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Abstract— In this paper we study ensembles of Abelian group
codes on symmetric channels. Our main example is the AWGN
channel where the inputs are restricted to a GU constellation
admitting Zm as a generating group. For codes which are
Zm-free modules, we prove a sort of Shannon theorem which
exactly characterizes which are the rates for which reliable
transmission is possible. In particular we prove that for the 2r-
PSK constellation, group codes over Z2r do achieve Shannon
capacity. Finally, we study the performance of low density Zm-
codes and we prove average convergence rate of their word error
probability.

Keywords: non-binary modulation, m-PSK, group codes, low
density parity check codes.

I. INTRODUCTION

In this paper we study the performance of several classes
of Abelian group codes over non-binary symmetric channels.
The main example we have in mind is an n-dimensional
AWGN channel with input constrained on a geometrically
uniform constellation admitting Zm as a generating group. In
this setting, a natural class of codes to be considered are the
subgroups of Z

N
m: they replace the standard linear binary codes

in the context of binary input symmetric channels and it is well
known that they share many of their properties as for instance
the uniform error property [2].

In this paper, we start a fundamental investigation of the
performance of such codes with respect to the Shannon limit.
We restrict ourselves to a special type of group codes, namely
the free submodules of Z

N
m: these codes will be called Zm-

free codes. While it is evident that not all group codes inside
Z

N
m are of this type, it had never been studied before how this

algebraic assumption may limit the achievable performance.
We introduce a new concept of capacity (Zm-capacity)

which turns out to be exactly what Zm-free codes can achieve
on symmetric channels. This capacity essentially takes into
consideration Shannon capacities of the various subchannels
induced by restricting the inputs to subgroups of Zm. The
proof that it can be achieved is carried on by establishing a sort
of Shannon theorem in this context. This is done by averaging
over all possible Zm-free codes and using the Gallager bound
as in the linear binary case.

For the special case of the 2r-PSK constellation we then
prove that the Z2r -capacity equals the classical capacity thus
proving that on such constellations, Z2r -free codes do reach

capacity. We also present a couple of examples showing that
this is not necessarily the case for other GU constellations.

Finally, we study low density parity check Zm–codes,
establishing the exact averaged asymptotic performance of
such codes when the block length goes to ∞. We prove results
very similar to the linear case [3], [8], [9]: in particular we
show that these codes can achieve the Zm–capacity if we allow
the parameters describing the densities of the matrices to grow.

II. Zm-SYMMETRIC CHANNELS AND Zm-CODES

Given the n–dimensional Euclidean space R
n, an

n–dimensional constellation is a finite subset S ⊂ R
n that

spans R
n; we denote with Γ(S) its symmetry group, i.e. the

group of those isometries of R
n mapping S into S itself. A

constellation S is said to be geometrically uniform (GU) if,
for every s, r ∈ S, at least one g ∈ Γ(S) exists such that
gs = r (i.e. the action of Γ(S) on S is transitive). A subgroup
G ≤ Γ(S) (for two groups H and H ′ we write H ≤ H ′

to mean that H is a subgroup of H ′) is a generating group
for S if for every s, r ∈ S a unique g ∈ G exists such that
gs = r (i.e. the action of G on S is simply transitive). If G is
a generating group of a constellation S, then for every s ∈ S
the map µs : G → S defined by µs(g) = gs is a bijection:
these maps are called labelings.

Now we introduce the class of channels we shall consider in
this paper. For a discrete set A, we use the notation P(A) for
the space of all probability laws over A; otherwise, when A
is a continuous set, P(A) will denote the space of probability
densities over A. A memoryless channel (MC) of input set X
and discrete (continuous) output set Y is a family of transition
probability laws (densities) {W (·|x) ∈ P(Y)}x∈X .

Let G be an arbitrary group.
Definition 1: A MC {W (·|x) ∈ P(Y)}x∈S is said to be

G–symmetric if

• S is a GU constellation with generating group G;
• G acts on Y;
• W (y|x) = W (gy|gx) for every g ∈ G, x ∈ S, y ∈ Y .

Note that, once fixed a labeling µs, we can identify the input
set of a G–symmetric MC with the group G itself: in the
sequel we will do that without explicitly saying.

A first important property of G–symmetric channels is that
their Shannon capacity C and their random coding exponent
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Fig. 1. Z8–labelled (8,h)–PSK and Z6–labelled 2–PAM×3–PSK

E(R) (see [4] pagg.74,139 for formal definitions of these
quantities) are both obtained with uniform distribution over
the input set G.

Let S be an n–dimensional GU constellation equipped with
a generating group G. Define the S–AWGN channel as the
n–dimensional unquantized AWGN channel with input set S.
Now let S′ be another n–dimensional GU constellation such
that G ≤ Γ(S′). An S′–quantization is a map Q : R

n → S′

such that ||x − Q(x)|| = mins∈S′ ||x − s||. We define the
(S, S′)–AWGN channel as the DMC obtained by applying an
S′–quantization Q to the output of the S–AWGN channel.
Note that the special case S = S′ coincides with the hard
decoding rule.

Proposition 2: The S–AWGN channel and the (S, S′)–
AWGN channel are both G–symmetric.

Example 1: Let m be a positive integer and L a positive
real constant. Define the m–PSK constellation as

S={Le
2π
m ki, k = 1, . . . , m} ⊂ C ∼= R

2 .

S admits Zm, i.e. the Abelian group of integers modulo
m, as generating group. When m is even there is another
generating group (see [2], [6]): the dihedral group Dm/2,
which is noncommutative for m ≥ 6. Now, let m′=am be
an arbitrary multiple of m and define the quantization map
over Voronoi regions of the m′–PSK constellation:

Q : R
2 → Zm′ Q(Keθi) =

⌊m′θ
2π

⌋

The m–PSK–AWGN channel and the (m–PSK,m′–PSK)–
AWGN channel are both Zm–symmetric and –whenever m
is even– Dm/2–symmetric.

Example 2: Consider now the Cartesian product constella-
tion m–PSK×2–PAM given by

S = {(Le
2π
m ki, (−1)lLh), k = 0, 1, 2, l = 0, 1} ⊂ C×R ∼= R

3

where h and L are positive real constants, and shown in Fig.1
in the special case m = 3. It’s easy to show that Zm ×Z2 is a
generating group for S; note that, for odd m, Zm×Z2 � Z2m.
Thus, for odd m, unquantized and quantized AWGN channels
with input m–PSK×2–PAM are Z2m–symmetric.

Example 3: For even m we introduce the 3–dimensional
(m,h)–PSK constellation

S = {(Le
2π
m (2k+l)i, (−1)lLh), 1 ≤ k ≤ m

2 , l = 0, 1} ⊆ C×R,

where h and L are positive real constants; an (8,h)–PSK
constellation is shown in Fig.1. It can be shown that, such
as the m–PSK, the (m,h)–PSK constellation has two different
generating groups, Zm and Dm/2; so, in the standard way,
we obtain channels that are both Zm–symmetric and Dm/2–
symmetric.

In this paper we will focus on Zm–symmetric channels; note
that the additive group Zm also has ring structure. Since the
input of a Zm–symmetric channel can be identified with Zm,
block encoders for such channels are (eventually non injective)
maps f : M → Z

N
m, where N is the block length and A

a finite set; the rate of f is defined as the logarithm of its
domain cardinality divided by the block length: R := log |M |

N
(throughout this paper the base of log and exp will be the
same, arbitrary fixed, positive number).

We restrict our investigation to the class of Zm–encoders,
where we define a Zm–encoder of length N and rate R as
a Zm–module homomorphism φm : M → Z

N
m, such that

logM
N = R. An important subclass of Zm–encoders is that

of Zm–free encoders: a Zm–free encoder is a Zm–encoder
whose domain is a finite free module over Zm. We recall that,
for a given ring A, a finitely generated A-free module is an
Abelian group M isomorphic to AK for some K ∈ N: we
emphasize the fact that, if A is not a field, then not every A–
module is free (definitions and properties of modules can be
found in any algebra textbook, see for example [5]).

One important reason for considering Zm–encoders is that
for them the uniform error property (UEP) under ML decoding
holds true when they are employed on a Zm-symmetric chan-
nel. This means that the word error probability using a Zm–
encoder φm ∈ Hom(M, ZN

m), conditioned to the transmission
of any information word u ∈ M , which we denote by
Pw(e|φm, u), does not depend on u. In particular we have
that Pw(e|φm, u) = Pw(e|φm, 0). This also implies that the
average word error probability can be computed as

Pw(e|φm) :=
1

|M |
∑
u∈M

Pw(e|φm, u) = Pw(e|φm, 0) .

III. Zm–CAPACITY AND THE CONVERSE TO THE CHANNEL

CODING THEOREM FOR Zm–FREE ENCODERS

Now we want to enlighten some algebraic obstructions
affecting Zm–free encoders: this is done by introducing a new
concept of capacity for Zm–symmetric channels and showing
that no reliable transmission is possible with Zm–free encoders
at rates above this capacity.

Suppose a Zm–symmetric channel is given and let

φm : Z
K
m → Z

N
m

be a free Zm–encoder of rate Rm = K
N log m. Let l>1 be a

divisor of m (we denote this with l|m). Consider the encoder
φl : m

l Z
K
m → Z

N
m obtained from φm by restricting its domain

from Z
K
m to m

l Z
K
m. The rate of φl is given by

Rl :=
K

N
log l = Rm

log l

log m
.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 5, 2009 at 16:59 from IEEE Xplore.  Restrictions apply.



 0

2

4

6

13

5 7

 0

2

4

6

 04

Fig. 2. 8-th, 4-th and 2-nd subchannels of the Z8–symmetric 8–PSK AWGN

Note that the image of φl is contained in the subgroup m
l Z

N
m.

So, let us consider the channel obtained by restricting the input
set from Zm to m

l Zm (see fig.2 for the case of 8–PSK): we
shall call it the l–th subchannel and denote by Cl its classical
Shannon capacity and by El(R) its random coding exponent.

The l–subchannel is m
l Zm–symmetric, so that Cl and El(R)

are both obtained with uniform distribution over the input set
m
l Zm. The converse to the channel coding theorem (see [4]

Th. 4.3.4), implies that necessary condition for Pw(e|φl) to be
made arbitrarily small is that Rl ≤ Cl, i.e.

Rm ≤ log m

log l
Cl .

On the other hand, it is clear that, for every l | m, we have
Pw(e|φm) ≥ Pw(e|φl); thus, if Pw(e|φl) is bounded away
from 0 independently of the block length N , so is Pw(e|φm).
This reasoning leads to the following conclusion, providing an
intrinsic limitation for free Zm–encoders over Zm–symmetric
channels. First an important definition:

Definition 3: The Zm–capacity of a Zm–symmetric chan-
nel is

Ĉm := min
l|m
l>1

log m

log l
Cl

where, for every l |m, Cl is the Shannon capacity of the l–th
subchannel.

Theorem 4: Consider a Zm–symmetric channel and let Ĉm

be its Zm–capacity. Then, for every R > Ĉm there exists
KR > 0 depending on R but not on N , such that, for every
free Zm–encoder φm of rate R, with any decoding rule, the
corresponding word error probability satisfies

Pw(e|φm) ≥ KR .

Note that, while for an arbitrary Zm–symmetric channel we
have Ĉm ≤ Cm, when m is a prime number (for instance in
the binary case) Ĉm = Cm.

IV. ENSEMBLES OF Zm–FREE CODES

In this section we present a result which completes Theorem
4 by stating that at every rate R < Ĉm reliable transmission
is possible using Zm–free encoders. This is done using a
probabilistic method: we define a sequence of random Zm–
free encoders and show that the sequence of their averaged
word error probabilities converges to 0 exponentially in the
block length.

Given N ∈ N and R ∈ [0, log m] define

K :=
⌈

R
log mN

⌉
.

The ensemble EZm
(N, R) consists of the set all encoders

φm ∈ Hom(ZK
m, ZN

m) equipped with the uniform probability.

Let P (e)
(N,R)

denote the word error probability averaged over
this ensemble.

We have the following fundamental result.
Theorem 5: The following estimation holds true:

Pw(e)
(N,R) ≤

∑
l|m
l>1

exp(−NEl(Rl)) (1)

where, for every l | m, l > 1, El(R) is the random coding
exponent of the l–th subchannel and Rl := K

N log l is its rate.
Sketch of the proof: We first notice that because of the uniform
error property all estimations of the word error probability can
be done assuming that the information word u = 0 has been
transmitted. We then consider the following partition of the
set of encoder’s input:

Z
K
m =

⋃
l|m HK,l ,

HK,l := {u ∈ Z
K
m : gcd(u1, . . . , uK ,m) = m

l } ⊆ m
l Z

K
m .

The reason for choosing such a partition is that it can be
shown that for every u ∈ HK,l, if Φ is a random variable
uniformly distributed over Hom(ZK

m, ZN
m), then Φu is uni-

formly distributed over m
l Z

N
m. For every l | m, l > 1 we

define the random encoder Φl by restricting Φ’s domain to
the set {0} ∪ HK,l. A union bound yields

Pw(e|Φm,0) ≤
∑
l|m
l>1

Pw(e|Φl,0) .

We then apply the Gallager bound (see [4], Th. 5.6.1) sepa-
rately to each term Pw(e|Φl,0), and finally average over the
ensemble. The result follows from the fact that each random
coding exponent El(R) is obtained with uniform distribution
over the input set m

l Zm.

Standard probabilistic arguments yield the following:
Corollary 6: Consider a Zm–symmetric channel whose

Zm–capacity is Ĉm. Then, for every R < Ĉmand for every
ε > 0, there exists a free Zm–encoder φm, of rate greater
than or equal to R, whose ML decoding word error probability
satisfies

Pw(e|φm) < ε . (2)
Proof: Since R < Ĉm, if follows that, for every l | m, l > 1,
Rl = log l

log mR < Cl and so El(Rl) > 0. Thus Theorem 5

implies that Pw(e)
(N,R)

is exponentially decreasing to zero as

N → +∞. So N0 ∈ N exists such that Pw(e)
(N,R)

< ε for
every N ≥ N0; but at least one encoder φm ∈ Hom(ZK

m, ZN
m)

is such that Pw(e|φm) ≤ Pw(e)
(N,R)

, so (2) follows.

V. Z2r -CODES OVER 2r-PSK ACHIEVE CAPACITY!

Theorem 4 and Corollary 6 clearly show that the Zm–
capacity is the fundamental limit for the rate of a reliable
transmission with free Zm–encoders over a Zm–symmetric
channel.
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For prime p, Zp has the structure of the Galois field GF(p),
and –as we have already observed– the Zp–capacity coincides
with the classical capacity; in this case Corollary 6 states that
linear codes over Zp achieve Shannon capacity of every Zp–
symmetric channel, a well known result (see [6] Th. 6).

For non prime m it remains to answer the question whether
Ĉm = Cm or Ĉm < Cm: in the former case there would be no
algebraic obstructions to free Zm–encoders, in the latter the
restriction to free Zm–encoders would cause a loss of capacity.

In this section we investigate capacity inequalities of
(S, S′)–AWGN channels for the three GU constellations in-
troduced in Examples 1, 2, 3; these special cases are both
of interest in applications and representative of three typical
situations that may occur.

Example 4: First, fix a positive integer r and consider the
(2r–PSK)–AWGN channel. Denote with Cr,q its capacity.

Theorem 7: For 1 ≤ r ≤ q − 1 the following inequality
holds true:

rCr+1 ≤ (r + 1)Cr . (3)

The proof, which will be given elsewhere, is essentially
based on convexity properties of the entropy function and on
the structure of the order of Euclidean distances of a generic
point in R

2 from the point of 2r–PSK.
From Theorem 7 it immediately follows that, for every

1≤s≤r, we have Cr ≤ r
sCs and so

Ĉ2r = C2r . (4)

Thus, Corollary 6 implies that free Z2r –encoders achieve
capacity of any (2r–PSK)–AWGN channel. This result is not
trivial since it does not hold true for every GU constellation
with cyclic generating group Zm, as next two examples show.

Example 5: Consider now the 3–PSK×2–PAM constella-
tion introduced in Example 2. It is easy to show that the capac-
ity of the Z6–symmetric (3–PSK×2–PAM)–AWGN channel
satisfies

C6 = C2 + C3 (5)

where C2 and C3 coincide with the capacities of the
(2–PAM)–AWGN and the (3–PSK)–AWGN channel, respec-
tively. Then, a direct calculation shows that necessary and
sufficient condition for Ĉ6 = C6 to hold is

log 3 C2 = log 2 C3 . (6)

Equation (6) is not satisfied by almost all values of h and
N0 (indeed it can be shown that equation (6) has exactly one
solution in h for every fixed value of L

N0

∈ (0, +∞)).
Thus, typically we have

Ĉ6 < C6 ,

and from Theorem 4 it follows that free Z6–codes do not
achieve capacity of this channel.

Instead, let us relax our request for free Z6–encoders and
simply look for Z6–encoders, i.e. homomorphisms

φ6 : Z
K2

2 ×Z
K3

3 → Z
N
6 , φ6(u2,u3) = 3φ2u2 + 2φ3u3 , (7)

where φ2 ∈ Hom(ZK2

2 , ZN
2 ) and φ3 ∈ Hom(ZK3

3 , ZN
3 ). The

rate of the encoder φ6 defined by (7) is R6 = R2 +R3 where
R2 = K2

N log 2 and R3 = K3

N log 3 are the rates of encoders
φ2 and φ3 respectively.

Suppose now a design rate R6 < C6 is assigned; define

R2 =
C2

C6
R , R3 =

C3

C6
R .

From (5) we have R2<C2 and R3<C3 and so, by Corollary 6,
for every ε>0 a free Z2–encoder φ2 and free Z3–encoder exist
whose word error probabilities under ML decoding satisfy
respectively Pw(e|φ2) < ε

2 and Pw(e|φ3) < ε
2 . The word

error probability under ML decoding of the Z6–encoder φ6

defined by (7) satisfies then

Pw(e|φ6) = Pw(e|φ2)+Pw(e|φ3)−Pw(e|φ2)Pw(e|φ3) < ε .

Thus (non free) Z6–encoders achieve the capacity of the
(3–PSK×2–PAM)–AWGN channel.

Similar considerations can be extended to every constella-
tion S which is the Cartesian product of two GU constellation
of generating group Zm1

and Zm2
respectively. If m1 and m2

are relatively prime, then Zm1m2
� Zm1

×Zm2
is a generating

group for S; if Ĉm1
= Cm1

and Ĉm2
= Cm2

, then, even if
Ĉm1m2

< Cm1m2
so that Zm1m2

–free encoders do not achieve
the capacity of the (S, S)–AWGN channel, you can achieve
capacity with non–free Zm1m2

–encoders.

Example 6: Finally consider the (2r,h)–PSK constellation
introduced in Example 3. For h → 0, (2r,h)–PSK collapses
into 2r–PSK. So, by continuity, for sufficiently small values
of h, (4) remains true for the ((2r,h)–PSK)–AWGN channel
and we can assert that free Z2r –codes achieve capacity.

Conversely, it can be shown that

lim
h→+∞

rC2r−1 − (r − 1)C2r < 0 .

So, for high values of h, we have Ĉ2r < C2r and thus Z2r –
free codes do not achieve capacity.

Moreover, since (2r,h)–PSK is not the Cartesian product of
two orthogonal constellations, we cannot repeat the consider-
ations made for the 3–PSK×2–PAM modulation to find non–
free Z2r –encoders of arbitrarily small word error probability.

Actually it can be shown that, for high values of h,
also non–free Z2r –encoders do not achieve capacity of the
((2r,h)–PSK)–AWGN channel.

Instead, we think the dihedral group D2r−1 should be used
as generating group for (2r, h)–PSK constellation, and one
should look for D2r−1–codes, i.e. subgroups of DN

2r−1 .

VI. LOW DENSITY Zm-CODES

In this section we study the performance of Zm–LDPC
codes over Zm–symmetric channels with ML decoding. The
idea is to compare low density ensembles performances with
those of Zm–free encoder ensembles EZm

(R, N) established
in Theorems 4 and 5.

Following [7] and [1], we define low density ensembles
by their Tanner graph. Let c, d, N be three integers such that
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L := c
dN ∈N, and fix an arbitrary π∈SNc, where we are using

the standard notation Sn to denote the group of permutations
of the set {1, . . . , n}. Define the (c, d)–regular bipartite graph
Gπ =(N ∪M, Eπ), where N = {v1, . . . , vN} is the variable
node set, M = {h1, . . . , hL} is the check node set, and

Eπ=
(
(v� i

c �, h�π(i)
d �), 1 ≤ i ≤ Nc

)
∈(N ×M)Ld is the edge

multiset. Note that we allow the presence of parallel edges, i.e.
edges connecting the same couple of nodes, so that actually
Gπ is a multigraph. From Gπ we define the homomorphism
φπ : Z

N
m → Z

L
m by

(φπx)j =
∑

(vn,hj)∈Eπ

xn , j = 1, . . . , L ,

and finally the code Cπ = kerφπ.
Now let Π be a random variable uniformly distributed over

SNc. Π naturally induces a probabilistic structure over the
set of Zm–codes of length N through the above construction.
This probability space is the ensemble of (c, d)–regular LDPC
codes of length N , and we denote it by ELDPC(N, c, d). Note
that all codes in the ensemble have rate greater than or equal to
N−L

N log m = (1 − c
d ) log m. Fix an arbitrary Zm–symmetric

channel of Zm–capacity Ĉm, and let Pw(e)
(N,c,d)

be the ML
decoding word error probability averaged over the ensemble
ELDPC(N, c, d).

Given two real sequences (aN )N∈N and (bN )N∈N, we use
the notation aN � bN to mean that two positive constants A
and B, independent of N , exist such that Aan ≤ bn ≤ Ban

definitively in N . We have the following result:
Theorem 8: Let R be an assigned design rate such that

0 < R < Ĉm .

Then there exists a couple of integers (c, d) such that

c ≥ 3 ,
R

log m
≤ 1 − c

d
, (8)

P (e)
(N,c,d) �

{
N2−c if gcd(c,m) = 1
N1− a−1

a c if gcd(c,m) > 1 ,
(9)

where a := lpcf(c,m) is the lowest prime common factor
between c and m.

A proof of Theorem 8 will be given elsewhere. The upper
bounds have been proved using arguments similar to those
of [9] and [1] and essentially based on the random coding
techniques for non random codes introduced in [10]. The main
difference with respect to the proofs of [1] is that we carefully
took into account the presence of subchannels. The technique
to establish the lower bounds is rather standard and essentially
consists in estimating the probability of having dmin(C) equal
to 1 or 2, where the minimum distance dmin(C) of a code
C ≤ Z

N
m is as usual defined as the number of nonzero elements

minimized over all but the all–zero codewords of C.
Theorem 8 generalizes the results for the binary LDPC

ensembles (see [8] Th. 4; analogously a generalization of Th.
3 can be prooved). As in the binary case, being free to choose
the parameters c and d, for every assigned design rate R < Ĉm

it is possible to find a (c, d)–regular LDPC Zm–code of rate
greater than or equal to R and arbitrary low error probability.

Moreover, as in the binary case, Pw(e)
(N,c,d)

is polyno-
mially rather than exponentially decreasing in the block–
length N . This is due to the presence in the ensembles
ELDPC(c, d, N) of codes with very low minimum distance.
Actually the ML decoding word error probability of a typical
Zm–code in ELDPC(c, d, N) is exponentially decreasing to 0
in N ; it is possible to show that by expurgating the ensemble
of an asymptotically vanishing fraction of codes of poor
performances, a technique already used by Gallager in his
Ph.D. thesis ([3]).

VII. CONCLUSIONS

In this paper we analyzed the performances of block codes
over Zm with Zm–module structure. We proved that reliable
communication is possible over the quantized or unquantized
AWGN channel using Zm–free codes at every rate less than
a fundamental limit which we called the Zm–capacity. We
showed that for the 2r–PSK constellation the Z2r –capacity
coincides with the classical Shannon capacity, while this is
not the case for other GU constellations of practical interest.
Finally we studied the performances of ML–decoded LDPC
Zm–codes, and found that, as in the binary case, they can
achieve Zm–capacity, if we allow their density parameters
to grow suitably. Many questions remain open, and we are
currently working on:

1) finding the Zm–capacity of other GU constellations and
extending our analysis to non-free codes and to codes
over noncommutative groups;

2) considering different non binary LDPC code ensembles,
and especially irregular ones, since in the binary case
it has been proved ([7]) they have better performances
when used with iterative decoding;

3) studying BP–decoded LDPC codes performances in or-
der to find out new design criteria for such codes.
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