY = R” is described by a family of Nave a bijectiony € G gz € X. Through such a mapping

transition probability densitiesWW (-|2)},cx. Our theory also G and X ca actually be identified and subset ov&t’ will

works in a more general framework including channels withaturally lead to codes of lengthv over X. From now on
discrete outputs: this choice is only made for simplicity. ~ We assume that the base point has been fixed and” will

Consider two elements:,z’ of X. Since bothW (-|z) be identified withG. In particular, we will write D(g, h) for
W(-|z’) are nonnegative measurable functions o9érthe D(gxo, hao).

Fig. 1. Two GU constellations admitting generating gréip

quantityfy W (y|z)W (y|')dy is well defined in[0, +oco]. It is easy to verif_y that the Bhattacharyya di_st{:mce fumctio
Both /W (-|z) and /W (-[z’) are inL?*(Y) so that Schwartz D of a G-symmetric memoryless channel satisfies
inequality gives D(g,h) = D(h'g,1g) =d(h™g),

0 <[5 VW(yle)W(ylz')dy where we define

< [y Wyle)du(y) [, Wiyla')dy = 1.

The first inequality above is an equality iff the supports of
W(-|z) and W(-|2')) intersects in a set of zero measureThe arguments above motivate the following definition.
Instead, the second inequality is equalityWff(-|z) = W (-|a")

almost surely, which means that actually and =’ have Definition 2 A functiond : G — R* such that
indistinguishable outputs. In this paper we will assume tha

for everyz # x’ dig)=d(g™") dlg)=0&g=1s, ge@qG,

0 < / Wl W gl < 1; is called aG-Bhattacharyya weight function.
v

) ] o A Bhattacharyya weight function can be extended to direct
While thgre is no loss of generality in the latter p.art of th'ﬁroducts in a natural way. Given two elementandy of the
assumption, the former excludes from our analysis the clggsect group product?Y, and a Bhattacharyya weight function

of channels whose 0-error capacity is strictly positive. D, the D-distance betweer andy is defined by
To any memoryless channel we can associate a function

D: X x X — R defined by N N
D(x7 y) = ZD(.’L‘M yl) :Z d(yz lmi) :M’UG(y_lw)v d}
D(a.a") = ~log | VW) W(yla'idu(y). = =
hY
xample 1 (Binary-input symmetric-output channels)

This function is usually called the Bhattacharyya distan% : o .
function of the channel and satisfies onsider the case whe¥ = Z,. Zs-symmetric channels

are known in the literature as binary-input symmetric-otitp
D(z,2") = D(2',2), Vo,2' € G, (1) (BIOS) channels. In this case

d:G—R",  d(g)=D(g1ls), geG.

d(z,z') =0 — z=2a. 2 n{d,vz,(x —y)) =d(1) {1 <i < N: z; v}l ,

As in [4] we introduce the following definition of symmetryi.e. thed-distance is proportional to the Hamming distance.
for memoryless channels.



Example 2 (Geometrically Uniform AWGN channel) result can be summarized as follows. For evArin [0, 1] and
Given the n—dimensional Euclidean spaceR™, an ¢ in [0,d], define

n—dimensional constellation is a finite subsét C R” — . . —

that span®R™; we denote withl'(S) its symmetry group, i.e. 5§V (R) :=inf {(0,d)| 6 € P*(G) : H(#) > Rlog|G|} .
the group of those isometries & mappingsS into S itself.
A constellationS is said to be geometrically uniform (GU)
if there exists a subgroug: of I'(S) such that for every sup {34(C)|C code overG ,R(C) < R} > 5V (R)
s, € S a uniqueg € G exists such thays = r (i.e. the
action of G on S is simply transitive). Such & is called
a generating group foiS: for every s € S the mapping

Theorem 3 For everyR € [0, 1]

A proof of Theorem 3 can be found for instance in [2] and is

ggllzegi;rﬁe?r?él?aegiellbiﬁus ':I'v%oeefa'r: ?;SifSGIlSJ 20?1”;2;32 essentially based on an estimation of the volume of discrete
9: P d-balls in GN [9].

bpth admittingZs as a ger_1erat|ng group, are presented_ " Note that Theorem 3 guarantees the existence of a code
Fig. 1. Both the constellations also admit the non Abelian : o . .

X . over G with large enough minimund-distance, but this code
dihedral groupD, as a generating group.

. L eeds not to be &-code. Moreover it is possible to show that
It is easy to check that the AWGN channel with mpu{1 @ P

restricted on GU constellatiol admitting a generating arou In this case the random coding ensemble (notice that, since
: X . g9ag 9 9rUPhe channel ig7-symmetric, the optimal input distribution for
G is G-symmetric. Moreover, if we denote l the variance

e have that ' both capacity and error exponent is the uniform one), with
W v probability one does not achieve the GV bound [1].

d(g)=—log [ 277102”e—(\\y—lts(g)Hz-H\y—us(lc)||2)/4<72dy When G is t'he binary fieldZ, Theorem 3 reduces to
Rn Y ) ) the classical Gilbert-Varshamov bound for binary codes. As
= [lus(9) — ns(1c)||* loge/(2ma?) mentioned in the introduction, it is known that in this calse t

Gilbert-Varshamov bound is achievable by binary liner &de
and, more remarkably, it is achieved with probability one by
the binary linear coding ensemble [1]. Whéhis any finite

111. GILBERT-VARSHAMOV BOUND ON field Fq, the same is also known to hold true for the random
THE MINIMUM BHATTACHARY YA DISTANCE Fq-linear ensemble.

o ) The question we want to address is how this phenomenon
Suppose a finite groupr and aG-Bhattacharyya function genergjizes to arbitrary finite grougé In the sequel we will
d are given. ForN in N, a block-code oyeG of length N is  rovide a complete answer for the class of cyclic groups.
any subset of GN. It's rate isR(C) =  log [C[; we define \yphile our techniques can be generalized to arbitrary finite
its complementary rate as Abelian groups using Kronecker decomposition theorem; gen
R(C) eralizations to nonAbelian groups seem to require comiglete

R(C) =1~ g |G| different algebraic tools.

i.e. the Bhattacharyya distance is proportional to the saplia
Euclidean distance.

For every 6 in P(G), Se(C) will denote the number of IV. ENSEMBLES OF CYCLIC GROUP CODES
codewords irC of type 8, while Ny (C) will denote the number DISTANCE SPECTRA AND MINIMUM d-DISTANCE
of ordered pairs of codewords 6fwhose difference has type In this section we restrict ourself to the special class dfefin

0: groups, that of cyclic groups. For every positive integewe
Se(C) := Z 1oy (ve(x)), denote byZ,, the group of integers module:. Z,, admits
el ring structure and.}, is in fact aZ,,-free module [7].
Let us consider a complementary design ratéor everyN
Ng(C) := Z lggy(va(z™'y)). in N define L :== [NR] and consider the séiom (Z%, Z% )
(z.9)€C? of all homomorphisms fromZY to Z%. To every ¢ in

hom(ZY,ZE) a Z,,-code is naturally associated, namely its
kernelCy := ker(¢). It is easy to check that the complemen-
. * . tary rate ofC, is less than or equal t&.
34(C) :=1inf {(0,d)| 6 € P*(G) : No(C) >0} . “
a(€) :=1n {< >| (G) = No(C) } We now introduce a probabilistic structure on the set of all
A G-code of lengthN is a subgroug of the direct group Z.,-codes of complementary rate less than or equatto
productG™. For aG-code Ng(C) = |C|S) (C), so that

The normalized minimunal-distance of a cod€ is

) Definition 4 For ever)LE € [0,1] the Z,,-linear ensemble
da(C) = inf {(0,d)| 0 € P*(G) : Sp(C) > 0} . of complementary raté is a sequencéCas ) vy Of random

. _ ariables, with® »; uniformly distributed ovehom (Z, ZL ).
The Gilbert-Varshamov bound is a lower bound on th\éS Idistanc\clawspe](\:]t:la IWi” b?e/ dlencl)ttlajd byv Om( m m)

largest normalized minimuna-distance achievable by codes
over G with rate greater than or equal to some valeThe S = Sp (Coy) , 0 cP(Zy),



and its minimum Bhattacharyya distance by the second part a first order method based on (3) is sufficient
N to show that
05 = 0a(Cay) .

1 —
; : , limsup — log S5’ < GE (),
Consider a base3 of ZY, ie. a set of N Z,,-linear Nen N 0 z (6)

independent elements ﬁffq\i Since everyy in hom(Zy, Zy,)  while a second moment method based on (4) allows to show

can be uniquely characterized by the images of the eleméntgyp,

B [7], from Def.4 it follows that{(I)Nb | be B} is collection

of independent random variables, identically distributgth

uniform distribution overzZ . -
We now introduce the function

e 1 R
h%elé’llf N log Sg' > G# (6).

m We are now ready to evaluate the typical asymptotic mini-

b+ L — N, I (0) := wed (supb (9)) mum d-distance of theZ,,,-linear ensemble of complementary

ged (supp (6)) = .

rate R. We can rewrite

Let us fix x and y in ZY such thatl,,(vz, (z)) = N X N
ln(vz, (y)) = I. This implies thatz,y € ™ZN, and that o4 :=inf {(6,d)|6 € Py (G): S5’ >0} .
l . . - .
m® 1S Z%—Ilnear.mde[])endent. It follovxl/s that there exists @, o qer to state our main result we need some more notation.
basis ofZ,,, containing.-x. Thus the r.v.-®yx is uniformly For a subsetd of Z.. we define
distributed overZZ,, and ® vz is uniformly distributed over "
mzk. The same is obviously true for the rv.g®yy Ay :={0 € P*(G) : supp(8) C A},
and ¢ yy respectively. Moreover, i%y and %az are linear e . _
independent, then there exists a basi€f containing both: 94 (A, R) = inf {(6,d)| 6 € Ay, H(6) > Rlog |Al} .
it follows that the r.v.sL®yz and L& yy are independent
and so dod yx and d . Theorem _7 For any Z,,-Bhattacharyya functiord, the uni-

Based on the reasonings above, standard combinatofffm Z,-linear ensemble of complementary rafehas nor-

and probabilistic arguments allow to characterize thecglpi Malized minimund-distance satisfying

asymptotic distance spectra of tlg,-linear ensemble. First, N , -
both the expected value of the distance spectra ofZthe P (11\}211\]5,1 =04" (R)) =1,
linear ensemble and its variance can be evaluated as follows
where
Theorem 5 For every N in N and @ in Py (Z,,) we have: 5§m (R) := min {6§V(%Zm,ﬁ)]l €D, > 1} )
E[Sy] = (Ji;;) Ln(0) 1, (3) Proof (sketch) A first observation is that the closure of the set
{lm(0) =1} in P(Zy,) is A%zm- Then continuity arguments
Var [SY allow to show that
1—ml,(0)~F < % m (1= 1,,(0)"") (4) _ 7
E [55] 05" (R) = inf { (6,d) 6 € P*(Zyn) : GE (8) = 0} .
For everyR < [0, 1] define Define the events
GF (0) :=H(0) — Rlogl,(8). Ay = U {S) >0}, NeN.
From (3) and (4) it follows that for ever§ in Py(Z.,) O€Pn(Em):GZ,, (6)<0
N N - From the first point of Corollary 6, since the sB(Z,,) is
lim % = lim M =Gf (9). countable, we have th@(Ay i.0. ) = 0. It follows that
NeN N NeN N m
The following result exactly characterizes the asymptdtee P (lin}vinf 5y > o5 (E)) > 1-P ({59’ <o5m (f_?)} i. 0~)
tance spectra of th&,,-linear ensemble. > 1-P(Ayxio. )=1.

Corollary 6 For the uniformZ,,-linear ensemble of rate? In order to show that

we have that, with probability 1, B P <lim sup oy < 5Zm (R)) =1,
e lim SY =0, VO € Py(Z,,) : GF (0) <0; N
NeN m . .
1 N = R one uses the second point of Corollary 6 and the density of
. 1{/12&1 N log Sy’ = sz(e), VOePN(Zy) : GZM(H) >0. Pr(Za) N A%Zm in A%Zm' [

Proof (sketch) In order to show the first point it is sufficientto Theorem 7 characterizes the typical normalizkdistance
use a first order method and (3) and Borel Cantelli lemma. Fachieved by ensembles &f,,-free codes in the simple form



(5). It turns out thatézzlm (R) is the minimum of Gilbert- the equality in (6) holds true. In order to show the ineqyalit
Varshamovd-distances associated to all the nontrivial subn (6), we introduce thés-type 8 defined by

groups ofZ,, so that clearly

5% (R) < 65V (R).

Whenm is a prime number the only non trivial subgrou

is Z,, itself, so that always in this case we ha¥g" (R) =

6§V (R) and Theorem 7 directly implies that the Gilbert-

Varshamov bound is achieved with probability one by Zhe-
linear random coding ensemble.

p Z2(N)

0(0) = (1—a)®,  0(1):=6(2) = 0(7) = a(l — )2,
0(4) := a3, 0(6) :=0(5) :=0(3) :=a?(1 — a),
wherea := S2C2AM) 1t can pe verified that

exp(— Ad _
H(O) = 3H (%) = R

A straightforward calculation gives us

When m is not prime, the presence of proper subgroup 0. d) = (1— (2d(1) — ld 4 ) 202 — 3 1 >
of Z,, may prevent this to hold true. In fact it is possible toz; ) (1) 2 4) ( “ ot ) 4=

construct examples whed;" (R) < 65V (R), for instance |ast inequality following from (7). m
using the AWGN channel with input restricted to the 3-

dimensional GU constellation depicted in the righthandasiq:
of Fig. 1. In next section instead, we will analyze a simpI%

case wher;™ (R) = 3§V (R).

V. THE 8-PSK AWGNCASE

In this section we restrict ourselves to tRePSK AWGN

orollary 9 With probability 1 minimumd distance of the
g-linear ensemble achieves the Gilbert-Varshamov bound of
the 8-PSK AWGN channel.

VI. CONCLUSIONS
In this paper we have analyzed the asymptotic behavior of

channel and prove that in this special case Zidinear en- the minimal Bhattacharyya distance of Abelian group codes
semble minimumd-distance achieves the Gilbert-Varshamogver symmetric channels. In particular we have proven that

bound asymptotically with probability one.

Theorem 8 For everyR in (0, 1)
0g°(R) = 54" (R).
Proof We will show that
04" (R.AZs) = 64" (R, 2Zs) > 6§V (R, Zs).  (6)
Since by definition
053 (R) = min {6§" (R, 42Zs), 65" (R, 2Zs), 65" (R, Zs)} ,

(6) clearly implies the claim.

typical Zg-codes achieve the GV bound over the AWGN
channel with input on th8 — PSK constellation. We believe

a lot more needs to be understood about this problem. As a
first goal, we are currently trying to extend our final result
to all p" — PSK constellations (where is a prime number).
Secondly, we would like to study the typical behavior of the
minimal Bhattacharyya distance of linear (or affine) binary
codes over non-binary symmetric channels. For the specific
case of PSK constellations we conjecture that linear binary
codes will exhibit smaller typical distances than Abeliaaup
codes. We believe that this type of analysis is a first fun-
damental step to understand the behavior of more structured
ensembles of codes, for instance LDPC or turbo group codes

Simple geometrical considerations based on Pythagof€r non-binary symmetric channels.

theorems allow to show that
d(4) =2d(2) = 2d(6),
d(1) =d(7),  d(3)=d(5), @)
d(1)=d(4) —d(3) < .
Using Lagrange multipliers it is possible to write

_ —Ad|4zg d(4)€7)\d(4)
3§V (R, 4Zs) = (< d) =
d ( ’ 8) <Z2()\) ) > ZQ()\) )

—Adlyzg

where )\ solvesH (e

TO‘)) = Elog 2, Wh|le

- exp(—\'d|ayz
05V (R,22s) = (“E25=s) dlyg,)

_ d(4) exp(—\'d(2))+d(4) exp(—\'d(4))
L Za(N)

—  d@)exp(=A'd(4))

- Za(N) ’

e~ Mlazg

where )\ solvesH (T(A)

e~ Ml2zg e Mlazg ’
thatH (7> =2H <7> , so that\ = )\ and thus

Za(N) Z2(N)

= Rlog4. From (7) it follows [10] A.vardy,
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